车辆倒车防撞警报器的设计分解

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要

针对我国交通安全的需要,以及国内外汽车电子技术的应用现状和发展趋势,综合汽车工程学、汽车电子技术、通讯技术和控制技术等多学科理论,从必要性、可行性、实用性和经济性等角度出发,提出开发研制汽车防撞报警系统。目的在于当行车处于危险状态时,发出报警,提醒驾驶员或自动采用相应措施,从而减少或避免高速公路碰撞事故的生。

论文概述了超声波检测的发展及基本原理,阐述了超声波传感器的原理及特性。对于系统的一些主要参数进行了讨论,并且在介绍超声波测距系统功能的基础上,提出了系统的总体构成。通过多种发射接收电路设计方案比较,得出了最佳设计方案,并对系统各个设计单元的原理进行了介绍。对组成各系统电路的芯片进行了介绍,并阐述了它们的工作原理。论文介绍了系统的软件结构,通过编程来实现系统功能。最后,通过对系统的误差分析,给出了系统的改进方案。

关键字:超声波;汽车倒车;防撞;报警器;传感器

一、前言

本次设计的汽车倒车防撞系统,它是以STC89C52作为主控制器,用超声波模块对距离进行距离测试,并将信号发给主控制器。用L298芯片驱动直流电机,执行主控制器命令,控制小车的前进、减速、停止。LED和蜂鸣器报告检测出汽车后方有障碍物。随着社会经济的发展,交通运输业日益兴旺,汽车的数量在大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失,针对这种情况,设计一种响应快,可靠性高且较为经济的汽车防撞报警系统势在必行。超声波作为一种特殊的声波,同样具有声波传输的基本物理特性——折射,反射,干涉,衍射,散射。超声波测距即是利用其反射特性,当车辆后退时,超声波距离传感器利用超声波检测车辆后方的障碍物位置,并利用指示灯及蜂鸣器把车辆到障碍物的距离及位置及时通知驾驶人员,起到安全的作用。

二、正文

(1)本设计的目的

本设计可望成为驾驶员特别是货车以及公共汽车驾驶员的好帮手,可有效的减少和避免那些视野不良的大型汽车的如冷藏车、集装箱车、垃圾车、食品车、载货车、公共汽车等倒车交通事故,另外还特别适用于夜间辅助倒车、倒车入库以及进入停车场停车到位,甚至还能防止盗贼扒车,本设计成本低廉,性能优良,市场前景极为广阔,对提高我国汽车工业实际水平,具有较大的时间意义。

超声波测距法是最常见的一种距离测距方法,应用于汽车停车的前后左右防撞的近距离,低速状况,以及在汽车倒车防撞报警系统中,超声波作为一种特殊的声波,同样具有声波传输的基本物理特性——折射,反射,干涉,衍射,散射。超声波测距即是利用其反射特性,当车辆后退时,超声波距离传感器利用超声波检测车辆后方的障碍物位置,并利用指示灯及蜂鸣器把车辆到障碍物的距离及位置通知驾驶人员,起到安全的作用

(2)条件

超声技术是一门以物理、电子、机械及材料学为基础的通用技术之一。超声技术是通过超声波产生、传播及接收的物理过程而完成的。超声波具有聚束、定向及反射、透射等特性。由于超声波也是一种声波,其声速C与温度有关,在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。

超声波距离传感器采用压电元件锆钛化铅,一般称为RZT,这种传感器的特点在于具有方向性,传感器用蜂鸣器的纸盒为椭圆形,目的是使传感器的水平特性宽,而且垂直方向受到限制。超声波距离传感器是利用“回声”现象制成汽车所用的倒车声纳系统,倒车时想车辆后方发射超声波,测定超声波遇到障碍物后返回的时间,再把这一时间置换成距离再加以显示。

超声波比人耳能听到的声波频率要高,具有方向性,并且只能检测车辆后方的障碍物。它的功能是判定和显示车辆后方有无障碍物,障碍物到汽车的距离以及障碍物的位置。当车后无障碍物时,随着距离的增加,超声波逐渐衰减,也就是说根据向车后发射的超声波是否返回,可以判断检测范围内有无障碍物。向车后发射的超声波遇到障碍物返回时,测定所需的时间,根据时间与距离成正比的关系,就可以判断车到障碍物的距离。此外,车辆后方划分为左中右三个区域,就可以判断出障碍物在何处,四个超声波发生器置于后减震器中,微机组件置于货舱内,驾驶人员回头时即可看到障碍物的显示。超声波距离传感器和微机组件之间采用屏蔽线相连,因此消除了外部及外部传入的干扰.

超声波测距的基本原理同声纳回声定位法的原理是基本相同的,超声波发生器不断发射出40kHz 超声波,并给测量逻辑电路提供一个短脉冲。超声波接收器则在接受到所发射超声波遇障碍物反射回来的反射波后,也向测量逻辑电路提供一个短脉冲,再利用双稳电路把上述两个短脉冲转化为一个方脉冲。方脉冲的宽度即为两个短脉冲之间的时间间隔。测量这个方波脉冲宽度就可以确定发射器与探测物之间的距离。根据测量出输出脉冲的宽度。即测得发射超声波的时间间隔,从而就可求出汽车与障碍物之间的距离S :

S=1/2(Ct ) 2-1

式中C ——超声波音速

由于超声波也是声波,故C 即为音速。音速为C=

0/ργP

式中 γ——气体的绝缘体积系数(空气为1.4)

P ——气体的气压(海平面为1.013*108Pa )

Ρ0——气体的密度(空气为1.29kg/m 3)

对于1ml 空气,质量为m ,体积为V ,密度ρ。则

C =0/ργP = m V /P γ 2-2 对于理想气体,有 PV=RT 2-3

式中 R ——摩尔气体常数

T ——绝对温度

因此C =m V /P γ

由于γ、R 、m 均为已知常数,故声速C 仅与温度T 有关,若温度不变,则声音在空气中的速率与气压无关。在0℃的空气中,C 0=331.45m/s 。

对于任意温度下,有C i /C 0= Ti / 273 ,即C i =331.45Ti /273

在某一地区使用,因温度变化不大,可以认为声速是基本恒定不变的。

确定了声速,只要测得超声波信号往返的时间,即可求得距离。

相关文档
最新文档