基于多目标粒子群优化的无人机协同多任务分配

基于多目标粒子群优化的无人机协同多任务分配
基于多目标粒子群优化的无人机协同多任务分配

基于多目标粒子群算法的多约束组合优化问题研究

基于多目标粒子群算法的多约束组合优化问题研究组合优化问题在金融投资、资源分配等领域有着重要的应用,其求解方法一直是人们研究的重点。实际工程应用中的组合优化问题往往具有多个约束条件且在很多情况下问题规模较大,传统的优化算法由于需要遍历整个解空间,因此无法在多项式时间内完成求解。 元启发式算法将随机搜索算法与局部搜索算法相结合,同时从目标空间中的多个位置开始搜索,且目标是尽可能获得更好的解,被认为更适合用来求解具有多个约束的组合优化问题。遗传算法、粒子群算法、蚁群算法等都是常见的元启发式算法。 其中粒子群优化算法通过种群中个体之间的相互协作使得整个种群逐渐向问题的最优解靠近并最终收敛,其由分散到集中的寻优方式以及参数设置少、收敛快等特点使得该算法在解决多约束组合优化问题方面得到了广泛的应用。在解决多约束组合优化问题的过程中,如何妥善处理约束条件也是一个需要我们重点关注的问题。 根据对已有约束处理方法优缺点的分析,本文采用约束转目标的方法将多约束优化问题转化为具有三个以上目标的多目标优化问题,并结合粒子群算法对其进行求解。为了搜索到质量更高的最优解,本文提出一种改进的多目标粒子群优化算法IMaOPSO,以违反约束度来维护外部档案,以拥挤度和种群中个体与理想点的距离作为两个指标寻找种群的全局最优。 并且加入扰动变异算子来扩大粒子的搜索区域,使参与变异的粒子个数随算法迭代次数的增加而减少,在保证算法开发能力的同时避免其陷入局部最优。此外,针对多约束组合优化问题目标空间复杂、问题规模大的情况,在IMaOPSO算法

的基础上提出了一种基于多种群协同进化的多目标粒子群算法,使用多个种群分别搜索不同的区域,并且改进了算法的速度更新机制以及在算法中设计了一个替换算子,以提高算法的收敛性。 最后,以不同规模的多背包问题为算例验证了所提算法的有效性。

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

最新2019年无人机理论测试版题库500题(含答案)

2019年最新无人机考试题库500题[含答案] 一、单选题 1.无人机任务规划是实现______的有效途径,它在很大程度上决定了无人机执行任务的效率。 A.自主导航与飞行控制 B.飞行任务与载荷匹配 C.航迹规划与自主导航 答案:A. 2.某多轴螺旋桨长381毫米,螺距127毫米,那么他的型号可表述为 A.3812 B.15×5 C.38×12 答案:B. 3.校准地图时选取的校准点______。 A.不能在同一直线上 B.不能在同一纬度上 C.不能在同一经度上 答案:A. 4.由于加载的电子地图与实际操作时的地理位置信息有偏差,需要在使用前对地图进行______。 A.标注 B.更新 C.校准 答案:C. 5.______无人机侦察监测区域应预先标注,主要包括任务区域范围、侦察监测对象等。 A.场地标注 B.任务区域标注 C.警示标注 答案:B. 6.______主要包括起飞场地标注、着陆场地标注、应急场地标注,为操作员提供发射

与回收以及应急迫降区域参考。 A.场地标注 B.任务区域标注 C.警示标注 答案:A. 7.图元标注主要包括以下三方面信息______: A.坐标标注、航向标注、载荷任务标注 B.场地标注、警示标注、任务区域标注 C.航程标注、航时标注、任务类型标注 答案:B. 8.地面站电子地图显示的信息分为三个方面:一是______二是______三是其他辅助信息,如图元标注。 A.无人机位置和飞行航迹,无人机航迹规划信息 B.无人机地理坐标信息,无人机飞行姿态信息 C.无人机飞行姿态信息,无人机航迹规划信息 答案:A. 9.航迹规划需要充分考虑______的选取、标绘,航线预先规划以及在线调整时机。 A.飞行航迹 B.地理位置 C.电子地图 答案:C. 10.航迹优化是指航迹规划完成后,系统根据无人机飞行的__________对航迹进行优化处理,制定出适合无人机飞行的航迹。 A.最大转弯半径和最小俯仰角 B.最小转弯半径和最大俯仰角 C.最大转弯半径和最大俯仰角 答案:B. 11.任务分配提供可用的无人机资源和着陆点的显示,辅助操作人员进行______。 A.载荷规划、通信规划和目标分配 B.链路规划、返航规划和载荷分配 C.任务规划、返航规划和载荷分配 答案:A.

AOPA最新理论题库第7章任务规划

G001、无人机是指根据无人机需要完成的任务、无人机的数量以及携带任务载荷的类型,对无人机制定飞行路线并进行任务分配。 A.航迹规划 B.任务规划 C.飞行规划 正确答案: B(解析:P174) G002、任务规划的主要目标是依据地形信息和执行任务环境条件信息,综合考虑无人机的性能,到达时间、耗能、威胁以及飞行区域等约束条件。为无人机规划出一条或多条自 的,保证无人机高效,圆满的完成飞行任务,并安全返回基地。 A.起飞到终点,最短路径 B.起飞点到着陆点,最佳路径 C.出发点到目标点,最优或次优航迹 正确答案: C(解析:P174) G003、无人机任务规划是实现的有效途径,他在很大程度上决定了无人机执行任务的效率 A.自主导航与飞行控制 B.飞行任务与载荷导航 C.航迹规划与自主导航 正确答案: A(解析:P174) G004、无人机任务规划需要实现的功能包括 A.自主导航功能,应急处理功能,航迹规划功能 B.任务分配功能,航迹规划功能,仿真演示功能 C.自主导航功能,自主起降功能,航迹规划功能 正确答案: B(解析:P174) G005、无人机任务规划需要考虑的因素有、,无人机物理限制,实时性要求 A.飞行环境限制,飞行任务要求 B.飞行赶任务范围,飞行安全限制 C.飞行安全限制,飞行任务要求 正确答案: A(解析:P175) G006、无人机物理限制对飞行航迹有以下限制:,最小航迹段较长度,最低安全飞行高度 A.最大转弯半径,最小俯仰角 B.最小转弯半径,最小俯仰角 C.最小转弯半径,最大俯仰角 正确答案: C(解析:P175) G007、动力系统工作恒定的情况下,限制了航迹在垂直平面内上升和下滑的最大角度 A.最小转弯半径 B.最大俯仰角

用粒子群算法求解多目标优化问题的Pareto解

粒子群算法程序 tic D=10;%粒子群中粒子的个数 %w=0.729;%w为惯性因子 wmin=1.2; wmax=1.4; c1=1.49445;%正常数,成为加速因子 c2=1.49445;%正常数,成为加速因子 Loop_max=50;%最大迭代次数 %初始化粒子群 for i=1:D X(i)=rand(1)*(-5-7)+7; V(i)=1; f1(i)=X(i)^2; f2(i)=(X(i)-2)^2; end Loop=1;%迭代计数器 while Loop<=Loop_max%循环终止条件 %对粒子群中的每个粒子进行评价 for i=1:D k1=find(1==Xv(i,:));%找出第一辆车配送的城市编号 nb1=size(k1,2);%计算第一辆车配送城市的个数 if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则 a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号 b1=sort(a1);%对找出第一辆车的顺序号进行排序 G1(i)=0;%初始化第一辆车的配送量 k51=[]; am=[]; for j1=1:nb1 am=find(b1(j1)==Xr(i,:)); k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号 G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量 end k61=[]; k61=[0,k51,0];%定义第一辆车的配送路径 L1(i)=0;%初始化第一辆车的配送路径长度 for k11=1:nb1+1 L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度end else%如果第一辆车配送的城市个数不大于0则 G1(i)=0;%第一辆车的配送量设为0 L1(i)=0;%第一辆车的配送路径长度设为0 end

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

一种基于蚁群算法的无人机协同任务规划优化算法

龙源期刊网 https://www.360docs.net/doc/6313759522.html, 一种基于蚁群算法的无人机协同任务规划优化算法 作者:黄伟民王亚刚 来源:《软件导刊》2017年第07期 摘要:随着无人机在军事领域的广泛应用,越来越多的无人机将应用在未来战场,因此 无人机协同规划变得越来越重要。建立了多无人机协同任务分配模型,并研究了模型求解的有效算法。在蚁群算法的基础上提出针对密度较大目标区域的多无人机协同任务规划的优化方法,优化蚁群算法的搜索条件,降低了蚁群算法的时间和空间复杂度。 关键词:无人机;协同规划;蚁群算法;目标群密度 DOIDOI:10.11907/rjdk.171261 中图分类号:TP319 文献标识码:A 文章编号:1672-7800(2017)007-0131-03 0 引言 多基地多无人机协同侦查模型可以描述为:利用多种不同性能的无人机对多个空间分散的目标进行侦查,这些无人飞机分散在多个地理位置不同的基地上,需要快速制定无人侦查飞机的侦查任务计划以满足侦查要求和实际约束条件。在无人机迅速发展的同时,雷达技术也快速发展,因此一旦有侦察无人机进入防御方某一目标群配属雷达探测范围,防御方目标群的配属雷达均开机对空警戒和搜索目标,并会采取相应对策,包括发射导弹对无人机进行摧毁等,因此侦察无人机滞留防御方雷达探测范围内时间越长,被其摧毁的可能性就越大[1-2]。本文以侦察、监视任务为中心,以协同探测多基地目标为背景,在蚁群算法规划路线的基础上进一步优化线路,以此尽可能缩短无人机任务飞行时间和被雷达探测到的时间。 2 无人机侦察目标群聚类 为了最大程度上利用各无人机基地资源,首先要对目标群进行聚类。常用的聚类方法有 K-means聚类算法、层次聚类算法、SOM聚类算法和FCM聚类算法[3]。本文采用层次分析法对目标群进行聚类,通过聚类,可以规划出各无人机基地派出的无人机的探测目标群,在无 人机数量和飞行参数限制条件下,这样做能最大限度地提高效率。 层次分析法的算法流程如图1所示。 3 基于改进蚁群算法的目标群路线规划

无人机任务规划的基本概念

主要内容 ?无人机任务规划的基本概念三 ?无人机任务规划方法三 ?无人机任务规划的数字地图技术三 ?无人机地面控制站的基本概念三 ?无人机地面控制站的分类二配置和转移运输三 5.1 无人机任务规划的基本概念 由于无人机是无人驾驶的飞行器,所以在飞行前需要事先规划和设定好它的飞行任务和航线三在飞行过程中,地面操纵人员还要随时了解无人机的飞行状态,根据需要操控无人机调整姿态和航线,及时处理飞行中遇到的特殊情况,以保证飞行安全和飞行任务的完成三这就需要配备能够提供任务规划与指挥控制方面相应功能支持的设备或系统,这就是无人机的任务规划与指挥控制系统三 5.1.1一任务规划的定义和特点一 1.任务规划的定义 一一规划是一个综合性的计划,它包括目标二政策二程序二规则二任务分配二要采取的步骤二要使用的资源以及为完成既定行动方针所需的其他因素三 任务规划(M i s s i o nP l a n n i n g,M P)是对工作实施过程二方法的组织和计划三在军事领域,任务规划已逐渐变为一个专有名词,尤其是现代无人化装备的出现,使得任务规划越来越重要三装备作战规划的结果是装备作战行动的实施依据三对有人化装备而言,规划结果 主要作为任务承担人员决策的参考;但对无人化装备而言,规划即控制,是装备运行过程中

137 一 唯一的执行依据,因此,任务规划的输出信息必须满足准确性二完整性和一致性的要求三 2.任务规划的特点 任务规划具有以下几个特点: (1)制作任务规划时需要具有整体性二全局性的思考和考量三 (2)制作任务规划须以准确的数据为基础,运用科学方法进行从整体到细节的设计三 (3)任务规划须在实际行动实施之前进行,其结果要作为实际行动的具体指导三5.1.2一 任务规划系统的定义和功能一 1.任务规划系统的定义一一任务规划系统( M i s s i o nP l a n n i n g S y s t e m ,M P S )是指利用先进的计算机技术采集二存储各种情报信息,进行大规模分析计算,从而辅助制定任务计划的信息系统三任务规划系统的出现和广泛使用是现代意义的任务规划区别于过去所说的作战计划二作战筹划的根本标志三 2.任务规划系统的功能 作为整个信息化作战系统的一个重要节点,任务规划系统不是一个孤立的封闭系统,它一端与作战指挥系统的任务对接,另一端与作战装备直接交联,如图 5-1所示,主要包括信 息采集与处理模块二规划作业模块二任务预演评估模块和任务输出模块 三图5-1一任务规划系统基本组成结构 (1)信息采集与处理模块三任务规划系统需要采集的信息主要包括上级下达的任务信息二指挥控制信息二情报信息(如目标信息二敌作战意图等)和战场环境信息(敌情二我情二地形二气象二电磁)等三对采集的信息要进行加工处理,包括地形和气象信息显示,禁飞区二威胁区及战场态势标绘等三 (2)规划作业模块三该模块用于制定装备作战过程的时间二空间和行为准则,通常包括航线规划和机载设备使用规划,以及与其他作战实体的协同和交互规划等三根据任务规划系统所具有的自主化能力大小,通常还包括冲突检测二安全评估二自动的威胁规避和航线生成等分析计算模块,用于辅助人工决策操作三 (3)任务预演评估模块三规划效果预演主要包括飞行仿真二载荷作战效果仿真等,评估包括装备本身的效能评估和任务规划的作战行动效能评估两个方面三预演评估的主要作用是对装备作战的效果进行预估和判断,并反馈以指导决策,形成优化规划方案,同时便于指挥员和操作员熟悉作战过程,了解和把握作战关键环节三 (4)任务输出模块三任务输出是将规划结果以数据的形式输出给作战装备和其他作战节点三输出的任务规划信息应该是完备二一致和可理解的,能够被其他信息系统正确读取和

复杂环境下多目标多无人机协同任务规划

复杂环境下多目标多无人机协同任务规划 摘要:在当今更加复杂的战争环境中,无人机通常以协调的舰队执行特殊任务。因此,本文构建了无人机联合任务计划系统的模型,并对无人机联合任务计划控 制系统,多目标任务分配架构,无人机目标融合体系结构和弹道计划模型进行了 设计研究。通过结合层次聚类算法和数值模拟实验,我们旨在确认设计的有效性,进一步提高无人机在复杂和动态环境中的飞行适应性,并为在最短时间内开发合 理的无人机协作任务分配提供合理的计划,理论上的帮助。 关键字:复杂环境,无人机,协作任务,模型规划 简介:随着近几年无人机技术的飞速发展,基于无人机联合任务计划的实现 多个战略目标的合作已成为许多领域特别是军事领域的重要发展成就之一。其中,所谓的多无人机协作系统,是指由多个无人机组成一个整体来实现一个综合战略 目标的任务机制,可以利用多个无人机的信息共享功能来实现无人机的任务效率。发挥最大作用。在这方面,有必要考虑到多目标状态的不确定性和目标的多样性,合理地控制无人机的资源分配,并依靠无人机轨迹规划模型来确保无人机到目标 的全范围。通过覆盖并减少无人机定位错误,您可以灵活地应对定位目标的意外 情况。 1多无人机协作任务计划和控制体系结构 如果是一架无人驾驶飞机,它会构建一个层次结构和一个包容性架构。分层 结构是指人类思维行为的模型,并建立了依赖于老板的“感知-思考-执行”的组 织系统。它使用实时通信来确保系统的执行能力,因此其实用性相对较差。相反,包容性体系结构采用“感知执行”单元的独立操作模式,尽管不需要依靠组织的通 信来执行任务,但是缺乏全局控制使创建局部最佳情况变得容易。在这方面,基 于多个系统的优缺点构造了如图1所示的分层和分层的分布式工作计划控制系统 结构。 图一:分层递阶分布式任务规划控制体系结构 基于此,我们基于任务结构构建任务执行模型框架。其中,无人机根据指定 的信息在任务区域内找到目标,然后准确确定任务目标的位置并进行系统分析, 以确保对目标状态信息的连续监视。因此,传感器通常用于跟踪目标,并且由于 传感器本身的观察范围有限,因此有必要基于多架无人机的协同目标跟踪来实现 对目标信息的实时监控,以形成多UAV协作,如图2所示,跟踪多目标系统架构。 图二:多无人机协同跟踪多目标系统架构 2多无人机多目标分配控制体系结构 由于在无人机执行任务时任务目标分散,因此必须对无人机进行合理地分组 和分配以满足多个目标的跟踪要求。其中,特定无人机的数量和目标的分散特性 无法预先预测,任务目标可能会意外发生,因此必须考虑疏散区域的情况来选择 分配算法。在这方面,我们使用分层聚类算法来分析问题,但是由于分层聚类算 法不适用于地面静止或速度较慢的目标,因此我们需要在目标初始化状态下完成 所有对象的聚类。类,并通过层次聚类算法的变换来完成多个对象的合理分组。 基于此,仿真实验是基于多目标分层聚类算法的,该算法基于对五个无人机 系统进行跟踪六个目标(包括目标分离,目标组合和进入被遮挡区域的目标)的 数值模拟的结果。已经完成了。分层聚类算法具有一定的适用性,可以平滑解决

AOPA无人机任务规划练习测试题

精心整理 1. 无人机______是指根据无人机需要完成的任务、无人机的数量以及携带任务载荷的类型,对无人机制定飞行路线并进行任务分配。 A. 航迹规划 B. 任务规划 C. 飞行规划 答案:B. 2. 任务规划的主要目标是依据地形信息和执行任务环境条件信息,综合考虑无人机的性能、到达时间、耗能、威胁以及飞行区域等约束条件,为无人机规划出一条或多条自______的______,A. B. C. 答案 3. A. B. C. 答案4. A. B. C. 答案5. A. B. C. 答案6. A. B. C. 答案:C. 7. 动力系统工作恒定的情况下______限制了航迹在垂直平面内上升和下滑的最大角度。 A. 最小转弯半径 B. 最大俯仰角 C. 最大转弯半径 答案:B. 8. 无人机具体执行的飞行任务主要包括到达时间和进入目标方向等,需满足如下要求:______。 A. 航迹距离约束,固定的目标进入方向 B. 执行任务时间,进入目标位置 C. 返航时间,接近目标的飞行姿态

答案:A. 9.从实施时间上划分,任务规划可以分为______。 A.航迹规划和任务分配规划 B.航迹规划和数据链路规划 C.预先规划和实时规划 答案:C. 10.就任务规划系统具备的功能而言,任务规划可包含航迹规划、任务分配规划、数据链路规划和 系统保障与应急预案规划等,其中______是任务规划的主体和核心。 A.航迹规划 B.任务分配规划 C.数据链路规划 答案:A. 11. A. B. C. 答案 12. A. B. C. 答案 13. A. B. C. 答案 14. A. B. C.任务规划、返航规划和载荷分配 答案:A. 15.______包括携带的传感器类型、摄像机类型和专用任务设备类型等,规划设备工作时间及工作 模式,同时需要考虑气象情况对设备的影响程度。 A.任务规划 B.载荷规划 C.任务分配 答案:B. 16.______包括在执行任务的过程中,需要根据环境情况的变化制定一些通信任务,调整与任务控 制站之间的通信方式等。 A.链路规划 B.目标分配

基于粒子群优化算法的神经网络在

基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用 张丽平 俞欢军3 陈德钊 胡上序 (浙江大学化工系,杭州310027) 摘 要 神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP 或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。关键词 粒子群优化算法,神经网络,定量构效关系  2004201204收稿;2004207225接受 本文系国家自然科学基金资助项目(N o.20276063) 1 引 言 药物定量构效关系(QS AR )是研究药物生理活性和药物分子结构参数间的量变规律并建立相应的 数学模型,进而研究药物的作用机理,从而用于预测未知化合物的生物活性,探讨药物的作用机理,指导新药的设计和合成,在药物和农药的研究与设计中已经显示出广阔的应用前景1。以往QS AR 的建模方法大多基于统计原理,局限于线性模型,只进行简单的非线性处理,由此所建立的模型很难契合实际构效关系,并且其处理过程都比较繁琐2。神经网络通过学习将构效关系知识隐式分布在网络之中,适用于高度非线性体系。 在药物QS AR 中采用神经网络(NN )始于20世纪80年代末3,此后得到迅速的发展,目前已发展为除多重线性回归和多元数据分析之外的第3种方法4。通常多层前传网络采用BP 算法,通过误差反传,按梯度下降的方向调整权值。其缺点是可能陷入局部极小点,且对高维输入收敛速度非常缓慢。 粒子群优化算法(particle swarm optimization ,PS O )是K ennedy 等5源于对鸟群、鱼群和人类社会行为的研究而发展的一种新的进化型寻优技术。PS O 已成为进化寻优算法研究的热点,其最主要特点是简单、收敛速度快,且所需领域知识少。本实验拟将该方法初始化前传神经网络为苯乙酰胺类农药建立良好适用的QS AR 模型。 2 苯乙酰胺类农药的Q SAR 问题 苯乙酰胺类化合物是除草农药,其除草活性与其分子结构密切相关。所有的N 2(12甲基212苯乙基)苯乙酰胺都可用相应的羧酸酰胺通过霍夫曼反应生成。N 2(12甲基212苯乙基)苯乙酰胺的基本结构式为 : 其中X 为Me 、F 、Cl 、OMe 、CF 3和Br 等,Y 为Me 、Cl 、F 和Br 等,由不同的X 和Y 取代基可构成不同的化合物。常用以下7个理化参数描述化合物的分子组成和结构:log P 、log 2P (疏水性参数及其平方项)、 σ(电性效应参数)、E s (T aft 立体参数)、MR (摩尔折射度),1χ、2 χ(分子连接性指数)。于是这类化合物的QS AR 就转化为上述理化参数与除草活性间的关系。为研究这种关系,选用具有代表性的50个化合物, 他们的活性值取自文献1,见表1。 第32卷2004年12月分析化学(FE NXI H UAX UE ) 研究报告Chinese Journal of Analytical Chemistry 第12期1590~1594

多无人机协同任务规划(A题)

2016年全国研究生数学建模竞赛A题 多无人机协同任务规划 无人机(Unmanned Aerial Vehicle,UAV)是一种具备自主飞行和独立执行任务能力的新型作战平台,不仅能够执行军事侦察、监视、搜索、目标指向等非攻击性任务,而且还能够执行对地攻击和目标轰炸等作战任务。随着无人机技术的快速发展,越来越多的无人机将应用在未来战场。 某无人机作战部队现配属有P01~P07等7个无人机基地,各基地均配备一定数量的FY系列无人机(各基地具体坐标、配备的无人机类型及数量见附件1,位置示意图见附件2)。其中FY-1型无人机主要担任目标侦察和目标指示,FY-2型无人机主要担任通信中继,FY-3型无人机用于对地攻击。FY-1型无人机的巡航飞行速度为200km/h,最长巡航时间为10h,巡航飞行高度为1500m;FY-2型、FY-3型无人机的巡航飞行速度为300km/h,最长巡航时间为8h,巡航飞行高度为5000m。受燃料限制,无人机在飞行过程中尽可能减少转弯、爬升、俯冲等机动动作,一般来说,机动时消耗的燃料是巡航的2~4倍。最小转弯半径70m。 FY-1型无人机可加载S-1、S-2、S-3三种载荷。其中载荷S-1系成像传感器,采用广域搜索模式对目标进行成像,传感器的成像带宽为2km(附件3对成像传感器工作原理提供了一个非常简洁的说明,对性能参数进行了一些限定,若干简化亦有助于本赛题的讨论);载荷S-2系光学传感器,为达到一定的目标识别精度,对地面目标拍照时要求距目标的距离不超过7.5km,可瞬时完成拍照任务;载荷S-3系目标指示器,为制导炸弹提供目标指示时要求距被攻击目标的距离不超过15km。由于各种技术条件的限制,该系列无人机每次只能加载S-1、S-2、S-3三种载荷中的一种。为保证侦察效果,对每一个目标需安排S-1、S-2两种不同载荷各自至少侦察一次,两种不同载荷对同一目标的侦察间隔时间不超过4小时。 为保证执行侦察任务的无人机与地面控制中心的联系,需安排专门的FY-2型无人机担任通信中继任务,通信中继无人机与执行侦察任务的无人机的通信距离限定在50km范围内。通信中继无人机正常工作状态下可随时保持与地面控制中心的通信。 FY-3型无人机可携带6枚D-1或D-2两种型号的炸弹。其中D-1炸弹系某种类型的“灵巧”炸弹,采用抛投方式对地攻击,即投放后炸弹以飞机投弹时的速

动态多目标粒子群优化算法研究及应用

目录 摘要............................................................................................................................... I Abstract .............................................................................................................................. III 1绪论.. (1) 1.1 课题研究背景 (1) 1.2 多目标粒子群算法的研究现状与发展 (1) 1.3 多目标优化问题研究 (3) 1.3.1 多目标优化问题描述 (4) 1.3.2 多目标优化问题的研究发展 (4) 1.3.3 多目标优化问题的性能度量 (5) 1.3.4 多目标优化算法的性能测试问题 (6) 1.4 几种典型的多目标优化算法 (7) 1.4.1 多目标进化算法(MOEA) (7) 1.4.2 多目标粒子群算法(MOPSO) (7) 1.4.3 蚁群算法 (7) 1.4.4 模拟退火算法 (8) 1.5 论文的主要研究内容及章节安排 (9) 1.5.1 论文主要研究内容 (9) 1.5.2 论文章节安排 (9) 2 多目标粒子群优化算法的基础理论 (11) 2.1 粒子群算法介绍 (11) 2.1.1 粒子群算法起源 (11) 2.1.2 粒子群算法的具体描述 (11) 2.2 基本粒子群算法 (12) 2.2.1 算法原理 (12) 2.2.2 粒子群算法的流程: (13) 2.3 几种典型的多目标粒子群算法 (14) 2.3.1 CMOPSO (14)

多无人机协同任务规划方法

收稿日期:2017-03-29 修回日期:2017-05-19 作者简介:王钦钊(1973-),男,山东文登人,博士生导师。研究方向:火控系统、系统仿真。 摘 要:针对多UCAV 协同作战的复杂问题,建立了多无人机任务分配模型,模型在任务规划前进行路径预规 划,增强规划过程的准确性,提出一种基于整数编码的多种群混合遗传算法对问题求解并进行仿真实验。实验结果表明,该算法增强了搜索的有效性,极大地避免了遗传算法容易陷入未成熟收敛的缺陷,保证了寻优过程的收敛性和任务规划效果的最优化。 关键词:无人作战飞机,任务规划,多种群混合遗传算法,路径规划中图分类号:TP391 文献标识码:A DOI :10.3969/j.issn.1002-0640.2018.03.019 多无人机协同任务规划方法 王钦钊,程金勇,李小龙(陆军装甲兵学院,北京100072) Method Research on Cooperative Task Planning for Multiple UCAVs WANG Qin-zhao ,CHENG Jin-yong ,LI Xiao-long (Army Academy of Armored Force ,Beijing 100072,China ) Abstract :To solve the complicated problem of multiple UCAVs cooperative combat ,multiple Unmanned Aerial Vehicles task allocation model is established ,route planning should be done before mission planning in order to enhance the accuracy of the planning process.A method based on multi-population hybrid genetic algorithm with integer coding for multiple UCAVs ’cooperation task allocation is designed and the simulation experiment is carried out.The results show that this algorithm has strong effectiveness to solve the problem ,greatly avoids the defect that the genetic algorithm is easy to fall into premature convergence ,which ensures the convergence of the optimization process and the optimization of the task planning effect. Key words : UCAV ,task allocation ,multi-population hybrid genetic algorithm ,route planning 0引言 无人作战飞机(Unmanned Combat Aerial Vehi-cle ,简称UCAV )是一种能完成压制防空、实施对地轰炸与攻击、执行对空作战任务的空中无人作战系 统[1]。与单无人机相比,多无人机协同系统在时间、空间、功能、信息和资源上的分布特性,使其具有更强的工作能力和鲁棒性。任务规划作为多无人机协同的基本问题之一,具有十分重要的地位。作战环境下,由于受到各种因素的约束,多无人机协同任务规划问题是一个约束众多而复杂的NP 问题,在算法的求解上比较困难,尤其是在规模较大时,获得最优解的代价较大,制约了实际战场应用[2],因 此,合理而有效的任务规划方案对于提高多无人机 的作战效能具有至关重要的作用。 目前采用较多的问题模型有多旅行商问题[3-4] (Multiple Traveling Salesman Problem ,MTSP )、车辆调度和路径规划问题模型(Vehicle Routing Problem ,VRP )、混合整数线性规划问题模型(Mixed Integer Linear Programming ,MILP )等。任务分配求解的算法主要有蚁群算法、memetic 算法、基于合同网拍卖算法、差分进化算法等,大部分算法主要针对传统的多旅行商问题进行求解,无法对具有多约束条件的实际问题进行有效的求解。 本文基于多无人机协同作战问题,构建任务分配模型,针对遗传算法容易陷入局部最优和早熟的 文章编号:1002-0640(2018) 03-0086-04Vol.43,No.3Mar ,2018 火力与指挥控制 Fire Control &Command Control 第43卷第3期2018年3月 86··

使用Dubins路径和回旋曲线进行多个无人机的路径规划

使用Dubins路径和回旋曲线进行多个无人机的路径规划 摘要: 本文讲述了对一群无人机进行路径规划的方法。进行这样研究要解决如何使一批无人机同时到达目标的问题。制定可以路径(适航、安全的路径)称为路径规划,它分为三个阶段。第一阶段使规划适航路径,第二阶段通过添加额外的约束规划安全的路径,使无人机不与其他无人机或者已知的障碍碰撞,第三阶段对路径进行规划是无人机同时到达目标。在第一阶段,每个无人机都使用Dubins路径和回旋曲线进行路径规划,这些路径是通过微分几何原理完成的。第二阶段为这些路径添加安全约束:(一)无人机间保持最小间距,(二)规划相同长度的非交叉路径,(三)飞过中间的航线点/形状,使这些路径更安全。第三阶段,所有路径长度相等使无人机可以同时到达目标。一些模拟仿真结果证实了这一技术。 1、介绍 在许多应用程序中自动控制取代了人类操作,像军事系统中存在危害人类因素的地方、处理有害物质、灾难管理、监视侦察等单调的操作。需要开发自动控制系统来更换这些系统中的人类操作员,这样的自动控制系统在水陆空各种环境中都有。在无人机的研究中,水陆空等因素是作为一个集体进行研究的。无人机在军事和民用领域都有广阔的应用前景,因此有许多关于无人机的学术或商业性质的研究。廉价电子产品的飞速发展使得无人机更加实用。大自然中成群的鸟和鱼给了人们灵感,联合控制是自动控制中的一个活跃的研究方向。雇佣一批无人机可以产生成本效益和容错系统。 从一个地方飞到另一个地方并作为一个移动传感平台进行监视或跟踪是无人机的一个功能,实现这个功能需要为无人机提供一个合适的安全路径。路径规划是任务规划的一个分支,图1是任务规划的典型功能体系结构。图1有三个分支,分支的数量和功能会根据应用程序和任务目标的不同而改变。第一层分支的任务是跟踪目标,基于这些目标,这层为无人机分配任务和资源并且充当决策者。第二层为无人机规划路径和轨迹,这一层用路径规划和相关的算法(如避免碰撞)规划可行的轨迹/路径。第三层进行指导和控制,保证无人机在第二层规划的轨迹上飞行。本文着重于第二层的研究,在第二层,路径规划产生的轨迹使一群无人机同时到达指定位置。 在自动控制系统领域,路径规划仍然是一个公开的问题。路径规划是在两个或多个点之间规划出一条或多条路径,通常这些点是在存储地图上指定的。路径

AOPA无人机任务规划练习题

1.无人机______是指根据无人机需要完成的任务、无人机的数量以及携带任务载荷的类型, 对无人机制定飞行路线并进行任务分配。 A.航迹规划 B.任务规划 C.飞行规划 答案:B. 2.任务规划的主要目标是依据地形信息和执行任务环境条件信息,综合考虑无人机的性能、 到达时间、耗能、威胁以及飞行区域等约束条件,为无人机规划出一条或多条自______的______,保证无人机高效、圆满地完成飞行任务,并安全返回基地。 A.起点到终点,最短路径 B.起飞点到着陆点,最佳路径 C.出发点到目标点,最优或次优航迹 答案:C. 3.无人机任务规划是实现______的有效途径,它在很大程度上决定了无人机执行任务的效 率。 A.自主导航与飞行控制 B.飞行任务与载荷匹配 C.航迹规划与自主导航 答案:A. 4.无人机任务规划需要实现的功能包括:______ A.自主导航功能,应急处理功能,航迹规划功能 B.任务分配功能,航迹规划功能,仿真演示功能 C.自主导航功能,自主起降功能,航迹规划功能 答案:B. 5.无人机任务规划需要考虑的因素有:______,______,无人机物理限制,实时性要求 A.飞行环境限制,飞行任务要求 B.飞行任务范围,飞行安全限制 C.飞行安全限制,飞行任务要求 答案:A. 6.无人机物理限制对飞行航迹有以下限制:______,最小航迹段长度,最低安全飞行高度。 A.最大转弯半径,最小俯仰角 B.最小转弯半径,最小俯仰角 C.最小转弯半径,最大俯仰角 答案:C. 7.动力系统工作恒定的情况下______限制了航迹在垂直平面内上升和下滑的最大角度。 A.最小转弯半径 B.最大俯仰角 C.最大转弯半径

无人机设计手册及主要技术

无人机设计手册及主要 技术 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

无人机设计手册及主要技术 内容简介 独家《无人机设计手册》分上、下两册共十二章。 上册包括无人机系统总体设计,气动、强度、结构设计,动力装置,发射与回收系统,飞行控制与管理系统。 下册包括机载电气系统,指挥控制与任务规划,测控与信息传输,有人机改装无人机,综合保障设计,可靠性、维修性、安全性和环境适应性以及无人机飞行试验等。有关无人机任务设备、卫星中继通信的设计以及正在发展的无人机技术等内容,有待手册再版时编入,使无人机设计手册不断成熟和丰富。适用人群 本手册是国内第一部较全面系统阐述无人机设计技术的工具书,不仅可作为无人机的设计参考,也可以作为院校无人机教学、无人机行业的工程技术人员和管理人员的参考书,并可供无人机部队试验人员使用。希望本手册的出版能对我国无人机研制工作的技术支持有所裨益。 作者简介 祝小平,现任西北工业大学无人机所总工程师,主要从事无人机总体设计、飞行控制与制导系统设计等研究工作。主持了工程型号、国防预研等国家重点项目多项,获国家和部级科学技术奖9项,其中国家科技进步一等奖1项,国防科技进步一等奖4项,获技术发明专利10项,荣立“国防科技工业武器装备型号研制”个人一等功,发表论着150多篇。先后入选国家级“新世纪百千万人才工程”、国防科技工业“511人才工程”和教育部“新世纪优秀

人才支持计划”,获得“国防科技工业百名优秀博士、硕士”、“国防科技工业有突出贡献的中青年专家”、“陕西省有突出贡献专家”和“科学中国人(2009)年度人物”等荣誉称号。 无人机相关GJB标准-融融网 gjb8265-2014无人机机载电子测量设备通用规范 gjb4108-2000军用小型无人机系统部队试验规程 gjb5190-2004无人机载有源雷达假目标通用规范 gjb7201-2011舰载无人机雷达对抗载荷自动测试设备通用规范 gjb5433-2005无人机系统通用要求 gjb2347-1995无人机通用规范 gjb6724-2009通信干扰无人机通用规范 gjb6703-2009无人机测控系统通用要求 gjb2018-1994无人机发射系统通用要求 无人机主要技术 一、动力技术 续航能力是目前制约无人机发展的重大障碍,业内人士也普遍认为消费级多旋翼续航时间基本维持在20min左右,很是鸡肋。逼得用户外出飞行不得不携带多块电池备用,造成使用操作的诸多不便,为此有诸多企业在2016年里做出了新的尝试。 1.氢燃料电池 高原地区的高海拔会导致低含氧量、低气压和低气温,这些因素对无人机工作的影响非常大,特别是动力系统方面。今年5月底,武汉众宇动力团队在新

相关文档
最新文档