最新华东师大版九年级数学下册第26章 二次函数 单元测试题(附答案)
(全优)华师大版九年级下册数学第26章 二次函数含答案

华师大版九年级下册数学第26章二次函数含答案一、单选题(共15题,共计45分)1、下列对二次函数的图像的描述,正确的是()A.开口向下B.对称轴是y轴C.顶点坐标为D.在对称轴右侧部分,y随x的增大而减小2、已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是( )A.1B.2C.3D.43、下列关系式中,属于二次函数的是(x是自变量)()A.y=B.y=C.y=D.y=ax 2+bx+c4、已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0, y)是该抛物线的顶点.若y1>y2≥y,则x的取值范围是()A.x0>-5 B.x>-1 C.-5<x<-1 D.-2<x<35、抛物线y=(x+1)2+2的对称轴是()A.直线x=-1B.直线x=1C.直线y=-1D.直线y=16、二次函数经过适当变换之后得到新的二次函数,则这个变换为()A.向上5个单位,向右3个单位B.向下5个单位,向右3个单位C.向上5个单位,向左3个单位D.向下5个单位,向左3个单位7、二次函数y=x2﹣bx+b﹣2图象与x轴交于点A(x1, 0),B(x2, 0),且0<x1<1,2<x2<3,则满足条件的b的取值范围是()A.b>﹣1B.1<b<2C.D.8、下列函数中,不属于二次函数的是()A.y=(x﹣2)2B.y=﹣2(x+1)(x﹣1)C.y=1﹣x﹣x2 D.y=9、如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A. B. C.D.10、已知二次函数y=x2﹣x+a(a>0),当自变量x取p时的函数值小于0,那么当自变量x取p﹣1时的函数值()A.小于0B.大于0C.等于0D.与0的大小关系不确定11、在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)12、坐标平面上,某二次函数图形的顶点为(2,﹣1),此函数图形与x轴相交于P、Q两点,且PQ=6.若此函数图形通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,则a、b、c、d之值何者为正?()A.aB.bC.cD.d13、已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是()A.mB.mC.mD.m>14、在同一直角坐标系中,函数y=ax+b和函数y=ax2+2x+2(a是常数,且a≠0)的图象可能是()A. B. C. D.15、如图,二次函数y=ax2+bx+c的图象经过(-1,0)、(0,3),下列结论中错误的是()A.abc<0B.9a+3b+c=0C.a-b=-3D.4ac﹣b 2<0二、填空题(共10题,共计30分)16、如果函数是关于x的二次函数, 则k=________ 。
华师大九年级下《第26章二次函数》检测题含答案

二次函数单元练习题一、选择题1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1 C.y =(x +1)2-x 2 D .y =x 3+2x -32.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A)y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)165.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)6. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A) (B) (C) (D)8.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =2;④方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论的个数为( C )A .1个B .2个C .3个D .4个二、填空题9.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.10.若二次函数y =-x 2+4x +k 的最大值等于3,则k 的值等于____. .11.函数42-=x y 的图象与y 轴的交点坐标是________. 12.已知抛物线的顶点是(0,1),对称轴是y 轴,且经过(-3,2),则此抛物线的函数关系式为_________,当x >0时,y 随x 的增大而____.13.已知抛物线y =ax 2+bx +c(a≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx+c=0(a≠0)的解是_______.14.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.15.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.16.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是______ __三、解答题17.(8分)已知抛物线y=a(x-h)2-4经过点(1,-3),且与抛物线y=x2的开口方向相同,形状也相同.(1)求a,h的值;(2)求它与x轴的交点,并画出这个二次函数图象的草图;(3)若点A(m,y1),B(n,y2)(m<n<0)都在该抛物线上,试比较y1与y2的大小.y x mx m.18、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.19.(8分)如图,已知二次函数y=-x2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点D.(1)求这个二次函数的关系式;(2)求四边形ABDC的面积.20.(12分)(2011·聊城)如图,已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.(1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.参考答案:一、1-5 BCBDB 6-8 DBC .二、9.y =-2(x -3)2+4; 10.-1 ;11.(0.-4) ; 12.y =19x 2+1 ;增大. 13.向上,x =41,(825,41-);14.略. 15.y =-2x 2+8x 或y =-2x 2-8x ; 16.x <-2或x >8; 三、17.解:(1)a =1,h =2 (2)它与x 轴的交点坐标为(0,0),(4,0),图象略 (3)y 1>y 218.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4).19、解:(1)y =-x 2+2x +3 (2)连结OD ,可求得C (0,3),D (1,4),则S 四边形ABDC =S △AOC+S △COD +S △BOD =12×1×3+12×3×1+12×3×4=920、解:(1)根据题意,y =ax 2+bx +c 的对称轴为x =1,且过A(-1,0),C(0,-3),可得⎩⎪⎨⎪⎧ -b 2a =1a -b +c =0,c =-3解得⎩⎨⎧ a =1,b =-2,c =-3.∴抛物线所对应的函数解析式为y =x 2-2x -3.(2)由y =x 2-2x -3可得,抛物线与x 轴的另一交点B(3,0)如图①,连结BC ,交对称轴x =1于点M.因为点M 在对称轴上,MA =MB.所以直线BC 与对称轴x =1的交点即为所求的M 点.设直线BC 的函数关系式为y =kx +b ,由B(3,0),C(0,-3),解得y =x -3,由x =1,解得y =-2.故当点M 的坐标为(1,-2)时,点M 到点A 的距离与到点C 的距离之和最小.(3)如图②,设此时点P 的坐标为(1,m),抛物线的对称轴交x 轴于点F(1,0).连结PC 、PB ,作PD 垂直y 轴于点D ,则D(0,m).。
华东师大版九年级下册数学 第26章二次函数 单元综合检测(含答案)

第26章二次函数一、选择题1.下列函数中,是二次函数的为()A. y=ax3+x2+bx+c(a≠0)B. y=x2+C. y=(x+1)2﹣x2D. y=x(1﹣x)2.抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A. (﹣4,3)B. (﹣4,﹣3)C. (3,﹣4)D. (﹣3,﹣4)3.下列函数中有最小值的是()A. y=2x﹣1B. y=﹣C. y=2x2+3xD. y=﹣x2+14.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A. B. C. D.5.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+k上的三点,则y1,y2,y3的大小关系为()A. y1>y2>y3B. y1>y3>y2C. y2>y3>y1D. y3>y1>y26.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是( )A. x<2B. x>﹣3C. ﹣3<x<1D. x<﹣3或x>17. 二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点8.将抛物线y=x2向左平移5个单位后得到的抛物线对应的函数解析式是()A. y=﹣x2+5B. y=x2﹣5C. y=(x﹣5)2D. y=(x+5)29.若抛物线y=x2-2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是( )A. 抛物线开口向上B. 抛物线的对称轴是x=1C. 当x=1时,y的最大值为﹣4D. 抛物线与x轴的交点为(-1,0),(3,0)10.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①abc>0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正确的说法有()A. ①②③B. ②③④C. ①②④D. ②④11.如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.正确的是()A. ①③B. ②③C. ②④D. ③④12.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n)(n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…A n+1(x n+1,0)(n为正整数).若x1=d(0<d<1),当d为()时,这组抛物线中存在美丽抛物线.A. 或B. 或C. 或D.二、填空题13.二次函数y=﹣2x2+6x﹣5配成y=a(x﹣h)2+k的形式是________,其最大值是________.14.若函数y=mx2﹣2x+1的图象与x轴只有一个交点,则m=________.15.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是________ .16.把二次函数y=(x﹣2)2+1化为y=x2+bx+c的形式,其中b、c为常数,则b+c=________.17.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为________.18.如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.19.点Q1(﹣2,q1),Q2(﹣3,q2)都在抛物线y=x2﹣2x+3上,则q1、q2的大小关系是:q1________q2.(用“>”、“<”或“=”)20.两个正方形的周长之和为20cm,其中一个正方形的边长是xcm,则这两个正方形的面积之和y(cm2)与x(cm)的函数关系式为________.21.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y= x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是________.22.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为________.三、解答题23.若y=(m2+m)是二次函数,求m的值.24.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n<t,直接写出m的取值范围.25.某景区商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了提高销售量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.(1)如果这批旅游纪念品共获利1050元,那么第二周每个旅游纪念品的销售价格为多少元?(2)第二周每个旅游纪念品的销售价格为多少时,这批旅游纪念品利润最大?最大利润是多少?26.已知:抛物线y=ax2+bx﹣3经过点A(7,﹣3),与x轴正半轴交于点B(m,0)、C(6m、0)两点,与y轴交于点D.(1)求m的值;(2)求这条抛物线的表达式;(3)点P在抛物线上,点Q在x轴上,当∠PQD=90°且PQ=2DQ时,求点P、Q的坐标.参考答案一、选择题D D C A A C D D C B D B二、填空题13.y=﹣2(x﹣)2﹣;﹣14.0或115.(2,5)16.117.m>118.y=x2﹣2x+319.<20.y= 2x2﹣10x+2521.﹣2<k<22.15三、解答题23.解:若y=(m2+m)是二次函数,则m2﹣m=2,且m2+m≠0,故(m﹣2)(m+1)=0,m≠0,m≠﹣1,解得:m1=2,m2=﹣1,∴m=2.24.解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.25.(1)解:由题意得:200×(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[600﹣200﹣(200+50x)]=1050,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1050,整理得:x2﹣2x﹣3=0,解得:x1=3,x2=﹣1依题意,0≤x≤6,∴x=310﹣x=10﹣3=7.答:第二周的销售价格为7元(2)解:设这批旅游纪念品的利润为y元,则y=200×(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[600﹣200﹣(200+50x)]=﹣50+100x+1200 (0≤x≤6)∵a=﹣50<0,∴当x=﹣=1(满足0≤x≤6)时,y有最大值,最大值是:=1250.这时,10﹣x=10﹣1=9答:第二周每个旅游纪念品的销售价格为9元时,这批旅游纪念品利润最大,最大利润是1250元26.(1)解:当x=0时,y=﹣3,∴D(0,﹣3).设抛物线的解析式为y=a(x﹣m)(x﹣6m).把点D和点A的坐标代入得:6am2=﹣3①,a(7﹣m)(7﹣6m)=﹣3②,∴a(7﹣m)(7﹣6m)=6am2.∵a≠0,∴(7﹣m)(7﹣6m)=m2.解得:m=1(2)解:∵6am2=﹣3,∴a=﹣=﹣.将a=﹣,m=1代入得:y=﹣x2+ x﹣3.∴抛物线的表达式为y=﹣x2+ x﹣3(3)解:如图所示:过点P作PE⊥x轴,垂足为E.设点Q的坐标为(a,0)则OQ=﹣a﹣∵∠DQP=90°,∴∠PQO+∠OQD=90°.又∵∠ODQ+∠DQO=90°,∴∠PQE=∠ODQ.又∵∠PEQ=∠DOQ=90°,∴△ODQ∽△EQP.∴= = = ,即= = ,∴QE=6,PE=﹣2a.∴P的坐标为(a+6,﹣2a)将点P的坐标代入抛物线的解析式得:﹣(a+6)2+ (a+6)﹣3=﹣2a,整理得:a2+a=0,解得a=﹣1或a=0.当a=﹣1时,Q(﹣1,0),P(5,2);当a=0时,Q(0,0),P(6,0).综上所述,Q(﹣1,0),P(5,2)或者Q(0,0),P(6,0)。
华东师大版九年级数学下册 第26章 二次函数 单元测试题(有答案)

第26章二次函数单元测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列函数是二次函数的是( )A. B. C. D.2. 已知正方形,设,则正方形的面积与之间的函数关系式为()A. B. C. D.3. 与的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状4. 对抛物线:而言,下列结论正确的是()A.与轴有两个交点B.开口向上C.与轴的交点坐标是D.顶点坐标是5. 抛物线的顶点坐标一定位于( )A.轴的负半轴上B.第二象限C.第三象限D.第二象限或第三象限6. 二次函数的顶点坐标是A. B. C. D.7. 对于二次函数,下列说法错误的是A.对称轴为直线B.其图象一定经过点C.当时,随的增大而增大D.当时,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线.8. 已知二次函数,当时,随的增大而增大,当时,随的增大而减小,当时,的值为( )A. B. C. D.9. 在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽度为,那么关于的函数是()A. B.C. D.10. 如图所示的抛物线=的对称轴为直线=,则下列结论中错误的是()A. B. C.= D.=二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若抛物线经过原点,则________.12. 抛物线=开口向上,对称轴是直线=,,,在该抛物线上,则,,大小的关系是________.13. 将二次函数的图象绕着它与轴的交点旋转所得到新抛物线表达式为________.14. 将抛物线向下平移,若平移后的抛物线经过点,则平移后的抛物线的解析式为________.15. 抛物线的对称轴是直线,那么抛物线的解析式是________.16. 已知抛物线的顶点坐标为,且过点,则该抛物线的表达式为________.17. 已知,点,,都在函数的图象上,则,,的大小关系是________.18. 把二次函数化成的形式是________.19. 有一种产品的质量要求从低到高分为,,,共四种不同的档次.若工时不变,车间每天可生产最低档次(即第一档次)的产品件,生产每件产品的利润为元;如果每提高一个档次,每件产品利润可增加元,但每天少生产件产品.现在车间计划只生产一种档次的产品.要使利润最大,车间应生产第________种档次的产品.20. 已知二次函数的图象如图所示,则这个二次函数的表达式是________.三、解答题(本题共计6 小题,共计60分,)21. 已知二次函数和函数.(1)你能用图象法求出方程的解吗?试试看;(2)请通过解方程的方法验证(1)问的解.22. 抛物线与轴交于,,与轴交于,且(1)求,的坐标;(2)到,,距离相等,在抛物线上求点,使,,,为顶点的四边形为平行四边形.23. 如图,二次函数的图象与轴相交于、两点,与轴相交于点.、是二次函数图象上的一对对称点,一次函数的图象过点、.(1)求二次函数的表达式;(2)根据图象写出使一次函数值大于二次函数值的的取值范围.24. 某商场购进一批换季衣服,进价为每件元.市场调研发现,以单价元出售,平均月销售量为件.在此基础上,若单价每降低元,则平均月销售量增加件.(1)商场想要这种衣服平均月销售量至少件,那么单价至多为多少元?(2)当单价定为多少元时,商场卖这批衣服的月销售利润达到最大?最大月销售利润为多少元?25. 某商场要经营一种新上市的文具,进价为元/件,试营销阶段发现;当销售单价元/件时,每天的销售量是件,销售单价每上涨元,每天的销售量就减少件.(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?26. 如图,在平面直角坐标系中,抛物线与轴的交点为点和点,与轴的交点为,对称轴是,对称轴与轴交于点.(1)求抛物线的函数表达式;(2)点为对称轴上一个动点,当的值最小时,求点的坐标;(3)在第一象限内的抛物线上是否存在点,使得?若存在,直接写出点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:,是二次函数;,,是一次函数;,,不是含自变量的整式,不是二次函数;,,二次项系数不能确定是否为,不是二次函数.故选.2.【答案】B【解答】解:由正方形面积公式得:.故选.3.【答案】C【解答】解:函数的对称轴是轴,开口向上,顶点;函数的对称轴是轴,开口向上,顶点;这两个函数的二次项系数都是,则它们的形状相同.故选.4.【答案】D【解答】解:,∵,抛物线与轴无交点,本选项错误;,∵二次项系数,抛物线开口向下,本选项错误;,当时,,抛物线与轴交点坐标为,本选项错误;,∵,∴抛物线顶点坐标为,本选项正确.故选.5.【答案】B【解答】此题暂无解答6.【答案】C【解答】解:∵∴抛物线顶点坐标为,故选.7.【答案】C【解答】解:、对称轴为直线,正确;、当时,,正确;、当时,,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线,正确. 故选.8.【答案】B【解答】解:由题意得:二次函数的对称轴为,故,把代入二次函数可得,当时,.故选.9.【答案】A【解答】解:长是:,宽是:,由矩形的面积公式得则.故选.10.【答案】【解答】解:、由抛物线可知,.故正确;、…二次函数的图象与轴有两个交点,∴即…故正确;、由对称轴可知,∴,故错误;、关于的对称点为…当时,,故正确;故选:.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:把代入得,解得.故答案为.12.【答案】=【解答】∵抛物线=开口向上,对称轴是直线=,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵取时所对应的点离对称轴最远,取与时所对应的点离对称轴一样近,∴=.13.【答案】【解答】解:因为二次函数的图象绕它与轴的交点旋转后,其对称轴不变,只是图象开口向下,因此二次函数新抛物线表达式为故答案为:.14.【答案】【解答】解:设平移后抛物线的表达式为,把代入,得,解得.所以平移后的抛物线的解析式是.故答案为:.15.【答案】【解答】解:∵抛物线的对称轴是直线,∴,解得:,∴,故答案为:.16.【答案】.【解答】解:设函数的解析式是.把代入函数解析式得,解得:,则抛物线的解析式是.17.【答案】【解答】解:∵当时,,而抛物线的对称轴为直线,开口向上,∴三点都在对称轴的左边,随的增大而减小,∴.故本题答案为:.18.【答案】【解答】解:.故答案为.19.【答案】【解答】解:设生产档的产品.利润,∴时,利润最大为,故答案为.20.【答案】【解答】解:根据图象可知顶点坐标,设函数解析式是:,把点代入解析式,得:,即,∴解析式为,即.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.【解答】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.22.【答案】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.【解答】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.23.【答案】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.【解答】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.24.【答案】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.【解答】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.25.【答案】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.【解答】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.26.【答案】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.【解答】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.。
华东师大数学九年级下《第26章二次函数》单元测试题含答案

华东师大版数学九年级下册第26章二次函数单元测试题一、选择题1.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2C.y=(x-1)2+4 D.y=(x-1)2+22.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后的抛物线所对应的函数表达式为( )A.y=-(x+1)2+3 B.y=-(x+1)2-3C.y=-(x-1)2+3 D.y=-(x-1)2-33. 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …-5 -4 -3 -2 -1 0 …y … 4 0 -2 -2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5 24.若抛物线y=2x2+3上有三点A(1,y1),B(5,y2),C(-2,y3),则y1,y2,y3的大小关系为( )A.y2<y1<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y2<y15.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5 B.x<-1且x>5 C.x<-1或x>5 D.x>56.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )A.5元 B.10元 C.15元 D.20元7.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3 C.-9 D.08.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=-1,下列结论:①abc<0;②2a+b=0;③a-b+c>0;④4a-2b+c<0.其中正确的是( )A.①② B.只有① C.③④ D.①④9. 如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1∶4,则k值为何?()A.1 B. 12 C.43 D.4510.如图,正方形ABCD的边长为3 cm,动点P从B点出发以3 cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发以1 cm/s的速度沿着边BA向A点运动,到达A点停止运动,设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )二、填空题11.已知函数y=(m-1)xm2+1+4x-3是二次函数,则该二次函数图象的顶点是______________.12.用一根长为12 cm的细铁丝围成一个矩形,则围成的矩形中,面积最大为_________.13.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是___________.14.某学习小组为了探究函数y=x2-|x|的图象和性质,根据以往学习函数的经验,列x…-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …y… 2 0.75 0 -0.25 0 -0.25 0 m 2 …15.如图,二次函数y=23x2-13x的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n),直线AB与y轴交于点C,则△AOB的面积是____.16.如图,隧道的截面是抛物线,且抛物线的表达式为y=-18x2+3.5,一辆车高 2.5m,宽4 m,该车____通过该隧道.(填“能”或“不能”)17.某校的围墙上端由一段相同的凹曲拱形栅栏组成,如图.其拱形图形为抛物线的一部分,栅栏AB之间,按相同的间距0.2 m用5根立柱加固,拱高OC为0.6 m,则一段栅栏所需立柱的总长度是______.(精确到0.1 m)18. 抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(-1,0)和(m,0),且1<m<2,当x<-1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(-3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m-1)+b=0;⑤若c≤-1,则b2-4ac≤4a.其中结论错误的是________.(只填写序号)三、解答题19.已知抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.20.抛物线y=x2-2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2-2x+c沿y轴向下平移后,所得新抛物线与x轴交于A,B两点,如果AB=2,求新抛物线的表达式.21.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的表达式;(2)求二次函数图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(3)请直接写出当y1>y2时,自变量x的取值范围.22. 某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?23.已知锐角△ABC中,边BC长为12,高AD长为8.如图,矩形EFGH的边GH在BC 边上,其余两个顶点E,F分别在AB,AC边上,EF交AD于点K.(1)求EFAK的值;(2)设EH=x,矩形EFGH的面积为S.求S与x的函数表达式,并求S的最大值.24.有一座抛物线形拱桥,正常水位时桥下面的宽度为20 m,拱顶距离水面4 m.(1)在如图的直角坐标系中,求出该抛物线所对应的二次函数表达式;(2)在正常水位的基础上,当水位上升h(m)时桥下水面的宽度为d(m),试求d与h之间的函数关系式;(3)设正常水位时桥下的水深为 2 m,为保证过往船只顺利航行,桥下水面宽度不得小于18 m.问:水深超过多少时,就会影响过往船只在桥下顺利航行?25. 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的表达式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.答案:一、1---10 DADCC ABDDC二、11. (1,-1)12. 9cm213. k≤414. 0.7515. 216. 能17. 2.3m18. ③⑤点拨:易得①的结论正确;∵抛物线过点(-1,0)和(m,0),且1<m<2,∴0<-b2a<1 2,∴12+b2a=a+b2a>0,∴a+b>0,所以②的结论正确;∵点A(-3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(-1,0),(m,0),∴a-b+c=0,am2+bm+c=0,∴am2-a+bm+b=0,a(m+1)(m-1)+b(m+1)=0,∴a(m-1)+b=0,所以④的结论正确;∵4ac-b24a<c,而c≤-1,∴4ac-b24a<-1,∴b2-4ac>4a,所以⑤的结论错误三、19. 解:(1)y=x2-5x+6 (2)∵抛物线的表达式y=x2-5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC =12×1×6=320. 解:(1)把(2,1)代入y=x2-2x+c得4-4+c=1,解得c=1,所以抛物线表达式为y=x2-2x+1,顶点坐标为(1,0) (2)y=x2-2x+1=(x-1)2,抛物线的对称轴为直线x=1,而新抛物线与x轴交于A,B两点,AB=2,所以A(0,0),B(2,0),所以新抛物线的表达式为y=x(x-2),即y=x2-2x21. 解:(1)m=-1,y2=x2-2x-3 (2)C(1,-4),当x≤1时,y随x 的增大而减小;当x>1时,y随x的增大而增大(3)-1<x<222. 解:(1)根据题意得y=(200+20x)(6-x)=-20x2-80x+1200 (2)令y=-20x2-80x+1200中y=960,则有960=-20x2-80x+1200,即x2+4x-12=0,解得x=-6(舍去)或x=2.答:若要平均每天盈利960元,则每千克应降价2元23. 解:(1)EFAK=BCAD=32(2)由(1)知EF8-x=32,∴EF=12-32x,∴S=EH·EF=12x-32x2=-32(x-4)2+24,当x=4时,Smax=2424. 解:(1)设抛物线所对应的表达式为y=ax2,把(-10,-4)代入得y=-125x2(2)由(1)得y=-125x2,将(d2,-4+h)代入得-4+h=-125(d2)2,求得d=104-h (3)当x=9时,y=-125×92=-8125,∴4+2-8125=6925,即当水深超过6925m时,就会影响船只在桥下顺利航行25. 解:(1)∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=-1,n =-3,∵抛物线y =x 2+bx +c 的图象经过点A(m ,0),B(0,n).∴⎩⎨⎧1-b +c =0,c =-3,∴⎩⎨⎧b =-2,c =-3,∴抛物线表达式为y =x 2-2x -3 (2)令y =0,则x 2-2x -3=0,∴x 1=-1,x 2=3,∴C(3,0),∵y =x 2-2x -3=(x -1)2-4,∴顶点坐标D(1,-4),过点D 作DE ⊥y 轴,∵OB =OC =3,∴BE =DE =1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC =∠DBE =45°,∴∠CBD =90°,∴△BCD 是直角三角形(3)如图,∵B(0,-3),C(3,0),∴直线BC 表达式为y =x -3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P(t ,t -3),M(t ,t 2-2t -3),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,QF =1,当点P 在点M 上方时,即0<t <3时,PM =t -3-(t 2-2t -3)=-t 2+3t ,∴S =12PM ·QF =12(-t 2+3t)=-12t 2+32t ;当点P 在点M 下方时,即t <0或t >3时,PM =t 2-2t -3-(t -3),∴S =12PM ·QF =12(t 2-3t)=12t 2-32t。
华师大版九年级数学下《第26章二次函数》测试题含答案

二次函数 测试题一、选择题(每小题3分,共30分)1. 下列函数不属于二次函数的是 ( )A.y=(x -1)(x+2)B.y=21(x+1)2 C. y=1-3x 2D. y=2(x+3)2-2x 22.给出下列四个函数:x y 2-=,12-=x y ,32+-=x y (x >0),其中y 随x •的增大而减小的函数有 ( )A .3个B .2个C .1个D .0个 3. 把二次函数2114y x x =+-化为()k h x a y ++=2的形式是 ( ) A .21(1)24y x =++ B .21(2)24y x =+-C .21(2)24y x =-+D .21(2)24y x =--4. 下列说法错误的是 ( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大 B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点 5.二次函数227y x x =-+,当y=8时,对应的x 的值是 ( )A.3B.5C.-3或 5D.3和-56.二次函数24y x x =-的对称轴是 ( )A .2x =-B .4x =C .2x =D .4x =-7.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的解析式是 ( )A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+8. 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l9.如图,两条抛物线12121+-=x y 、12122--=x y 与分别经过点(-2,0),(2,0)且平行于y 轴的两条平行线圈成的阴影部分的面积为 ( ) A .6 B.8 C.10 D.1210.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0; ④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为( )A .1 B.2 C.3 D.4二、填空题(每小题4分,共32分)11.已知抛物线 82++=kx x y 过点(2,-8),则=k . 12.抛物线21(4)52y x =-+的顶点坐标是 . 13.已知一圆的周长为x cm ,该圆的面积为y cm 2,则y 与x 函数关系式是 . 14.二次函数y =-x 2+6x -5,当x 时, 0<y ,且y 随x 的增大而减小. 15.二次函数2y ax bx c =++的部分对应值如下表:当x =2时,对应的函数值y =.16.如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标是17.二次函数y =2x 2+bx +2的图象如图所示,则b = .18.如图,Rt△OAB 的顶点A (-2,4)在抛物线2y ax =上,将Rt△OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 .三、解答题(共58分)19.(8分)函数2ax y =(a ≠0)的图象与直线2--=x y 交于点A (2,m ),求a 和m 的值.20.(8分)已知函数3522+--=x x y 。
华师大版九年级数学下册第26章二次函数单元测试卷【含答案】

华师大版九年级数学下册第26章二次函数单元测试卷一、单选题(共10题;共30分)1.二次函数y=x2-2x+3顶点坐标是()A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2)2.要从抛物线y=-2x2的图象得到y=-2x2-1的图象,则抛物线y=-2x2必须( )A. 向上平移1个单位;B. 向下平移1个单位;C. 向左平移1个单位;D. 向右平移1个单位.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论:①abc>0;②b2﹣4ac<0;③9a+3b+c>0;④c+8a<0,其中正确的个数是()A. 1B. 2C. 3D. 44.如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B C D5.关于抛物线y=x2﹣2x+1,下列说法错误的是()A. 开口向上B. 与x轴有一个交点C. 对称轴是直线x=1D. 当x>1时,y随x的增大而减小6.如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x 之间的函数关系式是()x2 B. y= √3x2 C. y=2 √3x2 D. y=3 √3x2A. y= √327.二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A. 0<t<2B. 0<t<1C. 1<t<2D. ﹣1<t<18.设A(﹣2,y1),B(﹣1,y2),C(2,y3)是抛物线y=﹣2(x﹣1)2+k(k为常数)上的三点,则y1,y2,y3的大小关系为()A. y3>y2>y1B. y1>y2>y3C. y3>y1>y2D. y2>y3>y19.已知二次函数y =ax 2+bx +c 中,自变量x 与函数y 之间的部分对应值如下表:在该函数的图象上有A (x 1, y 1)和B (x 2, y 2)两点,且-1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是( )A. y 1≥y 2B. y 1>y 2C. y 1≤y 2D. y 1<y 210.(2015•巴彦淖尔)如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm/s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A. AE=12cmB. sin ∠EBC=√74C. 当0<t≤8时,y=516t 2 D. 当t=9s 时,△PBQ 是等腰三角形二、填空题(共10题;共30分)11.抛物线y=(x-1)2-2与y 轴的交点坐标是________12.已知二次函数y=-x 2-2x+3的图象上有两点A (-8,y 1),B (-5,y 2),则y 1________y 2.(填“>”“<”或“=”)13.将抛物线y=x 2﹣2向左平移1个单位后所得抛物线的表达式为________.14.已知二次函数y=x 2+bx+c 的图象过点A (1,0)且关于直线x=2对称,则这个二次函数关系式是________. 15.若二次函数y=x 2+2m ﹣1的图像经过原点,则m 的值是________.16.将抛物线向左平移2个单位,再向下平移3个单位后,所得抛物线的解析式为y=x 2﹣1,则原抛物线的解析式为________.17.已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表: x … ﹣1 0 1 2 3 … y … 10 5 2 1 2 …________.18.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,其对称轴为x=1,有下列结论: ①abc >0; ②b >a+c ;③4a+2b+c <0;④a+b≥m (am+b );⑤2c <3b .其中正确的结论有________(填序号).19.如图,已知抛物线y=-x2-2x+3与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D 点坐标为________20.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为________.三、解答题(共8题;共60分)21.已知二次函数的顶点坐标为(3,-1),且其图象经过点(4,1),求此二次函数的解析式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.某工厂准备翻建新的大门,厂门要求设计成轴对称的拱形曲线.已知厂门的最大宽度AB=12m,最大高度OC=4m,工厂的运输卡车的高度是3m,宽度是5.8m.现设计了两种方案.方案一:建成抛物线形状(如图1);方案二:建成圆弧形状(如图2).为确保工厂的卡车在通过厂门时更安全,你认为应采用哪种设计方案?请说明理由.24.已知函数y=(m+2)x m2+m−4+1是关于x 的二次函数.(1)满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是多少?这时当x 为何值时,y 随x 的增大而减小?25.某产品每件成本28元,在试销阶段产品的日销售量y (件)与每件产品的日销售价x (元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元. (1)求y 与x 之间的函数关系式;(2)要使每日的销售利润w 最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?26.如图,扇形OAB 的半径为4,圆心角∠AOB=90°,点C 是上异于点A 、B 的一动点,过点C 作CD ⊥OB于点D ,作CE ⊥OA 于点E ,联结DE ,过O 点作OF ⊥DE 于点F ,点M 为线段OD 上一动点,联结MF ,过点F 作NF ⊥MF ,交OA 于点N . (1)当tan ∠MOF=13时,求OMNE 的值;(2)设OM=x ,ON=y ,当OMOD =12时,求y 关于x 的函数解析式,并写出它的定义域; (3)在(2)的条件下,联结CF ,当△ECF 与△OFN 相似时,求OD 的长.27.(2017·金华)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3,3 √3),B(9,5 √3),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,(单位长度/秒)﹒当P,Q中的一点Q沿折线OA−AB−BC运动,在OA,AB,BC上运动的速度分别为3,√3,52点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.28.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=2 √2DQ,求点F的坐标.答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】D二、填空题11.【答案】(0,-1)12.【答案】<13.【答案】y=(x+1)2﹣214.【答案】y=x2﹣4x+315.【答案】1216.【答案】y=(x﹣2)2+217.【答案】0<x<418.【答案】①②④⑤19.【答案】(−52,74)或(-4,-5)20.【答案】x1=1,x2=﹣3三、解答题21.【答案】解:设此二次函数的解析式为y=a(x-3)2-1;∵二次函数图象经过点(4,1),∴a(4-3)2-1=1,∴a=2,∴y=2(x-3)2-1。
第26章 二次函数数学九年级下册-单元测试卷-华师大版(含答案)

第26章二次函数数学九年级下册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、在同一平面直角坐标系中,反比例函数y (b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B. C. D.2、将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A.y=(x-2) 2B.y=(x-2) 2+6C.y=x 2+6D.y=x 23、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax 2+bx+c=0的一个根4、在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个5、如图,一次函数y1=2x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣2)x+c的图象可能是()A. B. C. D.6、用配方法求抛物线y=x2﹣4x+1的顶点坐标,配方后的结果是()A.y=(x﹣2)2﹣3B.y=(x+2)2﹣3C.y=(x﹣2)2﹣5 D.y=(x+2)2﹣57、二次函数(是常数,)的自变量与函数值的部分对应值如下表:…0 1 2 ………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0B.1C.2D.38、如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有( )A.1个B.2个C.3个D.4个9、顶点是(-3,0),开口方向、形状与函数的图象相同的抛物线为( )A. B. C. D.10、已知y=ax2+bx的图象如图所示,则y=ax-b的图象一定过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限11、如图,正方形ABCE的边长为1,点M、N分别在BC、CD上,且△CMN的周长为2,则△MAN的面积的最小值为()A. B. C. D.12、把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A.y=2(x+3) 2+4B.y=2(x+3) 2-4C.y=2(x-3) 2-4D.y=2(x-3) 2+413、抛物线y=(x-2)2的对称轴是( )A.直线x=-1B.直线x=1C.直线x=-2D.直线x=214、已知x为矩形的一边长,其面积为y ,且, 则自变量的取值范围是()A. B. C.0≤x≤4 D.15、下列各式中,y是x的二次函数的是()A.xy+x 2=1B.x 2+y-2=0C.y 2-ax=-2D.x 2-y 2+1=0二、填空题(共10题,共计30分)16、二次函数y=2x2﹣1,∵a=________,∴函数有最________值.17、二次函数图像的对称轴是直线________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师大版九年级数学下册第26章 二次函数 单元测试题
(时间:100分钟 满分:100分)
一、选择题(每小题4分,共32分)
1.二次函数y =(x -2)2
+7的顶点坐标是(B)
A.(-2,7)
B.(2,7)
C.(-2,-7)
D.(2,-7)
2.下列各点不在抛物线y =-x 2+4x -1上的是(B)
A.(-2,-13)
B.(-1,-4)
C.(-1,-6)
D.(2,3)
3.二次函数y =x 2+bx +c 的图象上有两点(3,4)和(-5,4),则此拋物线的对称轴是直线(A)
A.x =-1
B.x =1
C.x =2
D.x =3
4.顶点为(-5,0),且开口方向、形状与函数y =-13
x 2的图象相同的抛物线是(C) A.y =13(x -5)2 B.y =-13
x 2-5 C.y =-13(x +5)2 D.y =13
(x +5)2 5.已知二次函数y =a(x -1)2+2,当x <1时,y 随x 的增大而增大,则a 的取值范围是(B)
A.a >0
B.a <0
C.a≥0
D.a≤0
6.对于函数y =-2(x -m)2-1的图象,下列说法中不正确的是(D)
A.开口方向向下
B.对称轴是直线x =m
C.最大值是-1
D.与y 轴不相交
7.若二次函数y =x 2+2x +kb +1的图象与x 轴有两个交点,则一次函数y =kx +b 的大致图象可能是(A)
8.如图,一段抛物线:y =-x(x -2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1.将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…,如此进行下去,得到C n .若点P(2 019,m)在抛物线C n 上,
则m 为(A)
A.-1
B.1
C.2
D.3
二、填空题(每小题5分,共25分)
9.二次函数y =x 2
-4x +2的最小值为-2.
10.请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的函数表达式:y =x 2+1(答案不唯一).
11.已知抛物线y =ax 2+bx +c(a >0)过A(-2,0),O(0,0),B(-3,y 1),C(3,y 2)四点,则y 1与y 2的大小关系是y 1<y 2.
12.如图,隧道的截面由抛物线和长方形构成.长方形的长为12 m ,宽为5 m ,抛物线的最高点C 离路面AA 1的距离
为8 m ,过AA 1的中点O 建立如图所示的平面直角坐标系,则该抛物线的函数表达式为y =-112x 2+8.
13.在平面直角坐标系xOy 中,若抛物线y =ax 2上的两点A ,B 满足OA =OB ,且tan∠OAB=12
,则称线段AB 为该抛物线的通径.那么抛物线y =12x 2的通径长为2.
三、解答题(共43分)
14.(9分)已知抛物线y =-2x 2
-4x +1.
(1)求这个抛物线的对称轴和顶点坐标;
(2)将这个抛物线平移,使顶点移到点P(2,0)的位置,写出所得新抛物线的表达式和平移的过程.
解:(1)y =-2x 2-4x +1=-2(x 2+2x +1)+2+1=-2(x +1)2+3,
∴对称轴是直线x=-1,顶点坐标为(-1,3).
(2)∵新顶点坐标为P(2,0),
∴新抛物线的表达式为y=-2(x-2)2.
∴平移过程为向右平移3个单位长度,向下平移3个单位长度.
15.(10分)已知抛物线y=mx2-2mx-3.
(1)若抛物线的顶点的纵坐标是-2,求此时m的值;
(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标. 解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,抛物线的顶点的纵坐标是-2,
∴-m-3=-2,解得m=-1,
即m的值是-1.
(2)∵当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,
当m=1时,y=x2-2x-3;
当m=2时,y=2x2-4x-3,
∴x2-2x-3=2x2-4x-3.
∴x2-2x=0.
∴x1=0,x2=2.
∴这两个定点为(0,-3)与(2,-3).
16.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.
(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;
(2)若菜园面积为384 m2,求x的值;
(3)求菜园的最大面积.
解:(1)根据题意知,
y =10 000-200x 2×150=-23x +1003
. (2)根据题意,得(-23x +1003
)x =384, 解得x =18或x =32.
∵墙的长度为24 m ,∴x=18.
(3)设菜园的面积是S ,则S =(-23x +1003)x =-23x 2+1003x =-23(x -25)2+1 2503
. ∵-23
<0,∴当x <25时,S 随x 的增大而增大. ∵x≤24,
∴当x =24时,S 取得最大值,最大值为416.
答:菜园的最大面积为416 m 2
.
17.(12分)如图,抛物线y =ax 2+bx -3a 经过A(-1,0),C(0,-3)两点,与x 轴交于另一点B.
(1)求此抛物线的表达式;
(2)已知点D(m ,-m -1)在第四象限的抛物线上,求点D 关于直线BC 对称的点D′的坐标;
(3)在(2)的条件下,连结BD.问在x 轴上是否存在点P ,使∠PCB=∠CBD?若存在,请求出P 点的坐标;若不存在,请说明理由.
解:(1)将A(-1,0),C(0,-3)代入抛物线y =ax 2
+bx -3a 中, 得⎩⎪⎨⎪⎧a -b -3a =0,-3a =-3. 解得⎩
⎪⎨⎪⎧a =1,b =-2. ∴y=x 2
-2x -3.
(2)将点D(m ,-m -1)代入y =x 2-2x -3中,得
m 2-2m -3=-m -1.
解得m =2或-1.
∵点D(m ,-m -1)在第四象限,
∴D(2,-3).
∵B(3,0),C(0,-3),
∴∠BCD=∠BCO=45°,CD′=CD =2,OD′=3-2=1. ∴点D 关于直线BC 对称的点D′的坐标为(0,-1).
(3)存在.满足条件的点P 有两个.
①过点C 作CP∥BD,交x 轴于点P ,则∠PCB=∠CBD.
∵直线BD 的表达式为y =3x -9,直线CP 过点C ,
∴直线CP 的表达式为y =3x -3.
∴点P 的坐标为(1,0);
②连结BD′,过点C 作CP′∥BD′,交x 轴于点P′, 则∠P′CB=∠D′BC.
根据对称性可知∠D′BC=∠CBD,
∴∠P′CB=∠CBD.
∵直线BD′的表达式为y =13
x -1,直线CP′过点C , ∴直线CP′的表达式为y =13
x -3. ∴点P′的坐标为(9,0).
综上所述,满足条件的点P 的坐标为(1,0)或(9,0).。