工频整流电容滤波电路中电容器选择

合集下载

滤波电容器的选择

滤波电容器的选择

4.3 滤波电容器的选择4.3.1 滤波电容器额定电压的选择滤波电容器在输入电压220V±20%或输入电压85V~265V (110V -20%~220V +20%)时的最高整流输出电压可以达到370V ,因此应选择额定电压为400V 的电解电容器或选择两只额定电压为200V (也可以是250V )的电解电容器串联使用。

需要注意的是,尽管电解电容器的额定电压有10%左右富裕量,在上述应用场合下,从产品的安全角度考虑是不允许使用额定电压为300V 或350V 的电解电容器。

对于带有功率因数校正的整流滤波电路,当功率因数校正电路输出电压为380V 时可以选择额定电压400V 电解电容器,而功率因数校正电路输出电压高于380V 时则只能选择额定电压为450V 的电解电容器。

4.3.2 滤波电容器电容量的选择滤波电容器,为限制整流滤波输出电压纹波,正确选择电容量是非常重要的。

通常滤波电容器的电容量在输入电压220V±20%时按输出功率选择为:不低于每瓦1μF (即:≥1μF/W ),输入电压85V~265V (110V -20%~220V +20%)输入时按输出功率选择为:不低于每瓦(3~4)μF (即:≥(3~4)μF/W )。

滤波电容器电容量的取值依据为:在220V±20%交流输入及85V~265V 交流输入的最低值时,整流输出电压最低值分别不低于200V 和90V ,在同一输入电压下的整流滤波输出电压分别约为:240V 和115V ,电压差分别为:40V 和25V 。

每半个电源周波(10mS ),整流器导电时间约2mS ,其余8mS 为滤波电容器放电时间,承担向负载提供全部电流,即:UtI C O ∆⋅=(4.3) 220V±20%交流输入时:)10(200025.084086-⨯=⋅⋅=⋅=O O O I mS I mSI C (4.4) O O O O I I U P 200=⋅= (4.5)200O O O O PU P I ==(4.6) )10(6-⨯=O P C )(F (4.7)即:1μF/W85V~265V 交流输入时:)10(32004.082586-⨯=⋅⋅=⋅=O O O I mS I mSI C (4.8) O O O O I I U P 90=⋅= (4.9)90O O O O PU P I ==(4.10) )10(6.36-⨯=O P C )(F (4.11)即:3.6μF/W每半个电源周波(10mS ),整流器导电时间约3mS ,其余7mS 为滤波电容器放电时间,承担向负载提供全部电流,则:滤波电容器容量为:0.88μF/W 和3.15μF/W 。

电解电容选型的6个重要指标

电解电容选型的6个重要指标

电解电容选型的6个重要指标1 电容量与体积由于电解电容器多数采用卷绕结构,很容易扩大体积,因此单位体积电容量非常大,比其它电容大几倍到几十倍。

但是大电容量的获取是以体积的扩大为代价的,现代开关电源要求越来越高的效率,越来越小的体积,因此,有必要寻求新的解决办法,来获得大电容量、小体积的电容器。

在开关电源的原边一旦采用有源滤波器电路,则铝电解电容器的使用环境变得比以前更为严酷:(1)高频脉冲电流主要是20 kHz~100kHz的脉动电流,而且大幅度增加;(2)变换器的主开关管发热,导致铝电解电容器的周围温度升高;(3)变换器多采用升压电路,因此要求耐高压的铝电解电容器。

这样一来,利用以往技术制造的铝电解电容器,由于要吸收比以往更大的脉动电流,不得不选择大尺寸的电容器。

结果,使电源的体积庞大,难以用于小型化的电子设备。

为了解决这些难题,必须研究与开发一种新型的电解电容器,体积小、耐高压,并且允许流过大量高频脉冲电流。

另外,这种电解电容器,在高温环境下工作,工作寿命还须比较长。

2 承受温度与寿命在开关电源设计过程中,不可避免地要挑选适用的电容。

就100μF以上的中、大容量产品来说,因为铝电解电容的价格便宜,所以,迄今使用的最为广泛。

但是, 最近几年却发生了显著变化,避免使用铝电解电容的情况正在增加。

出现这种变化的一个原因是,铝电解电容的寿命往往会成为整个设备的薄弱环节。

电源模块制造厂家的工程师表示:“对于铝电解电容这种寿命有限的元件,如果可以不用, 就尽量不要采用。

”因为铝电解电容内部的电解液会蒸发或产生化学变化,导致静电容量减少或等效串联电阻(ESR)增大, 随着时间的推移,电容性能肯定会劣化。

电解电容器的寿命与电容器长期工作的环境温度有直接关系,温度越高,电容器的寿命越短。

普通的电解电容器在环境温度为90℃时已经损坏。

但是现在有很多种类的电解电容器的工作环境温度已经很高在环境温度为90℃,通过电解电容器的交流电流和额定脉冲电流的比为0.5时,寿命仍然为10000h,但是如果温度上升到95℃时,电解电容器即已经损坏。

滤波电容的选择

滤波电容的选择

滤波电容的选择经过整流桥以后的是脉动直流,波动范围很大。

后面一般用大小两个电容,大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑,小电容是用来滤除高频干扰的,使输出电压纯净,电容越小,谐振频率越高,可滤除的干扰频率越高.容量选择:(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大。

(2)小电容,凭经验,一般104即可2.别人的经验(来自互联网)1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

2、电源滤波中电容对地脚要尽可能靠近地。

3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。

4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.具体案例:1.AC220-9V再经过全桥整流后,需加的滤波电容是多大的?再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微发以上。

后者电容耐压应大于9V,容量应大于220微发以上。

2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求:(1)选择整流二极管;(2)选择滤波电容;(3)另:电容滤波是降压还是增压?(1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于28.2V。

(2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。

(3)电容滤波是升高电压。

滤波电容的选用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R其中: C为滤波电容,单位为UF;T为频率, 单位为HzR为负载电阻,单位为Ω当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R.3.滤波电容的大小的选取PCB制版电容选择印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。

电容滤波的计算方法及电源滤波电容选用技巧

电容滤波的计算方法及电源滤波电容选用技巧

电容滤波的计算方法及电源滤波电容选用技巧
本文主要是关于电容滤波的相关介绍,并着重对电容滤波的计算方法及电源滤波电容选用技巧进行了详尽的阐述。

电容滤波安装在整流电路两端用以降低交流脉动波纹系数提升高效平滑直流输出的一种储能器件,通常把这种器件称其为滤波电容。

由于滤波电路要求储能电容有较大电容量。

所以,绝大多数滤波电路使用电解电容。

电解电容由于其使用电解质作为电极(负极)而得名。

电解电容的一端为正极,另一端为负极,不能接反。

正极端连接在整流输出电路的正端,负极连接在电路的负端。

在所有需要将交流电转换为直流电的电路中,设置滤波电容会使电子电路的工作性能更加稳定,同时也降低了交变脉动波纹对电子电路的干扰。

滤波电容在电路中的符号一般用“C“表示,电容量应根据负载电阻和输出电流大小来确定。

当滤波电容达到一定容量后,加大电容容量反而会对其他一些指标产生有害影响。

滤波电容的特点
1、温升低
谐波滤波器回路由电容器串联电抗器组成,在某一谐波阶次形成最低阻抗,用以吸收大量谐波电流,电容器的质量会影响谐波滤波器的稳定吸收效果,电容器的使用寿命跟温度有很大的关系,温度越高寿命越低,滤波全膜电容器具有温升低等特点,可以保证其使用寿命。

2、损耗低
介质损耗角正切值(tgδ):≤0.0003
3、安全性
符合GB、IEC标准,内部单体电容器均附装保护装置;当线路或单体电容器发生异常时,该保护装置将会立即动作,自动切断电源,以防二次灾害的发生。

附装放电电阻,可确保用电及维护保养之安全。

外壳采用钢板冲压而成,内外部涂上耐候性良好之高温烤漆安全性特高。

自控课程设计——可调直流稳压电源课程设计报告

自控课程设计——可调直流稳压电源课程设计报告

自控原理课程设计报告课题: 直流稳压电源的设计班别: 10电气2组员: (学号)020103一、设计目的熟悉自控原理的基本理论, 在实践的综合运用中加深理解, 掌握电路设计的基本方法、设计步骤, 培养综合设计与调试能力。

2.学会直流稳压电源的设计方法和性能指标测试方法。

3、培养实践技能, 提高分析和解决实际问题的能力。

4、加强组员之间的协调合作的意识, 提高组员合作的能力。

二、设计任务及要求1.设计一个连续可调的直流稳压电源, 主要技术指标要求:①输入(AC):U=220V, f=50HZ;②输出直流电压: U0=1.27→12.24v;③输出电流: I0<=1A;④纹波电压: Up-p<30mV;2.设计电路结构, 选择电路元件, 计算确定元件参数, 画出实用原理电路图。

3、自拟实验方法、步骤及数据表格, 提出测试所需仪器及元器件的规格、数量。

4、在实验室MultiSIM8-8330软件上画出电路图, 并仿真和调试, 并测试其主要性能参数。

三、实验设备及元器件1. 装有multisim电路仿真软件的PC2.三端可调的稳压器LM317一片3.电压表、焊电路板的工具4.滑动变阻器、二极管、变压器、电阻、电容、整流桥四、电路图设计方法(1)确定目标: 设计整个系统是由那些模块组成, 各个模块之间的信号传输, 并画出直流稳压电源方框图。

(2)系统分析:根据系统功能, 选择各模块所用电路形式。

(3)参数选择: 根据系统指标的要求, 确定各模块电路中元件的参数。

(4)总电路图: 连接各模块电路。

(5)将各模块电路连起来, 整机调试, 并测量该系统的各项指标。

五、总体设计思路1. 直流稳压电源设计思路(1)电网供电电压交流220V(有效值)50Hz, 要获得低压直流输出, 首先必须采用电源变压器将电网电压降低获得所需要交流电压。

(2)降压后的交流电压, 通过整流电路变成单向直流电, 但其幅度变化大(即脉动大)。

正弦波工频逆变器滤波电容的选配

正弦波工频逆变器滤波电容的选配

正弦波工频逆变器滤波电容的选配直流母线电容电压选择:电机控制母线电压除了正常的纹波电压的波动,还包括IGBT动作时电流激烈的变化产生尖峰电压和电机反转时的反电动势,薄膜电容在使用中允许有1.2倍额定电压值的脉冲,理论上可以选择额定电压较低的薄膜电容。

如现在的320V的电机控制器系统一般选用500VDC的薄膜电容,540V的电机控制器系统选用900V或者1000V的薄膜电容。

光伏逆变器交流输出电压270~520V ,薄膜电容选择1100V薄膜电容,高压变频器690V交流输入,选择薄膜电容1100或1200V。

直流母线电容容量选择:在新能源电动汽车电机控制器的应用中,母线电容是以IGBT的载波频率来完成充放电,在一个PWM周期内,IGBT导通时由电池组和电容器同时为电机提供能量,IGBT关断时,电池组向母线电容充电。

我们假设电机控制器的最大输出功率为P,电机控制器的的电路为典型的三相全桥拓扑结构。

在一个开关周期内,母线所提供的能量约为:W=P/(2f)其中:f:IGBT的开关频率。

母线电容一个开关周期内释放的能量为:Q=1/2*C(U+Δu)2-1/2*C(U-Δu)2=2*C*U*Δu其中:U:直流母线电压;Δu:母线纹波电压;在极端情况下:Q=W,进一步计算可得:C=P/(4*f*U*Δu),一般的,直流母线电压的脉动率为5%,即纹波电压值:Δu=U*2.5%综上可得:Cmax=P/(4*f*U*U*2.5%)Cmax值是建立在最极端的情况下,实际应用中,一般认为IGBT 开关导通的时候,母线电容提供W/2的能量,即Q=W/2 结合前面的计算公式可得:Cmin= P/(8*f*U*U*2.5%)在实际应用中更多的电机控制器的母线电容容量的选取接近Cmin的值或者小于Cmin,我们在实际应用中可以根据自己不同的成本和体积综合考虑。

实际应用考虑一些经验值,按照交流输出电流线性配置电容值,比如8~10uF/A。

电容滤波原理

电容滤波原理

电容滤波原理滤波是利用电容对特定频率的等效容抗小,近似短路来实现的(与谐振无关)。

容抗Xc=1/(ωC)=1/(2πfC),滤高频用0.1uF陶瓷电容---它对1MHz信号的等效容抗只有1.6欧姆,而对50Hz的工频信号等效容抗有近似32千欧,所以只能滤高频;而要滤工频,2000uF 电容的等效容抗才能与0.1uF对1MHz信号的等效容抗相当。

实际上,电容等效为一个R、L、C的串联电路。

通常超过1uF的电容大多为电解电容,具有很大的电感成份,所以在频率高的场合阻抗会更大。

解决办法是用0.001-0.1uF的陶瓷电容作为高频电路中的耦合或旁路电容。

常见的是用一个电容量较大电解电容并联了一个电容量较小的陶瓷电容,这时候大电容通低频,小电容通高频。

关于滤波电容、去耦电容、旁路电容作用滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。

电源设计中的电容选用规则

电源设计中的电容选用规则

电源设计中的电容选用规则电源往往是我们在电路设计过程中最容易忽略的环节。

作为一款优秀的设计,电源设计应当是很重要的,它很大程度影响了整个系统的性能和成本。

电源设计中的电容使用,往往又是电源设计中最容易被忽略的地方。

一、电源设计中电容的工作原理在电源设计应用中,电容主要用于滤波(filter)和退耦/旁路(decoupling/bypass)。

滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。

根据观察某一随机过程的结果,对另一与之有关的随机过程进行估计的概率理论与方法。

滤波一词起源于通信理论,它是从含有干扰的接收信号中提取有用信号的一种技术。

“接收信号”相当于被观测的随机过程,“有用信号”相当于被估计的随机过程。

滤波主要指滤除外来噪声,而退耦/旁路(一种,以旁路的形式达到退耦效果,以后用“退耦”代替)是减小局部电路对外的噪声干扰。

很多人容易把两者搞混。

下面我们看一个电路结构:图中电源为A和B供电。

电流经C1后再经过一段PCB走线分开两路分别供给A和B。

当A 在某一瞬间需要一个很大的电流时,如果没有C2和C3,那么会因为线路电感的原因A端的电压会变低,而B端电压同样受A端电压影响而降低,于是局部电路A的电流变化引起了局部电路B 的电源电压,从而对B电路的信号产生影响。

同样,B的电流变化也会对A形成干扰。

这就是“共路耦合干扰”。

增加了C2后,局部电路再需要一个瞬间的大电流的时候,电容C2可以为A暂时提供电流,即使共路部分电感存在,A端电压不会下降太多。

对B的影响也会减小很多。

于是通过电流旁路起到了退耦的作用。

一般滤波主要使用大容量电容,对速度要求不是很快,但对电容值要求较大。

如果图中的局部电路A是指一个芯片的话,而且电容尽可能靠近芯片的电源引脚。

而如果“局部电路A”是指一个功能模块的话,可以使用瓷片电容,如果容量不够也可以使用钽电容或铝电解电容(前提是功能模块中各芯片都有了退耦电容—瓷片电容)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

达到交流电压峰值时整流器电流为零。滤波输出提供变换器电源,即使在最低输入电压 Uimin,保证额 定功率 Po 输出。根据能量守恒定律,在半周期内输出能量 Po/2f 等于电容从谷点电压 Uv 充电到电网峰 值电压 Up 存储的能量
Po 2f
=
1 2
C(U
2 p

U
2 v
)
式中 f-电网频率(Hz),中国和欧洲为 50Hz,美国为 60Hz。C-滤波电容量(F)。即
120 144
45.8 55.0 1.31
0.80 0.0278 0.0231
138 165
55.7 66.0 1.27
0.75 0.0229 0.0190
154 186
64.8 77.8 1.24
0.70 0.0196 0.0163
168 201
73.0 87.6 1.20
0.65 0.0173 0.0144
冲为矩形波,电流脉冲在导通时间 t 内给电容补充的电荷应当 等于电容电压从峰值 Up 放电到最低电压 Uv 失去的电荷量
Icpt = C(U p −Uv )
脉冲宽度
t = cos−1 k 2πf
(3-25a)
Ui ~ Up
C DC/DC UL
电流占空比
D = t = 2 ft = cos−1 k (3-25b)
是,选择了电容以后,最高输入电压下,电流脉冲幅值增加,宽度减少,电容电流有效值增加,因
此,要检查高压时电容电流的有效值。
在以上讨论中,忽略了交流电源的内阻和电容 ESR 对输出电压波形的影响,忽略了输入电路中限 流电阻、保险丝和整流器压降,实际输出电压比计算值要低,尤其是当由变压器降压小功率整流电路
流有效值为
I AC =
I
2 ac
+
I
2 sw
=
0.2422 + 0.1922 = 0.31A
(3-28)
检查所选择的 30μF/400V 铝电解电容交流纹波电流是否大于上式计算值。
温度是影响电解电容寿命的主要因素,最高温度降低 10℃,寿命增加 1 倍。有效值电流在 ESR 损
耗导致电解电容温升,如果电容上限温度为 105℃,寿命 2000 小时,环境温度 40℃,设计寿命 5 年,
由表查的 k=0.85 时 δ=1.31,直流输出电压为
Uo ≈ห้องสมุดไป่ตู้δUi = 1.31×176 = 230 V
如果滤波电容后接断续模式反激变换器,开关频率 50kHz,占空比 Dmax=0.3,初级电感为 2mH, 初级峰值电流为 0.69A,交流分量有效值为 0.192A。交流分量为电容充放电电流,电容器总的交流电
容电流。
电解电容允许高频电流比低频大,即式(3-28)根号中第二项应除以一个大于 1 的系数。如果不考虑
高频效应,计算是保守的。其次,随着温度升高,铝电解电容 ESR 随温度升高而降低,即高温允许更
大的电流有效值,但应注意实际允许温升和温度应与 ESR(电流有效值)相对应。如果设计保证寿命
最高允许温度为 60℃,而使用的 ESR 是 85℃的值,而允许的电流有效值刚满足要求,但 60℃时的
在最高平均温度要降低 45℃才能达到这个要求,即允许最高平均温度 60℃,电解电容的允许温升为
60℃-40℃=20℃,电解电容的对流系数为 Dv=0.93mW/℃/cm2,热导(热阻倒数)GT=DvAs(cm2)= 0.93As(mW/℃),如果选定电容,外表面面积和 ESR 就已知,由允许温升和热导就可以求得允许的电
压峰值 Upmin=1.412×0.8×220=249V, k = (U p − 35) /U p = (249 − 35) / 249 = 0.86 , k=0.85 相近,
从表 3-13 查得α=0.036,根据式(3-21)得到
C
= α Po U2
i min
=
0.036× 23.5 1762
= 27 ×10−6 F=27μF
电容承受最高电压为 Umax=1.2×220×1.414=373V,选择 450V。选择 30μF /450V。
如果负载是恒定输出功率的变换器,当最高输入电压时的电流有效值不会增大,仍可按表 3-13 参
数计算。
从表 3-13 看到 α=0.0360,取 γ=45.8,电容电流有效值为
Iac = γ CUimin = 45.8× 30 ×10−6 ×176 ≈ 0.242 A
ESR 比 85 时大,实际温度将超过 60℃,寿命就可能达不到预期要求。
摘自《开关电源工程设计》2008 年 5 月 7 日
50
180 216
80.4 96.5 1.17
为了说明以上关系的应用,我们举例予以说明:输出功率为 20W,变换器效率为 85%,变换器由 220V±20%/50Hz 交流电源供电,经桥式整流,电容滤波,给 DC/DC 变换器供电,变换器允许输入纹 波电压峰峰值为 35V,选择输入滤波电容。
选择电容量
最小输入电压为 220V×0.8=176V,变换器的输入功率为 Pi = Po /η = 20 / 0.85 = 23.5 W。最低电
式中 γ = β D − D2 。
输出直流电压近似为
Uo
≈ Up
+Uv 2
=
0.707(1+ k)Ui
= δUi
式中δ = (1+ k) / 2 。对于 50Hz 和 60Hz,以上式中 α,β,γ 和 δ 如表 3-13 所示。
在小功率变换器中,在最低输入电压下也要保证输出功率,因此以最低输入电压选择电容量。但
C=
Po
=
f
(U
2 p

U
2 v
)
Po
= α Po
fU
2 p
(1

k
2
)
U2 i min
(3-23)
式中 k= Uv/Up-谷-峰比,U p = 2Uimin ,因为即使在最低频率时,变换器还要输出最大功率。
α= 1 2 f (1− k 2 )
(3-24)
不同的 k 对应的 α 如表 3-13 所示。 电容的交流分量有效值可从以下关系得到。假定电流脉
时,电源内阻,整流器压降不可不考虑。
49
表 3-13 电容选择系数表
k
0.95
α
50Hz
0.1026
60Hz
0.0855
β
50Hz
70
(1/s) 60Hz
84
γ
50Hz
21.1
60Hz
25.3
δ
1.38
0.90 0.0526 0.0439 98.2
118
34.5 41.4 1.34
0.85 0.0360 0.0300
T /2
π
电流脉冲峰值
t
Icp
图 3-11 输入滤波电容选择
Icp =
2CUimin (1− t
k)
=
β CUi min
式中 β = 2(1− k) t 。
电容的交流电流有效值为
(3-26)
Iac = Icp 2tf − (2tf )2 = CUimin β D − D2 = γ CUimin
(3-27)
也谈工频整流电容滤波电路中电容器选择
赵修科
在小功率变换器中,为降低成本,采用交流输入桥式整流电容滤波。只有在电源电压大于电容电
压时整流管才导通,因此整流管电流波形如图 3-11 脉冲电流,整流管导通时间与电容大小有关。假设
交流电网的输出电阻(包括整流器压降)为零,在导通期间电容上电压与输入电网电压完全相同,在
相关文档
最新文档