整流滤波电容的选择

合集下载

整流滤波电容器的选择

整流滤波电容器的选择

中图分 类 号: M4 T 6
文 献标 识码 : B
文章编 号 : 2 92 1(0 20 ・20 2 —3 0 1 —7 32 1) 1 0 —0 50
整 流 电路是 电子 线路 中最 常见 的电路 , 电路 从 的简 单 性 、 价性 角度 考 虑 , 择 电容 输 入 式 滤 波 廉 选 总是 最佳 的选 择 , 于市 电输人 的 电子线 路 正 确地 对 选 择 滤 波 电容 器 ,使 得 既 可 以满 足 电路 的要 求 , 又
25
第 1卷 5
第 12 ・ 期
鼋涤教 石阅
PO ER S P Y T HNOL I W UP L EC OG ESAND P L CA I A P I T ONS
Vo .5 o 1 2 11 N . -
21年1 02 月
J n 01 a .2 2
电容 量 在 输 入 电压 20V( ±2 %) 按 输 出功 率 2 1 0 时
输 入 时 按 输 出功 率 选 择 为 :不 低 于 每 瓦 (~ ) F 3 4 ( : 3 4 vw ) 即 ≥( ̄ ) / 。滤 波 电容 器 电容 量 的取值 依
据 为 : 2 0V( ±2 %) 流输 入及 8 ~ 6 在 2 1 0 交 5 2 5V交 流


( io ig ies y f e h oo y J g h uL a nn 10 ) La nn v ri c n lg ,i z o io ig 1 Un to F n 2 1 0
Ab t c: h eet go l rc p ct nrcie sa aiy d t etlrn otg ftec p ct nwi r s a t T es lci f t a a i i e t ri n l e , h ea t l eo a a i i t o r n i f e y i f e o v a h y h

电源设计之整流桥和滤波电容的选择

电源设计之整流桥和滤波电容的选择

1、整流桥的导通时间与选通特性50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。

在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C充电。

50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。

因此,整流桥实际通过的是窄脉冲电流。

桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。

总结几点:(1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。

(2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。

(3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007)与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。

2、整流桥的参数选择隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。

全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。

它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。

硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。

硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等多种规格。

小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。

整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流电流Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(μA)。

滤波电容的选型与计算详解

滤波电容的选型与计算详解

电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.;电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好; 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好;电容和电感的很多特性是恰恰相反的; 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级;因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容这里的高频是相对而言;低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz;当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高;因此在使用中会因电解液的频繁极化而产生较大的热量;而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂;电源滤波电容的大小,平时做设计,前级用,用于滤低频,二级用,用于滤高频,的电容作用是减小输出脉动和低频干扰,的电容应该是减小由于负载电流瞬时变化引起的高频干扰;一般前面那个越大越好,两个电容值相差大概100倍左右;电源滤波,开关电源,要看你的ESR电容的等效串联电阻有多大,而高频电容的选择最好在其自谐振频率上;大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2PIf,从而得到此式子f=1/2piLC.,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢电源滤波电容如何选取,掌握其精髓与方法,其实也不难1 理论上理想的电容其阻抗随频率的增加而减少1/jwc,但由于电容两端引脚的电感效应, 这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR自谐振频率值不同,想想为什么如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少就算我知道SFR 值,我如何选取不同SFR值的电容值呢是选取一个电容还是两个电容电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1器件Datasheet,如22pf0402电容的SFR值在2G左右,2通过网络分析仪直接量测其自谐振频率,想想如何测量S21知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,还有电容本身的电阻,有时也不可忽略这就引入了谐振频率的概念:ω=1/LC1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路;2.电源滤波中电容对地脚要尽可能靠近地;3.理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波;4.可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.类似1滤波电容的选取原则经过整流桥以后的是脉动直流,波动范围很大;后面一般用大小两个电容大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑小电容是用来滤除高频干扰的,使输出电压纯净电容越小,谐振频率越高,可滤除的干扰频率越高容量选择:1大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大2小电容,凭经验,一般104即可2.别人的经验来自互联网1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路;2、电源滤波中电容对地脚要尽可能靠近地;3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波;4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.具体案例:AC220-9V再经过全桥整流后,需加的滤波电容是多大的再经78LM05后需加的电容又是多大前者电容耐压应大于15V,电容容量应大于2000微发以上;后者电容耐压应大于9V,容量应大于220微发以上;2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求:1选择整流二极管;2选择滤波电容;3另:电容滤波是降压还是增压1因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的倍, 所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于;2选取滤波电容:1、电压大于;2、求C的大小:公式RC≥3--5×秒,本题中R=24V/=48欧所以可得出C≥F,即C的值应大于6250μF;3电容滤波是升高电压;滤波电容的选用原则在电源设计中,滤波电容的选取原则是:C≥R其中:C为滤波电容,单位为UF;T为频率,单位为HzR为负载电阻,单位为Ω当然,这只是一般的选用原则,在实际的应用中,如条件空间和成本允许,都选取C≥5T/R.3.滤波电容的大小的选取PCB制版电容选择印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流;一般R取1~2kΩ,C取~μF一般的10PF左右的电容用来滤除高频的干扰信号,左右的用来滤除低频的纹波干扰,还可以起到稳压的作用滤波电容具体选择什么容值要取决于你PCB上主要的工作频率和可能对系统造成影响的谐波频率,可以查一下相关厂商的电容资料或者参考厂商提供的资料库软件,根据具体的需要选择;至于个数就不一定了,看你的具体需要了,多加一两个也挺好的,暂时没用的可以先不贴,根据实际的调试情况再选择容值;如果你PCB上主要工作频率比较低的话,加两个电容就可以了,一个滤除纹波,一个滤除高频信号;如果会出现比较大的瞬时电流,建议再加一个比较大的钽电容;其实滤波应该也包含两个方面,也就是各位所说的大容值和小容值的,就是去耦和旁路;原理我就不说了,实用点的,一般数字电路去耦即可,用于10M以下;20M以上用1到10个uF,去除高频噪声好些,大概按C=1/f;旁路一般就比较的小了,一般根据谐振频率一般为或说到电容,各种各样的叫法就会让人头晕目眩,旁路电容,去耦电容,滤波电容等等,其实无论如何称呼,它的原理都是一样的,即利用对交流信号呈现低阻抗的特性,这一点可以通过电容的等效阻抗公式看出来:Xcap=1/2лfC,工作频率越高,电容值越大则电容的阻抗越小.;在电路中,如果电容起的主要作用是给交流信号提供低阻抗的通路,就称为旁路电容;如果主要是为了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;如果用于滤波电路中,那么又可以称为滤波电容;除此以外,对于直流电压,电容器还可作为电路储能,利用冲放电起到电池的作用;而实际情况中,往往电容的作用是多方面的,我们大可不必花太多的心思考虑如何定义;本文里,我们统一把这些应用于高速PCB设计中的电容都称为旁路电容.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好;但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,还有电容本身的电阻,有时也不可忽略这就引入了谐振频率的概念:ω=1/LC1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性;因而一般大电容滤低频波,小电容滤高频波;这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高;至于到底用多大的电容,这是一个参考不过仅仅是参考而已,用老工程师的话说——主要靠经验;更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段;一般来讲,大电容滤除低频波,小电容滤除高频波;电容值和你要滤除频率的平方成反比; 具体电容的选择可以用公式C=4PiPi/Rff电源滤波电容如何选取,掌握其精髓与方法,其实也不难;1理论上理想的电容其阻抗随频率的增加而减少1/jwc,但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地,可以想想为什么原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR自谐振频率值不同,当然也可以想想为什么如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少就算我知道SFR值,我如何选取不同SFR值的电容值呢是选取一个电容还是两个电容电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1器件Datasheet,如22pf0402电容的SFR值在2G左右2通过网络分析仪直接量测其自谐振频率,想想如何量测S21知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.滤波电容的选取与计算从网上看有两种工程常用的计算方法:参考,感觉有些道理一、当要求不是很精确的话,可以根据负载计算,每mA,2uf.二、按RC时间常数近似等于3~5倍电源半周期估算;给出一例:负载情况:直流1A,12V;其等效负载电阻12欧姆;桥式整流:RC=3T/2C=3T/2/R=3x2/12=2500μF工程中可取2200μF,因为没有2500μF这一规格;若希望纹波小些,按5倍取;这里,T是电源的周期,50HZ时,T=秒;全波整流结果一样,但半波整流时,时间常数加倍;根据全波整流波形,可以看出,输出电压的平滑与电容充放电时间和信号的频率有关系,当信号的频率增大时,输出电压的波动就分变大,可以改变滤波电容的大小来改变充放电时间,使波动减小.这也反应了上述滤波电容的计算关系.理论上滤波电容越大滤波效果越好,输出电压就越平滑,但在电路接通的瞬间,电路中所产生的冲击电流因素却不能被忽略,这是因为,几乎所有的电子元器件都有其可以通过的最大电流值,所以,在选择电子元器件时,必须考虑冲击电流所带来的流过相关元器件瞬间电流的最大值,冲击电流越大,对电子元器件的要求就越高,电路的成本就会提高。

整流滤波电路中滤波电容的选取

整流滤波电路中滤波电容的选取

在整流滤波电路中,滤波电容的选取多是使用公式RC≥(3~5)T/2,且在实际电路设计中,一些人也认为滤波电容越大越好,其实这种想法是片面的,本文将对这一问题进行深入的探讨。

文章首先阐述了研究滤波电容选取的必要性,其次对电路进行了理论上的分析和计算,然后,根据理论计算结果编写程序,模拟电路的工作过程。

最后,通过举例讨论滤波电容对电路中的电流、电压及对其它元件参数的影响,从而为优化电路设计奠定了基础。

关键词:整流;滤波;滤波电容一、引言在大多数电源电路中,整流电路后都要加接滤波电路,以减小整流电压的脉动程度,满足稳压电路的需要。

在许多文献中,对于滤波电容C的选取,多是使用经验公式RC≥(3~5)T/2[1,2],并认为滤波电容C越大越好;在一些滤波电路的维修中,技术人员经常用比原电路容量大的电容来代替已坏掉的电容。

实践证明,在很多情况下这样做是行不通的,电容的选取是否越大越好?电容的选择对前级器件及整体电源的性能有何影响?电容的选取是否有最佳值?本文将对这些问题进行深入的讨论。

如图1所示的简单整流滤波电路,理论上讲,增大电路中的滤波电容C容量的确可以使输出电压的波形变得更为平滑、起伏更小,但在电路接通瞬间,电路中所产生的冲击电流因素却不能被忽略,这是因为,几乎所有的电子元器件都有其可以通过的最大电流值,所以,在选择电子元器件时,必须考虑冲击电流所带来的流过相关元器件瞬间电流的最大值,冲击电流越大,对电子元器件的要求就越高,电路的成本就会提高。

在一些滤波电路的维修中,对滤波电容的替换也存在冲击电流的问题,用大容量的滤波电容代替原来的电容,会使冲击电流增大,在不更换其他元件的前提下,单纯提高滤波电容的容量是危险的,它将使整个电路的实际使用寿命大大缩短,甚至烧毁整个电路。

况且,单纯地提高滤波电容的容量对改善输出电压的作用也是有限的,一味地加大滤波电容的容量,只是徒劳地增加电路的成本。

二、简单滤波电路的计算图 2如图所示的简单整流滤波电路,以常见的220v50Hz正弦交流电为输入电压。

整流电路 滤波电容

整流电路 滤波电容

整流电路滤波电容滤波电容作为整流电路中的重要组成部分,其作用是对电路中的电流进行滤波,以获得稳定的直流电压输出。

在这篇文章中,我们将详细介绍滤波电容的原理、特点以及其在整流电路中的应用。

一、滤波电容的原理滤波电容的原理是基于其对交流信号的阻抗特性。

在交流电路中,电容器对于高频信号的阻抗较低,而对于低频信号的阻抗较高。

因此,通过适当选择电容器的数值,可以使高频信号通过而低频信号被抑制,从而实现对电路中的交流信号进行滤波的目的。

二、滤波电容的特点1. 高频滤波:滤波电容的主要作用是对高频信号进行滤波。

它可以将高频噪声信号从电路中剔除,使得输出信号更加纯净稳定。

2. 电容器容值的选择:电容器的容值决定了滤波效果的好坏。

容值较大的电容器可以对更高频率的信号进行滤波,但同时也会增加电路的成本和体积。

因此,在实际应用中需要根据具体要求进行合理选择。

3. 充电和放电:滤波电容在工作过程中需要进行充放电过程。

当输入电压正弦波的峰值大于电容器已充电的电压时,电容器开始充电;当输入电压正弦波的峰值小于电容器已充电的电压时,电容器开始放电。

这种充放电过程使得电容器能够对电路中的交流信号进行滤波。

三、滤波电容在整流电路中的应用滤波电容在整流电路中起到了关键的作用。

整流电路是将交流电转换为直流电的电路,而滤波电容则用于平滑输出电压,提供稳定的直流电源。

在半波整流电路中,滤波电容与二极管串联,通过控制电容器的容值,可以使得输出电压的纹波系数达到要求。

纹波系数是衡量输出电压稳定性的重要指标,它越小表示电压波动越小,输出电压越稳定。

在全波整流电路中,滤波电容则与二极管并联,通过充放电过程将输出电压的纹波进行滤除,使得输出电压更加稳定。

四、滤波电容的注意事项1. 选择合适的电容器:在选择滤波电容时,需要考虑电容器的耐压、容值和频率特性等因素。

根据具体的应用需求,选择合适的电容器是确保整个滤波电路正常工作的关键。

2. 避免电容器过载:滤波电容的容值过大或过小都会影响整个电路的性能。

滤波电容如何选择

滤波电容如何选择

滤波电容的选择滤波电容的选择滤波电容的选择经过整流桥以后的是脉动直流,波动范围很大。

后面一般用大小两个电容大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑小电容是用来滤除高频干扰的,使输出电压纯净电容越小,谐振频率越高,可滤除的干扰频率越高容量选择:(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大(2)小电容,凭经验,一般104即可2.别人的经验(来自互联网)1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

2、电源滤波中电容对地脚要尽可能靠近地。

3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。

4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.具体案例:AC220-9V再经过全桥整流后,需加的滤波电容是多大的?再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微发以上。

后者电容耐压应大于9V,容量应大于220微发以上。

2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求:(1)选择整流二极管;(2)选择滤波电容;(3)另:电容滤波是降压还是增压?(1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于28.2V。

(2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。

(3)电容滤波是升高电压。

滤波电容的选用原则在电源设计中,滤波电容的选取原则是:C≥2.5T/R其中:C为滤波电容,单位为UF;T为频率,单位为Hz,R为负载电阻,单位为Ω当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R.3.滤波电容的大小的选取PCB制版电容选择印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。

电源设计之整流桥和滤波电容的选择

电源设计之整流桥和滤波电容的选择

电源设计之整流桥和滤波电容的选择整流桥和滤波电容在电源设计中起着重要的作用,能够将交流电转换为直流电,并对直流电进行平滑处理,使之适用于电子设备的正常运行。

因此,在电源设计中,正确选择整流桥和滤波电容是非常关键的。

首先,我们来看整流桥的选择。

整流桥是将交流电转换为直流电的器件,一般采用四个二极管组成的桥形结构。

在选择整流桥时,需要考虑以下几个因素:1.最大工作电流:整流桥的最大工作电流应根据设备的需求来确定。

一般来说,整流桥的额定电流应略大于设备的最大工作电流,以充分满足设备的需求。

2.最大反向电压:整流桥的最大反向电压应根据输入电源的电压来确定。

通常,整流桥的额定电压应略大于电源电压的峰值,以确保整流桥能够正常工作。

3.耐压能力:整流桥的耐压能力应根据工作环境来确定。

如果设备工作在恶劣的环境中,如高温或潮湿环境,那么整流桥的耐压能力应相应增强,以提高其稳定性和可靠性。

在实际选择整流桥时,可以通过查找供应商提供的规格书和手册来获得相关信息,并根据设备的需求进行综合考虑。

接下来,我们来看滤波电容的选择。

滤波电容是在整流桥输出端的负载前后串联的一个电容器,用于对直流电进行平滑处理,减小输出电压的波动。

在选择滤波电容时,需要考虑以下几个因素:1.容值:滤波电容的容值应根据负载电流和波动要求来确定。

一般来说,滤波电容的容值越大,其对直流电的平滑效果越好。

但是,容值过大将增加电容器的体积和成本,因此需要适当权衡。

2.电压等级:滤波电容的电压等级应根据直流电的峰值电压来确定。

一般来说,滤波电容的电压等级应略大于直流电的峰值电压,以确保电容器能够正常工作。

3.ESR:滤波电容的ESR(等效串联电阻)应尽量小,以减小能量损耗。

较低的ESR可以提高滤波效果,并减小输出电压的波动。

在实际选择滤波电容时,可以通过查找供应商提供的规格书和手册来获得相关信息,并根据设备的需求进行综合考虑。

总之,在电源设计中,正确选择整流桥和滤波电容是非常重要的。

整流滤波电容的选用方法

整流滤波电容的选用方法

整流滤波电容的选用方法1. 简介整流滤波电容是电力电子设备中常用的元件之一,用于滤除整流电路输出中的脉动电压,提供平稳的直流电压输出。

本文将介绍整流滤波电容的选用方法,包括选定电容容值和额定电压等方面的考虑。

2. 选用电容容值整流滤波电容的容值决定了滤波效果的好坏。

一般来说,容值越大,滤波效果越好,输出电压的脉动越小。

选用电容容值的方法如下:2.1 计算平均负载电流首先,需要计算整流电路的平均负载电流。

根据具体的电路设计,可以通过测量或者计算得到平均负载电流的数值。

2.2 选择电容容值根据平均负载电流和滤波要求,选择合适的电容容值。

一般来说,电容容值的选择应满足以下条件: - 容值足够大,以确保电容能够提供足够的电荷储存,减小输出电压的脉动。

- 容值不宜过大,过大的电容容值会增加成本和体积。

根据经验公式,可以使用以下公式计算电容容值的估计值:C = (I * ΔV) / (f * ΔVp)其中,C为电容容值(单位:法拉),I为平均负载电流(单位:安培),ΔV为输出电压的脉动范围(单位:伏特),f为电路的工作频率(单位:赫兹),ΔVp为允许的输出电压脉动幅值(单位:伏特)。

需要注意的是,以上公式只是一个估计值,实际选用电容时还需要考虑电容的可获得性和价格等因素。

3. 选用额定电压整流滤波电容的额定电压决定了电容能够承受的最大电压。

选用额定电压时需要考虑以下因素:3.1 峰值电压首先,需要确定整流电路输出的峰值电压。

根据电路设计和工作条件,可以计算得到峰值电压的数值。

3.2 选择额定电压根据峰值电压,选择合适的电容额定电压。

一般来说,电容的额定电压应大于等于峰值电压,以确保电容能够正常工作并具有足够的安全裕度。

需要注意的是,额定电压的选择应尽量接近峰值电压,但也不宜过高,以避免不必要的成本和体积增加。

4. 其他考虑因素除了电容容值和额定电压外,还有一些其他的考虑因素,包括: - 电容的尺寸和重量:根据实际应用需求,选择适合的尺寸和重量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对半波整流电路来说,接入了滤波电容器后,空载时输出直流电压 U L 与交流电压 U2 近似相等(U L ≈U2 );对全波整流电路,接上滤波电容器后,空载时 U L 可以上升到等于 U2 的倍左右(U L ≈ )。

由此可见,电容滤波电路不仅使输出电压变得平滑,还提高了输出电压。

电容器检测方法与经验1固定电容器的检测A检测10pF以下的小电容因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。

测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。

若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。

B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏。

万用表选用R×1k挡。

两只三极管的β值均为100以上,且穿透电流要小。

可选用3DG6等型号硅三极管组成复合管。

万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。

由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。

应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。

C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。

2电解电容器的检测A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。

根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。

B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。

此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。

实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。

在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。

C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。

即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。

两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。

D使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。

3可变电容器的检测A用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。

将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。

B用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。

转轴与动片之间接触不良的可变电容器,是不能再继续使用的。

C将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。

在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。

电容器检测方法与经验二极管的检测方法与经验1检测小功率晶体二极管A判别正、负电极(a)观察外壳上的的符号标记。

通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。

(b)观察外壳上的色点。

在点接触二极管的外壳上,通常标有极性色点(白色或红色)。

一般标有色点的一端即为正极。

还有的二极管上标有色环,带色环的一端则为负极。

(c)以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。

B检测最高工作频率fM。

晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。

另外,也可以用万用表R×1k挡进行测试,一般正向电阻小于1K的多为高频管。

C检测最高反向击穿电压VRM。

对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。

需要指出的是,最高反向工作电压并不是二极管的击穿电压。

一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。

2检测玻封硅高速开关二极管检测硅高速开关二极管的方法与检测普通二极管的方法相同。

不同的是,这种管子的正向电阻较大。

用R×1k电阻挡测量,一般正向电阻值为5K~10K,反向电阻值为无穷大。

3检测快恢复、超快恢复二极管用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。

即先用R×1k挡检测一下其单向导电性,一般正向电阻为45K左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几,反向电阻仍为无穷大。

4检测双向触发二极管A将万用表置于R×1K挡,测双向触发二极管的正、反向电阻值都应为无穷大。

若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。

将万用表置于相应的直流电压挡。

测试电压由兆欧表提供。

测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。

然后调换被测管子的两个引脚,用同样的方法测出VBR值。

最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。

5瞬态电压抑制二极管(TVS)的检测A用万用表R×1K挡测量管子的好坏对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4KΩ左右,反向电阻为无穷大。

对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。

6高频变阻二极管的检测A识别正、负极高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二极管的色标颜色一般为黑色,而高频变阻二极管的色标颜色则为浅色。

其极性规律与普通二极管相似,即带绿色环的一端为负极,不带绿色环的一端为正极。

B测量正、反向电阻来判断其好坏具体方法与测量普通二极管正、反向电阻的方法相同,当使用500型万用表R×1k挡测量时,正常的高频变阻二极管的正向电阻为5K~55K,反向电阻为无穷大。

7变容二极管的检测将万用表置于R×10k挡,无论红、黑表笔怎样对调测量,变容二极管的两引脚间的电阻值均应为无穷大。

如果在测量中,发现万用表指针向右有轻微摆动或阻值为零,说明被测变容二极管有漏电故障或已经击穿损坏。

对于变容二极管容量消失或内部的开路性故障,用万用表是无法检测判别的。

必要时,可用替换法进行检查判断。

8单色发光二极管的检测在万用表外部附接一节15V干电池,将万用表置R×10或R×100挡。

这种接法就相当于给万用表串接上了15V电压,使检测电压增加至3V(发光二极管的开启电压为2V)。

检测时,用万用表两表笔轮换接触发光二极管的两管脚。

若管子性能良好,必定有一次能正常发光,此时,黑表笔所接的为正极,红表笔所接的为负极。

9红外发光二极管的检测A判别红外发光二极管的正、负电极。

红外发光二极管有两个引脚,通常长引脚为正极,短引脚为负极。

因红外发光二极管呈透明状,所以管壳内的电极清晰可见,内部电极较宽较大的一个为负极,而较窄且小的一个为正极。

B将万用表置于R×1K挡,测量红外发光二极管的正、反向电阻,通常,正向电阻应在30K 左右,反向电阻要在500K以上,这样的管子才可正常使用。

要求反向电阻越大越好。

10红外接收二极管的检测A识别管脚极性(a)从外观上识别。

常见的红外接收二极管外观颜色呈黑色。

识别引脚时,面对受光窗口,从左至右,分别为正极和负极。

另外,在红外接收二极管的管体顶端有一个小斜切平面,通常带有此斜切平面一端的引脚为负极,另一端为正极。

(b)将万用表置于R×1K挡,用来判别普通二极管正、负电极的方法进行检查,即交换红、黑表笔两次测量管子两引脚间的电阻值,正常时,所得阻值应为一大一小。

以阻值较小的一次为准,红表笔所接的管脚为负极,黑表笔所接的管脚为正极。

B检测性能好坏。

用万用表电阻挡测量红外接收二极管正、反向电阻,根据正、反向电阻值的大小,即可初步判定红外接收二极管的好坏。

11激光二极管的检测A将万用表置于R×1K挡,按照检测普通二极管正、反向电阻的方法,即可将激光二极管的管脚排列顺序确定。

但检测时要注意,由于激光二极管的正向压降比普通二极管要大,所以检测正向电阻时,万用表指针仅略微向右偏转而已,而反向电阻则为无穷大。

电容器检测方法与经验电感器、变压器检测方法与经验1色码电感器的的检测将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。

根据测出的电阻值大小,可具体分下述三种情况进行鉴别:A被测色码电感器电阻值为零,其内部有短路性故障。

B被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。

2中周变压器的检测A将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。

B检测绝缘性能将万用表置于R×10k挡,做如下几种状态测试:(1)初级绕组与次级绕组之间的电阻值;(2)初级绕组与外壳之间的电阻值;(3)次级绕组与外壳之间的电阻值。

上述测试结果分出现三种情况:(1)阻值为无穷大:正常;(2)阻值为零:有短路性故障;(3)阻值小于无穷大,但大于零:有漏电性故障。

3电源变压器的检测A通过观察变压器的外貌来检查其是否有明显异常现象。

如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。

B绝缘性测试。

用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。

否则,说明变压器绝缘性能不良。

C线圈通断的检测。

将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

D判别初、次级线圈。

电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。

再根据这些标记进行识别。

E空载电流的检测。

(a)直接测量法。

相关文档
最新文档