电容滤波原理-桥式整流RC滤波电路

合集下载

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理(总5页)电容在电路中的作用及电容滤波原理?电容器在电子电路中儿乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。

广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。

熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。

1、滤波电容:接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电变平滑。

一般采用大容量的电解电容器或袒电容,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。

2、去耦电容:幷接在放大电路的电源正、负极之间,防止由于电源内阻形成的正反馈而引起的寄生震荡。

3、耦合电容:接在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。

4、旁路电容:接在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。

5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

6、衬垫电容与谐振电容:主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,幷能显着地提高低频端的振荡频率。

是当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。

7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。

8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管间电容造成的自激振荡。

9、稳频电容:在振荡电路中起稳定振荡频率的作用。

10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。

12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。

电容滤波原理

电容滤波原理

电容滤波原理滤波电容的作用简单讲是使滤波后输出的电压为稳定的直流电压,其工作原理是整流电压高于电容电压时电容充电,当整流电压低于电容电压时电容放电,在充放电的过程中,使输出电压基本稳定。

滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。

电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。

★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。

当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。

★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C 对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。

RL、C对充放电的影响电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。

电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大,如图所示。

整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01.故整流输出的电压必须采取一定的措施.尽量降低输出电压中的脉动成分,同时要尽量保存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就是直流电源中的滤波电路。

常用的滤波电路有无源滤波和有源滤波两大类。

无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。

有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。

直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。

电容滤波原理

电容滤波原理

电容滤波原理滤波电容的作用简单讲是使滤波后输出的电压为稳定的直流电压,其工作原理是整流电压高于电容电压时电容充电,当整流电压低于电容电压时电容放电,在充放电的过程中,使输出电压基本稳定。

滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。

电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。

★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。

当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。

★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C 对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。

RL、C对充放电的影响电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。

电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大,如图所示。

整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01.故整流输出的电压必须采取一定的措施.尽量降低输出电压中的脉动成分,同时要尽量保存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就是直流电源中的滤波电路。

常用的滤波电路有无源滤波和有源滤波两大类。

无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。

有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。

直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。

(整理)电容滤波电路、电感滤波电路原理分析

(整理)电容滤波电路、电感滤波电路原理分析

电容滤波电路、电感滤波电路原理分析整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉,称为纹波。

为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路整流电路输出电压中的脉动成分以获得直流电压。

常用的滤波电路有无源滤波和有源滤波两大类。

无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。

有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。

直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。

脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。

对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。

(T为整流输出的直流脉动电压的周期。

)电阻滤波电路RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。

如图1(B)RC滤波电路。

若用S 表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。

由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。

在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。

而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。

这种电路一般用于负载电流比较小的场合.电感滤波电路根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。

因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。

电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

(A)电容滤波(B) C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S'(C) L-C电感滤波(D)π型滤波或叫C-L-C 滤波图1 无源滤波电路的基本形式并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。

电容滤波电路(桥式电路)

电容滤波电路(桥式电路)
实际uo的波动没有近似波形误差大,故实际S比 计算值要小。
10
(a) 输出电压 平均值Uo与时间常数 RLC 有关
RLC 愈大 电容器放电愈慢 Uo(平均值)愈大 T 一般取 RLC ( 3 ~ 5 ) ( 1.5 ~ 2.5 )T 2 近似估算: Uo(AV)≈1.2U2 (b) 流过二极管瞬时电流很大
UC 2 U 2 UC 1 2 2U 2
即二倍压电压。
输出端的电压: U O UC 2 2 2U 2
22
2、多倍压整流电路
2U 2 C1 + –
C3 D3 D4 C4
C5 D5
D6 C6
u1
u2
D1
D2
+C2– 2 2U 2
u2的第一个正半周:u2、C1、D1构成回路,C1 充电到: 2U 2
uo的脉动系数S与uo1的脉动系数S´的关系:
U o1m U'o1m 1 1 S S' 2 2 Uo 1 LC U'o 1 LC
20
3、LC – 型滤波电路
L
uo1
u1
u2
C1
C2
RL
uo
显然, LC – 型滤波电路输出电压的脉动系 数比只有LC滤波时更小,波形更加平滑;由 于在输入端接入了电容,因而较只有LC滤波 时,提高了输出电压。 请自行分析LC – 型滤波电路的输出 电压和脉动系数等基本参数。
u2上升, u2大于电容 上的电压uc,u2对电容充电, uo= uc u2
5
u1
u1
u2
D4
D3 b u2
只有整流电路输出 电压大于uc时,才 有充电电流。因此 二极管中的电流是 脉冲波。

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理电容在电路中的作用及电容滤波原理电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻挠低频的特性。

广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。

熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。

1、滤波电容:接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成份,使直流电变平滑。

普通采用大容量的电解电容器或者钽电容,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。

2、去耦电容:战釉诜糯蟮缏返牡缭凑、负极之间,防止由于电源内阻形成的正反馈而引起的寄生震荡。

3、耦合电容:接在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或者脉冲信号通过,使先后级放大电路的直流工作点互不影响。

4、旁路电容:接在交、直流信号的电路中,将电容并接在电阻两端或者由电路的某点跨接到公共电位上,为交流信号或者脉冲信号设置一条通路,避免交流信号成份因通过电阻产生压降衰减。

5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

6、衬垫电容与谐振电容:主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,漳芟灾地提高低频端的振荡频率。

是当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。

7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。

8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管间电容造成的自激振荡。

9、稳频电容:在振荡电路中起稳定振荡频率的作用。

10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。

12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。

整流滤波电路桥式整流滤波电路

整流滤波电路桥式整流滤波电路

整流滤波电路桥式整流滤波电路一:[整流滤波电路]几种滤波整流电路的介绍总结(一)一、有源滤波电路为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。

常见的RC有源滤波电路如图Z0716所示,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。

该电路的优点是:1.滤波电阻Rb 接于晶体管的基极回路,兼作偏置电阻,由于流过Rb 的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十k Ω),既使纹波得以较大的降落,又不使直流损失太大。

2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。

如图中接于基极的电容C2 折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因ie = (1+ β )ib之故)。

3.由于负载凡接于晶体管的射极,故RL上的直流输出电压UE≈UB,即基本上同RC无源滤波输出直流电压相等。

这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。

二、复式滤波电路复式滤波电路常用的有LCГ型、LCπ型和RCπ 型3种形式,如图Z0715所示。

它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。

其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。

图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。

其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。

对直流分量而言,C2 可视为开路,RL上的输出直流电压为:对于交流分量而言,其输出交流电压为:若满足条件则有由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。

电容滤波电路(桥式电路)

电容滤波电路(桥式电路)

u2
uo
t
加入滤波电容
时的波形
无滤波电容
时的波形5
t
uo
u2上升, u2大于电容 的电压uc,u2对电容充电,
uo= uc u2
t
u2下降, u2小于电容上的电压。 二极管承受反向电压而截止。
电容C通过RL放电, uc按指数
规律下降,时间常数 = RL C
电容滤波电路应用场合: 一般适用于输出电流较小且负载变化不大的场合。
请自行分析LC – 型滤波电路的输出
电压和脉动系数等基本参数。
15
§10.4 稳压二极管稳压电路
稳压电路的作用:使直流电路在电网波 动、负载变化、温度变化等因素影响下保证 输出波 有波纹的 稳压 直流
电压
直流电压
直流电压
电压
16
一. 稳压电源类型
常用稳压电路 (小功率设备)
(一)、电容滤波电路
1.电路组成
a
u1 u1
D4
u2
D1
D3
C
S uo
D2
RL
b
桥式整流电容滤波电路
3
2.工作原理 (1)S断开:即RL未接入时(电容初始电压为0):
uo =uc= 2 U2
设t1时刻接 通电源
整流电路为 电容充电
u2
t1
uo
充电结束
没时有的t电输容出
uc
波形
t4
(2)S闭合:即RL接入时(假设RL是u2在从0上升时接入)
6
3.输出电压的计算
桥式整流电容滤波 半波整流电容滤波
空载时
Uo(AV)≈1.2U2 Uo(AV)≈U2 Uo(AV)≈1.4U2
4.滤波电容的耐压 URM≧ 2U 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容滤波原理桥式整流RC滤波电路
如下图所示为电容滤波电路,滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。

电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。

一、滤波原理
★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。

当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。

★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。

RL、C对充放电的影响
电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;
RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。

电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大,如右上图所示。

相关文档
最新文档