考研高数公式大全-一元函数微分学
全国硕士研究生招生考试数学(一)知识点详解(高等数学-一元函数微分学)【圣才出品】

2. x , 0 的洛必达法则 0
(1)当 x 时,函 f(x)及 F(x)都趋于零;
(2)当|x|>N 时, f (x) 及 F (x) 都存在且 F (x) 0 ;
(3)
lim
x
f (x) F (x)
存在(或为无穷大),则
lim
x
f (x) F ( x)
lim
x
f (x) F (x)
3.使用洛必达法则,应注意
(sin x)(n) sin(x n ) 2
(3)余弦函数的 n 阶导数
(cos x)(n) cos(x n ) 2
(4)函数 ln(1 x) 的 n 阶导数
[ln(1
x)](n)
(1)n1
(n 1)! (1 x)n
(5)幂函数 y x 的 n 阶导数( 是任意常数)
(x )(n) ( 1)( 2) ( n 1)xn
3.由参数方程所确定的函数的导数
参数方程 (1)一阶导数x (t)y(t)
( t )
dy dx
(t) (t )
其中,φ(t)和ψ(t)都可导,且 (t) 0 .
(2)二阶导数
d 2 y (t)(t) (t)(t)
dx2
3 (t )
5 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
特别地,有
(xn )(n) n(n 1)(n 2) 3 2 1 n!
(xn )(nk) 0 (k 1, 2, 3, )
3.莱布尼茨公式
n
(uv)(n) Cknu(nk )v(k ) k 0
三、特殊函数的导数
4 / 14
圣才电子书
1.分段函数的导数
(1)对于 x→a 或 x→∞时的未定式 ,也有相应的洛必达法则;
一元函数的导数公式和微分

一、一元函数微分学一元函数微分学由导数和微分组成。
导数:样本量随自变量的变化而变化的快慢程度;微分:曲线的切线上的纵坐标的增量。
二、常数和基本初等函数求导公式 (1) 0)(='C(2) 1)(-='μμμx x (3) x x cos )(sin ='(4) x x sin )(cos -='(5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -=' (9) a a a x x ln )(='(10) (e )e x x '=(11) a x x a ln 1)(log ='(12) x x 1)(ln =',(13) 211)(arcsin x x -='(14) 211)(arccos x x --='(15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+三、函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3)v u v u uv '+'=')((4)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛四、反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间x I 内也可导,且)(1)(y x f ϕ'='或dydxdx dy 1=五、复合函数求导法则 设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=六、高阶导数的莱布尼兹公式七、隐函数的导数一般地,如果变量x ,y 之间的函数关系是由某一个方程()0,=y x F 所确定,那么这种函数就叫做由方程所确定的隐函数. 对数求导法根据隐函数的求导法,我们还可以得到一个简化求导运算的方法.它适合由几个因子通过乘、除、乘方、开方所构成的比较复杂的函数(包括幂指函数)的求导.这个方法是先取对数,化乘、除为加、减,化乘方、开方为乘积,然后利用隐函数求导法求导,因此称为对数求导法.幂指函数的一般形式为()0v y u u =>,其中,u v 是x 的函数. 八、由参数方程所确定的函数的导数22234241433339t t t t t ed dte e e dx dt dx e dt--⎛⎫=-⋅=-== ⎪-⎝⎭22223t d y d dy d e dx dx dx dx ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭一般地,如果参数方程()()x t y t ϕψ=⎧⎪⎨=⎪⎩,(t 为参数) 确定y 与x 之间的函数关系,则称此函数关系所表示的函数为由参数方程所确定的函数.如果函数()t x ϕ=,()t y ψ=都可导,且()0≠'t ϕ,又()t x ϕ=具有单调连续的反函数()x t 1-=ϕ,则由参数方程所确定的函数可以看成()t y ψ=与()x t 1-=ϕ复合而成的函数()[]x y 1-=ϕψ,根据复合函数与反函数的求导法则,有()()t t dtdx dt dy dx dt dt dy dx dy ϕψ''=⋅=⋅=1,即()()t t dx dy ϕψ''= ,也可写成 dtdxdtdy dx dy=.求方程32ttx ey e-⎧=⎪⎨=⎪⎩所确定的函数的二阶导数22d ydx.解 ()()tt t t t e ee e e dx dy 2323232-=-=''=--,注意二阶导的求法。
一元微分

一、一元函数微分法1、重要导数表:1,1(ln )',()',1,x a x x a x ax >⎧=-=⎨-<⎩1[()]'(1)()n n x a x a n x a x a ---=+--,[ln(x +=22221111(arctan )',ln(ln )',2x a x a a x a a a x x a -==++- [ln sec tan ]'sec ,[ln csc cot ]'csc ,[ln csc ]'cot ,[ln sec ]'tan θθθθθθθθθθ+=-=-==()()(1)()11(1)!()!,()ln ,[ln()](),()n m n x n x n n n n n m n mn m n x n n m a a a x a x a x a A x n m++->⎧-⎪===±==⎨±±⎪<⎩)2sin()(sin )(πn ax a ax n n +=,)2cos()(cos )(πn ax a ax n n +=. 2、一元函数微分法:设)(x f y =二阶可导,且'0y ≠,则'()1'x y y =,3''()'''x y y y =-;设(),()x t y t 二阶可导,若()y y x =由(),()x x t y y t ==所确定,则'()'()'()y x y t x t = ,3''()['()'()]()[()()()()]()y x d y t x t dx t y t x t y t x t x t '''''''==-;()0b a d f t dt dx =⎰,()()()[()]'()[()]'()g x h x d f t dt f g x g x f h x h x dx =-⎰; ()()()0[()()][()][()]nn kn k k n k u x v x C u x v x -==⋅∑,注意用麦克劳林展开式求()(0)n f ; 2[()()]()[()]()[()],[()()][()()()()]().d u x v x v x d u x u x d v x d u x v x v x du x u x dv x x =+=-二、多元函数微分法1、多元复合函数的求导法:[(),()]z f u x v x = ,则全导数dz z du z dv dx u dx v dx∂∂=⋅+⋅∂∂,或'()'()'()u v z x u x f v x f =+ [(),(,)]z f u x v x y = ,则'()x u x v z u x f v f =+,y y v z v f =[(,),(,)]z f u x y v x y = ,则x x u x v z u f v f =+,y y u y v z u f v f =+()()()()xx x u x x v x xx u xx v x x uu x uv x x vu x vv xx u xx vz u f v f u f v f u u f v f v u f v f u f v f =+++=+++++222uv vuf f x uu x x uv x vv xx u xx v u f u v f v f u f v f =++++=;222yy y uu y y uv y vv yy u yy v z u f u v f v f u f v f =++++()xy x y uu x y x y uv x y vv xy u xy v yx z u u f u v v u f v v f u f v f z =+++++=.2、隐函数的求导法(两端求导法与公式法): 公式法1:(,)0F x y =,若0y F ≠,则存在()y y x =,且'()x y y x F F =-公式法2:(,,)0F x y z =,若0z F ≠,则存在(,)z z x y =,且x x z y y z z F F z F F =-=-, 若(,,)0F x y z =确定(,),(,),(,)x x y z y y x z z z x y ===,则1y z x x y z ∙∙=-. 3、多元函数高阶混合偏导数的求导法:若多元函数高阶混合偏导数连续,则其结果与求导次序无关. 4、多元函数的求微法: 若[(,),(,)]z f u x y v x y = 可微,则u v x y dz z du z dv z dx z dy =+=+若(,,)0(,,)0F x y z G x y z =⎧⎨=⎩确定()()y y x z z x =⎧⎨=⎩,则由00x y z xy z F dx F dy F dz G dx G dy G dz ++=⎧⎨++=⎩计算'(),'()y x z x .三、一(多)元函数性态1、函数的奇偶性:()'()'()()f x f x f x f x ⇒⇒为可导的奇(偶)函数为偶(奇)函数,为奇函数为偶函数;()()()()0()()f x f x x xaaf x f t dt a f t dt f x ⇒=⇒⎰⎰连续连续奇(偶)偶(奇()),奇(偶)偶(奇); 若(,)(,)f x y f x y -= ,则(,)f x y 为x I ∈(I 为关于原点对称的区间)上的奇(偶)函数.2、函数的周期性:()(0)()'()'()()f T f f x T f x T f x Tf x T =⇒⇒为周期的导函数为周期的函数,周期为周期为;()0()()()()().Tf t dt f x x x aaf t dt T f x T f x T f t dt T =⎰⇒⇒⎰⎰连续周期为周期为,为周期的连续函数周期为3、函数的单调性(含局部):'()'()()0()()f x a f a f x a ><⇒在处连续必在处充分小的邻域内单调增减.()()()f x f x 单调区间的分界点可能为驻点,尖点连续但一导不存在,间断点;视条件而定;4、函数的凹凸性(含局部):''()''()()0()()();f x a f a f x a ><⇒在处连续必在处充分小的邻域内是向上凹凸的()()f x f x 的拐点必为连续的坐标点,其横坐标可能为二导零点,二导不存在点;视条件而定;00000''()0(''()/),''()(,());f x f x f x x x f x ==⇒在两邻的符号相反为拐点00''()0000000''()''()0,'''()0(,());lim 0(,())f x x x x f x f x f x x f x A x f x x x →=≠⇒=≠⇒-在处连续为拐点为拐点;32201()lim ''(1'),()()ds ds K x y y R x s K x α→∆===+=∆弧微分曲率半径. 5、函数的极值性(局部):()()f x f x 的极值点必含于定义域,其可能为驻点,尖点,间断点;若可导,其极值点必为驻点;00000'()0('()/),'()()(),()();f x f x f x x x f x ==⇒在两邻由正到负由负到正为极大小点为极大小值00'()00000'()'()0,''()()0();lim ()0()f x x x x f x f x f x x A x x x →=<>⇒=<>⇒-在处连续为极大小点为极大小点;000000200()()''()lim ()0()'()0,lim ()0().()n x x x x f x f x f x A x f x A x x x x x →→-=<>⇒==<>⇒--为极大小点;为极大小点设),(y x f z =在其驻点),(00y x 的某邻域内有二阶连续偏导数,则02<-B AC 时无极值;02>-B AC 时有极值,且当0<A 时有极大值,当0>A 时有极小值.6、条件极值:一般有三个方法:一是降元法;二是升元法--拉格朗日乘数法;三是几何法(1)在所给条件0),,(=Φz y x 下, 求目标函数),,(z y x f u =的极值. 引进拉格朗日函数 ),,(),,(),,,(z y x z y x f z y x L Φ+=λλ(2)若所给的限制条件有两个(,,)0x y z Φ=和(,,)0x y z ψ=,求目标函数),,(z y x f u =的极值. 引进拉格朗日函数 (,,,)(,,)(,,)(,,)L x y z f x y z x y z x y z λλμ=+Φ+ψ. 7、多元函数的最大值与最小值(闭区域上的连续函数一定取得最大值和最小值): (1) 求函数),(y x f 在D 内所有驻点处的函数值; (2) 求),(y x f 在D 的边界上的最大值和最小值; (3) 将前两步得到的所有函数值进行比较,其中最大者即为最大值, 最小者即为最小值. 注:在证明不等式(,)DA f x y dB σ≤≤⎰⎰的问题时,需将),(y x f 在D 上的最值问题与积分估值定理联合考虑.四、典型例题例1、设[ln(f x +=)]1[ln(2x x f ++''.解:[ln([ln()][ln(f x df x d x x '=+=,则[ln('[ln()]ln(f x df x d x ''=+= 注:[(())]'(())'()(())f u x f u x u x f u x ''=≠.例2、函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为0.1,则(1)f '=0.5. 提示:22[()]'2'()dy f x x xf x x =∆=∆.例3、设)(x f y =是由方程组⎩⎨⎧=+-++=01sin 3232y t e t t x y 所确定的隐函数,求202|t d ydx =.解:⎩⎨⎧='+''-+-=''⇒⎩⎨⎧=-'++='0)()()2(sin cos 6)(0)1sin )((cos 26)(2t y t y y t e t e t x t e t y t e t t x y yy y 因e t y t x t y t t t ='='====000)(,6)(,1)(,有 2002)(,6)(e t y t x t t =''=''==而 223()[]()()()()()()()d y t d y y t x t y t x t dt x t dx x t x t ''''''''-=='',故 220(23)4x d y e e dx =-=. 例4、设232+-=x x xy ,求)(n y .解: ])2(2)1(1[!)1()21(2)11(11)()()(++-++⋅-=-++=n n n n n n x x n x x y .注:可用麦克劳林展开式求()(0)n y . 例5、设,siny x eu x-=则2111(2,)(2,)(,)xy yx y x d u u u x dx πππ=⎛⎫=== ⎪⎝⎭2()e π.例6、设)(),(xyg yx xy f z +=, f 具有二阶连续偏导数,g 具有二阶连续导数, 求xy z .解:1221x yz yf f g y x'''=+-, 111122212222223111()()xy x x y z f y xf f f xf f g g y y y y x x '''''''''''''=+--+--- 112212323211x y xyf f f f g g y y x x'''=-+---例7、设函数),(v u F 可微,(,)0F x z z y αβ=确定了(,)z z x y =,其中αβ、为常数,且满足0αβ≠,则x y xz yz βα+=z αβ.提示:运用两端求导法与公式法的过程中,要注意链式法则,本题也可用全微分法. 例8、设),(t x f y =,而t 是由方程0),,(=t y x F 所确定的y x ,的函数,若,F f 都具有一阶连续偏导数,试求'()y x .解:方程的两边求微分得0x t xy t dy f dx f dtF dx F dy F dt =+⎧⎪⎨++=⎪⎩,解之得'()y x =x t t x t t y f F f F F f F -+.例9、设函数),(y x f z =在点)1,1(处可微, ,1)1,1(=f (1,1)2,(1,1)3x y f f ==,)),(,()(x x f x f x =ϕ, 求13)(=x x dx d ϕ 解:1)1,1())1,1(,1()1(===f f f ϕ. 322()3()()3()[(,(,))(,(,))(,)]x y d d d x x x x f x f x x f x f x x f x x dx dx dxϕϕϕϕ===+ 23()[(,(,))(,(,))((,)(,))]x y x y x f x f x x f x f x x f x x f x x ϕ=++故13)(=x x dx d ϕ=3(1)[(1,1)(1,1)((1,1)(1,1))]51x y x y f f f f ϕ++=. 例10、设(,)u x y 二阶偏导数连续,且0xx yy u u -=,(, 2)u x x x =,2(, 2)x u x x x =, 求(, 2)xx u x x ,(, 2)xy u x x ,(, 2)yy u x x .解:等式x x x u =)2,(两端对x 求导,得(,2)2(,2)1x y u x x u x x +=,则21(,2)(1)2y u x x x =-这两个等式,对x 求导得(,2)2(,2)2xx xy u x x u x x x +=, (,2)2(,2)yx yy u x x u x x x +=- 由已知条件得,xx yy xy yx u u u u ==, 故解得x u u yy xx 34-==, x u xy 35= . 例11、设(,)ax y z u x y e +=,0xy u =,试确定常数a ,使0xy x y z z z z --+=.解:(),(),[()()]ax y ax y ax y x x y y x x xy y z e u au z e u u z e u au u au +++=+=+=++++ ,由0xy u =,可得(1)01ax y xy x y y z z z z e a u a +--+=-=⇒=.例12、对螺旋线θρe =在)2,(),(2πθρπe =处的切线的直角坐标方程为2πe y x =+.例13、设()f x 连续,在0x 可导,且200()f x x =,()00'2f x x >,则存在0>δ ,使得(C )(A )20()f x x -在00()x x δ+,内单增 (B )20()f x x -在00()x x δ-,内单减(C )对任意的00()x x x δ∈+,有2()f x x >(D )对任意的00()x x x δ∈-,有2()f x x > 提示:令2()()F x f x x =-.例14、曲线()234(1)(2)(3)(4)f x x x x x =----的一个拐点为(C )(A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0)例15、设()f x 在0x =某邻域内有二阶连续导数,且"0()lim11cos x xf x x→=-,则(C ) (A )'(0)0f =,且(0)f 是()f x 的极值(B )'(0)0f ≠,但(0)f 是()f x 的极值(C )"(0)0f =,且(0,(0))f 是曲线()y f x =的拐点 (D )"(0)0f ≠,但(0,(0))f 是曲线()y f x =的拐点例16、设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A ) (A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<D )0dy y <∆<例17、()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()0xf t dt ⎰是(B )(A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数(D )在x =0间断的偶函数提示:令()()(),000,0f x x f x f x +>⎧⎪=⎨+=⎪⎩,()()0000lim lim 0x x x x f t dt f t dt +++→→==⎰⎰ 例18、求证:(1)()0()()()(),f x a T Taf x f x T f x dxf x dx +=+=⎰⎰可积(2)()0()()()()f x nT Tf x f x T f x dxn f x dx =+=⎰⎰可积.提示:(1)令0()()(),a T TaF a f x dx f x dx +=-⎰⎰a R ∈用求导法,这比用换元法方便(2)令0()()()nT T G n f x dx n f x dx =-⎰⎰,用求导法错误,因n Z ∈,用换元法方便111(1)0()()()()()n n n x kT u nT k T T T TkTk k k f x dx f x dx f kT u du f x dx n f x dx ---=++=====+==∑∑∑⎰⎰⎰⎰⎰.例19、设)(u ϕ是连续的正值函数,试证明:⎰--=ccdu u u x x f )()(ϕ在],[c c -上是上凹的.证明:⎰⎰-+-=-cxxcdu u u x du u u x x f )()()()()(ϕϕ⎰⎰⎰⎰---+-=xc xcxcxcdu u u du u x du u u du u x )()()()(ϕϕϕϕ⎰⎰>=''+='-ucxcx x f du u du u x f 0)(2)(,)()()(ϕϕϕ,故,原题得证.例20、数列21{(12)}n n +中的最大项为916.提示:设21()(12),[1,)x f x x x +=∈+∞,令()0f x '=,则在2ln 2x =处()f x 取得最大值,又2223<<,而19(2),(3)216f f ==,故该数列的最大值为第三项:169. 例21、设)(x f 二阶导数连续,且xe xf x x f x --='--''-11)()1(2)()1(, 试问(1)若)1( ≠=a a x 是极值点时,是极小值点还时极大值点?(2)若1=x 是极值点时,是极大值点还是极小值点?提示:(1)将0)(='a f 代入xe xf x x f x --='--''-11)()1(2)()1(,得1()(1)1)(0)af a e a a -''=--≠,则)(x f 在a x =取极小值;(2)由1()2()(1)1)xf x f x e x -'''-=--,知11lim ()2lim ()1x x f x f x →→'''-=则,01)1(>=''f 又0)1(='f ,故1=x 为)(x f 的极小值点. 例22、已知函数),(y x f 在点(0,0)的某个邻域内连续, 且1)(),(lim22200=+-→→y x xyy x f y x , 则(A )A 点(0,0)不是(,)f x y 的极值点.B 点(0,0)是),(y x f 的极大值点.C 点(0,0)是),(y x f 的极小值点.D 无法判断点(0,0)是否为),(y x f 的极值点?提示:由),(y x f 在点(0,0)的连续性及1)(),(lim22200=+-→→y x xyy x f y x ,知0)0,0(=f .且α+=+-1)(),(222y x xy y x f ,其中0lim 00=→→αy x ,则222222)()(),(y x y x xy y x f ++++=α 令x y =, 得22(,)()f x x x o x =+,令x y -=, 得22(,)()f x x x o x -=-+.从而),(y x f 在(0,0)点的邻域内始终可正可负, 又0)0,0(=f , 由极值定义选(A).例23、 2(,)()x z x y e ax b y -=+-满足条件20b a =≥时,(1,0)z -为其极大值. 提示:由必要条件知,2b a =,再由充分条件知0a >,经验证0a =也可以. 例24、已知()f u 具有二阶导数,且(0)1f '=, )(x y y =由11y y xe --=所确定, 设(ln sin )()z f y x g x =-=,判定()g x 在0x =处的极值性.提示:在11y y xe --=中, 令0=x 得(0)1y =,将其两边对x 求导,110y y y e xe y --''--=, 再对x 求导得111210y y y y y e y e y xe y xe y ----'''''''----= 将1,0==y x 代入上面两式得(0)1,(0) 2.y y '''=='()(cos )(ln sin )z x y y x f y x ''=--,222''()(cos )(ln sin )[()sin ](ln sin )z x y y x f y x y y y y x f y x '''''''=--+-+-将(0)1y =,(0)1(0)2y y '''==,,(0)1f '=代入上面两式得0'()0,x z x ==0''()1x z x ==.例25、求由方程010422222=--+-++z y x z y x 确定的函数),(y x f z =的极值.[解一] ⎩⎨⎧='-+'+='--'+0422204222y y x x z z z y z z z x )(a由函数极值的必要条件知0,0='='y x z z ,将其代入)(a 得驻点)1,1(-P .又 z z A Pxx-=''=21 ,0=''=P xy z B ,zz C P yy -=''=21因为 2210(2)AC B z -=>- )2(≠z ,故)1,1(-=f z 为极值. 将1,1-==y x 代入方程010422222=--+-++z y x z y x ,得6,221=-=z z 将21-=z 代入)(b 中可知0A >,故2)1,1(-=-=f z 为极小值. 将61=z 代入)(b 中可知0A <,故6)1,1(=-=f z 为极大值. [解二] 配方法. 22)1()1(162+---±=-y x z显然,6=z 为极大值, 2-=z 为极小值.例26、已知函数(,)z f x y = 的全微分ydy xdx dz 22-=,并且(1,1)2f =.求(,)f x y 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值. 解:2222()dz xdx ydy d x y C =-=-+,则22(,)z f x y x y C ==-+,再由(1,1)2f =,得 C=2, 故 .2),(22+-=y x y x f令20,20x y f x f y ===-=得可能极值点为(0,0),且(0,0)2f =再考虑其在边界曲线1422=+y x 上的情形:令22(,)(,)(1)4y L x y f x y x λ=++-, 由2212(1)0,20,1024x y y L x L y x λλ=+==-+=+-=() 得可能极值点为(0,2)±,(1,0)± ,而,2)2,0(-=±f 3)0,1(=±f , 可见(,)z f x y =在区域D 内的最大值为3,最小值为-2.推广:求证:2214y x σ+≤≤≤⎰⎰.例27.求曲线1:0z C y ⎧=⎪⎨=⎪⎩2230:0x y C z +-=⎧⎨=⎩之间的距离.解:任取1(s C ∈,2(32,,0)t t C -∈,则222(23)D d s t t s ==+-++由2(23)10,4(23)20s t D s t D s t t =+-+==+-+=,得唯一驻点1(,1)2P ,从几何意义知d 客观存在,故所求距离为1(,1)22d =.注:(1)d =3.从几何意义上知,(,,)P x y z 到12(1,2,0),(3,1,2)P P --的距离之和最小为123PP =.(2)函数(,)f u v =. 提示:该题可转化为在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短,作椭圆切线平行于已知直线求解,或以椭圆方程为条件,其上点到直线的距离平方为目标函数,用拉格朗日乘数法完成.例28.求函数xyz f = 在条件0,1222=++=++z y x z y x 下的极值.解 令)()1(222z y x z y x xyz L +++-+++=μλ有 02=++=μλx yz L x , 02=++=μλy xz L y ,02=++=μλz xy L z 得 z z y y x x μλμλμλ+=+=+222222,又0,1222=++=++z y x z y x得z x =, 解得驻点)61,62,61(1-P ,)61,62,61(2--P 。
[整理]考研数学复习高等数学第二章一元函数微分学
![[整理]考研数学复习高等数学第二章一元函数微分学](https://img.taocdn.com/s3/m/418acd463169a4517623a346.png)
第二章 一元函数微分学2013考试内容 (本大纲为数学1,数学2-3需要根据大纲作部分增删)导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径2013年考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。
了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3. 了解高阶导数的概念,会求简单函数的高阶导数。
4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
5. 理解并会用罗尔(Rolle )定理、拉格郎日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理。
6. 掌握用洛必达法则求未定式极限的方法。
7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
8. 会用导数判断函数图形的凹凸性(注:在区间(a ,b )内,设函数f(x)具有二阶导数。
当''()0f x >时,f(x)的图形是凹的;当''()0f x <时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。
一、导数的定义、几何意义、物理意义、经济学意义1.1定义:()f x 在0x 的某一邻域内有定义,而且000()()limx f x x f x x∆→+∆-∆存在;称0000()()lim=()x f x x f x f x x∆→+∆-'∆为导数。
考研高数重点概率论数理统计公式整理(超全)

的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
∞
∞
∩ Ai = ∪ Ai
德摩根率: i=1
i=1
A∪B = A∩B, A∩B = A∪ B
(7)概率 的公理化 定义
设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
这样一组事件中的每一个事件称为基本事件,用ω 来表示。
基本事件的全体,称为试验的样本空间,用 Ω 表示。
一个事件就是由 Ω 中的部分点(基本事件ω )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 Ω 的子集。 Ω 为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( A) = L( A) 。其中 L 为几何度量(长度、面积、体积)。 L(Ω)
(10)加法 公式
(11)减法 公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
j =1
此公式即为贝叶斯公式。
P(Bi ) ,( i = 1 , 2 ,…, n ),通常叫先验概率。 P(Bi / A) ,( i = 1, 2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
2021考研高等数学重点公式详解-一元微分微分学

+
一 f一 nn1(一 !x0-) (x-xv0
f
+R
(x)
→ 其中Rn (x)= o[(x-x0 )吁, (x Xo).
如果取X0 =0,从而泰勒公式变成较简单的形式,称为麦克劳林公式.
-常见的麦克劳林公式z H = + x + x 句,. + x
- 暗? 但
xn
..x e 、, 唱-A 、‘,,,
23
�
n+l
L (l+x)°
=l+αx
+
α(α -1)
一一一-
x2
+
…
=t,
寺α(α -1)…(α - k+l)
�
n!
xe(-1,1)
四.导数应用 1.函数单调性的判定法
设函数y=f(x) 在[a,b] 上连续, 在(α,b)内可导,
f (1)如果在徊,b)内 ’(x)>O, 那么函数y=f(x) 在[a,b]上单调增加:
fl 那么称 f(x) #43;2一 x2 )J|〉
/
(x 1 )+f(x2),那么称
2
J(x)
在
I上的图形是凸的. (2)曲线凹凸性的判定
定理 设 f(x) 在 [a,b]上连续,在怡,b) 内具有二阶导数,则
f 1)若在 (a,b)内
’
。)>0,则
f(x)在[α,b]上的阁形是凹的:
f'(x0)= 』旦艺 =』曰 !(与 +艺- !(而)
2.左右导数定义
如果_lim_ X 呻句
f(xx】 )--fx…o(x。 o ) 存在,则称此极限为 J(x)
在点Xo处的左导数,记作/Jxo,)
l - 节. 如果..'
一元函数微分积分总结

分离常数得既约真分式与多项式 Q(x)因式分解化为部分分式和
——待定系数后比较系数(还可以结合赋值,求导数,取极限等)
——化为
I
k
=∫
dx
( x − a)
k
类与 J k = ∫
Bx + C
( x 2 +bx + c)
k
dx 类
(2)三角有理式
㈠万能代换(通解) ㈡特殊代换 R(cosx,sinx)=-R(cosx,-sinx) R(cosx,sinx)=-R(-cosx,sinx) R(cosx,sinx)=R(-cosx,-sinx) (3)可有理化的无理式 ㈠三角换元 ㈡代数换元
I m = ∫ 0 (sin x) dx = ∫ 0 2 (cos x) m dx
2 m
π
π
LOGO
5.广义积分—极限观点 ①无穷积分
∫
+∞ a
f ( x)dx = lim ∫ f ( x)dx
b → +∞ b a
②瑕积分
∫ b f ( x)dx = lim ∫ b +ε f ( x)dx a a
LOGO
一元函数微分与积分总结
“Light Moon”学习俱乐部 Moon”学习俱乐部
LOGO
一、求不定积分
1. 积分基本公式 ① ∫ kdx ② ③
一元函数微积分学重要公式

几个重要极限与几个重要的等价无穷小① 1sin lim 0=→x x x ,推广:1)()(sin 0)(lim =→x x x ϕϕϕ,其中0)(≠x ϕ。
② ()e x x x =+∞→11lim ,推广:()()()()e x x x =+→ϕϕϕ101lim ,其中()0≠x ϕ。
③ )0a (1lim ,1lim >==∞→∞→常数n n n n a n ,())00(0lim ,0ln lim 0>>==-∞→→+k e x x x x k x k x ,常数δδδ ④ 当0→x 时,()(),~11,~1ln ,~1,21~cos 1,~tan ,~sin 2ax x x x x e x x x x x a x -++--())0k (~,1,0ln ~1,~arctan ,~arcsin >>+≠>-m x x x a a a x a x x x x m k m x 常数(1)常用的导数(微分)运算法则以下均设所涉及的函数可导,则有① ()μυμυ'+'='+()υμυμd d d ±=±② ()v u v u uv '+'='()vdu udv uv d += ()u C Cu '='()Cdu Cu d =③ )0(,2≠'-'='⎪⎭⎫ ⎝⎛v v v u u v v u )0(,2≠-=⎪⎭⎫ ⎝⎛v v udv vdu v u d ④ 设,)(),(x u u f y ϕ==则有,dy dxdu du dy dx ∙=即()()[]()()()x x f x f ϕϕϕ'∙'='. 与此相应的微分运算法则,就是微分形式不变性,即不论u 是自变量还是中间变量,均有 ()du u f dy '=.(2)基本初等函数的倒数(微分)公式① 为常数)(C C 0=')(0为常数C dC =② ()为常数)(αααα1-='x x )(1为常数ααααdx x dx -=③ ())1,0,(ln ≠>='a a a a a a x x 为常数)1,0,(ln ≠>=a a a adx a da x x 为常数()x x e e ='dx e de x x =④ ())1,0(ln 1log ≠>='a a a x x a )1,0(ln 1log ≠>=a a dx ax x d a ()x x 1ln ='dx x x d 1ln = ⑤ ()x x cos sin ='xdx x d cos sin =⑥ ()x x sin cos -='xdx x d sin cos -=⑦()x x 2sec tan ='xdx x d 2sec tan = ⑧ ()x x 2csc cot -='xdx x d 2csc cot -=⑨ ()x x x tan sec sec ='xdx x x d tan sec sec =⑩()x x x cot csc csc -='xdx x x d cot csc csc -= 11 ()211arcsin x x -='dx x x d 211arcsin -=12 ()211arccos x x --='dx x x d 211arccos --= 13 ()211arctan x x +='dx xx d 211arctan += 14 ()211cot x x arc +-='dx xx darc 211cot +-= (3)变限积分求导公式设)(t f 为连续函数,)(1x ϕ与)(2x ϕ均求导,则有()())()()()()(1122)()(21x x f x x f dt t f x x ϕϕϕϕϕϕ'-'='⎪⎭⎫ ⎝⎛⎰(4)n 阶导数运算法则以下均设u,v 为n 阶可导,则有()()()()n n n v u v u ±=±()()()n n Cu Cu =()()()()()()()n k k n k n n n n n uv v u C v u C v u uv ++++'+=-- (11)后一公式称为乘积的高阶导数的莱布尼茨公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过课程学习巩固考研写作的要点重点难点,并掌握写作的大体思路
12
王诚
《经济类联考综合阅卷人核心笔记·写作》
《经济类联考综合阅卷人核心笔记·写作》
冲刺串讲
各科冲刺串讲,系统串讲各科知识体系,指导考生针对核心考点进行深度 学习。
8
24
李擂
《经济类联考综合阅卷人核心笔记·数学》
《经济类联考综合阅卷人核心笔记·数学》
逻辑强化
熟悉逻辑各题型的特点和表现形式,能熟练地运用各知识点和相关的逻辑 方法解题
16
饶思中
《考研管综逻辑强化讲义》
《经济类联考综合阅卷人核心笔记·逻辑》
李擂
《考研经综数学冲刺讲义》
《经济类联考综合阅卷人核心预测 4 套卷》
逻辑冲刺
提高运用各种知识点和逻辑方法解答各种类型的逻辑题的综合能力;消灭 逻辑理解中的盲点和误区;提高解题的速度和正确率
4
饶思中
《考研经综逻辑冲刺讲义》
《经济类联考综合阅卷人考前 8 天写作大预测》
16
饶思中
《考研管综逻辑强化讲义》
《管理类联考数学阅卷人核心笔记·逻辑》
《管理类联考数学阅卷人核心笔记·写作》
《管理类联考数学阅卷人核心笔记·写作》
数学冲刺
管理类联考数学冲刺串讲,系统串联知识体系,指导考生针对核心题深度 学习
8
24
李擂
《经济类联考综合阅卷人核心笔记·数学》
《经济类联考综合阅卷人核心笔记·数学》
逻辑强化
熟悉逻辑各题型的特点和表现形式,能熟练地运用各知识点和相关的逻辑 方法解题
16
饶思中
《考研管综逻辑强化讲义》
《经济类联考综合阅卷人核心笔记·逻辑》
写作强化
通过课程学习巩固考研写作的要点重点难点,并掌握写作的大体思路
12
王诚
《经济类联考综合阅卷人核心笔记·写作》
《经济类联考综合阅卷人核心笔记·写作》
冲刺串讲
各科冲刺串讲,系统串讲各科知识体系,指导考生针对核心考点进行深度 学习。
8
数学强化
依据考试大纲及历真题介绍管理数学数学主要知识点,归纳总结命题方向 和常见的解题思想。
32
刘京环
《考研管综初数强化讲义》
《管理类联考数学阅卷人核心笔记·数学》
逻辑强化
熟悉逻辑各题型的特点和表现形式,能熟练地运用各知识点和相关的逻辑 方法解题
考研高数公式大全:一元函数微分学
经济类联考数学全程规划班
掌握经济类联考数学的复习方法,制定全复习规划
1
李擂
《考研经综数学导学讲义》
无
逻辑真题解析
了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
2
王晓东
《经济类联考综合真题及其答案》
刘京环
《考研管综初数冲刺讲义》
《管理类联考数学阅卷人核心预测 4 套卷》
逻辑冲刺
提高运用各种知识点和逻辑方法解答各种类型的逻辑题的数学能力;消灭 逻辑理解中的盲点和误区;提高解题的速度和正确率
4
饶思中
《考研管综逻辑冲刺讲义》
《管理类联考数学阅卷人考前 8 天写作大预测》
高等数学基础班
全面学习高等数学的基本知识点,理解基本概念,掌握基本运算方法,为 强化提高打下基础。
16
李擂
《考研经综数学基础讲义》
《经济类联考综合阅卷人核心教程》
高等数学
强化课程,依据考试大纲及历真题介绍分别高等数学、线性代数、概率论 主要知识点,归纳总结命题方向和常见的解题思想,结合强化课,帮助考生 进一步强化解题思路。
高等数学基础班
全面学习高等数学的基本知识点,理解基本概念,掌握基本运算方法,为 强化提高打下基础。
16
李擂
《考研经综数学基础讲义》
《经济类联考综合阅卷人核心教程》
高等数学
强化课程,依据考试大纲及历真题介绍分别高等数学、线性代数、概率论 主要知识点,归纳总结命题方向和常见的解题思想,结合强化课,帮助考生 进一步强化解题思路。
经济类联考数学全程规划班
掌握经济类联考数学的复习方法,制定全复习规划
1
李擂
《考研经综数学导学讲义》
无
逻辑真题解析
了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
2
王晓东
《经济类联考综合真题及其答案》
逻辑真题解析
了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
2
王晓东
《考研管综真题》
数学基础
通过学习管理类联考数学的基本概念、基本理论、基本方法,为强化提高 打基础
20
刘京环
《考研管综初数基础讲义-刘京环》
《管理类联考数学阅卷人核心教程》
李擂
《考研经综数学冲刺讲义》
《经济类联考综合阅卷人核心预测 4 套卷》
逻辑冲刺
提高运用各种知识点和逻辑方法解答各种类型的逻辑题的综合能力;消灭 逻辑理解中的盲点和误区;提高解题的速度和正确率
写作冲刺
掌握写作大小作文的模版,能利用模版衍生解决应试模版的能力,规范写 作
8
王诚
《考研管综பைடு நூலகம்作冲刺讲义》
写作模考
通过应试技巧的学习,提供写作的速度,发现考试中的问题,及时解决, 提高考试分值
4
王诚
《考研管综写作 4 套卷》
写作冲刺
掌握写作大小作文的模版,能利用模版衍生解决应试模版的能力,规范写 作
8
王诚
《考研经综写作冲刺讲义》
写作模考
通过应试技巧的学习,提供写作的速度,发现考试中的问题,及时解决, 提高考试分值
4
王诚
《考研管综写作 4 套卷》