人教版数学九年级上册《概率》

合集下载

人教版数学九年级上册25.概率(共22张)

人教版数学九年级上册25.概率(共22张)

概率
适用 对象
等可能事件,其特点: (1)有限个;(2)可能性一样.
计算 公式
P( A) m (m是事件A包含的结果种数, n
n是试验总结果种数).
课后作业
见本课时练习
(1)事件B:抽出数字为偶数; 解:(1)点数为奇数有3种可能,即点数为2,4,6
因此P(B)= 3 1 62
(2)事件C: 抽出数字大于1小于6.
(2)点数大于1且小于6有4种可能,即点数为2,3,4, 5
因此 P(可能的结果,并
且它们产生的可能性都相等,事件A包括其中的m种结
合作探究
实验2:有6张数字卡片,它们的背面完全相同,正面分别
标有1,2,3,4,5、6现将它们的背面朝上,从中任意抽出 一张卡片
(1) 可能出现哪几种结果?
(2) 6个数字的出现可能性完全相同吗?
(3) 能否用一个具体数值来表示各个数 字出现的可能性吗?这个数值是多少?
思考:
以上三个实验有什么共同的特点:
D.1.
4、某射手在一次射击中,射中10环,9环,8环的概率分别是 0.2,0.3,0.1,那么此射手在一次射击中不够8环的概率为( A )
A. 0.4
B 0.3
C 0.6
D 0.9
课堂小结
定义
一般地,对于一个随机事件A,我们把刻画其产生可能性 大小的数值,称为随机事件A产生的概率,记为P(A).
果,那么事件A产生的概率
P( A) m n
事件A产生 的结果种数
实验的总共 结果种数
例1:话说唐僧师徒超出石砣岭,吃完午饭后,三徒弟商量着今天 由谁来刷碗,可半天也没个好主张.还是悟空聪明,他灵机一动, 扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子: 如果掷到2的倍数就由八戒来刷碗;

人教版数学九年级上册25.1.2概率说课稿

人教版数学九年级上册25.1.2概率说课稿
1.师生互动:在课堂教学中,通过提问、讨论等方式,引导学生积极参与思考,及时了解学生的学习状况,给予针对性的指导。
2.生生互动:
(1)小组讨论:将学生分成小组,针对某一问题进行讨论,促使学生在交流中相互启发,共同解决问题。
(2)合作实验:组织学生进行小组实验,共同设计实验方案,收集和分析数据,培养学生的团队协作能力。
1.知识与技能目标
(1)理解随机现象和必然现象的概念;
(2)掌握概率的定义,能运用概率公式进行计算;
(3)能运用概率知识解决实际问题。
2.过程与方法目标
(1)通过实例分析,培养学生观察、比较、分析问题的能力;
(2)通过小组讨论,培养学生合作交流的能力;
(3)通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
(3)互评互改:让学生相互评价作业和成果,提出改进意见,以提高学生的自我评价和反思能力。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一个与概率相关的实际问题,如彩票中奖概率、比赛胜负概率等,让学生感受到概率在生活中的广泛应用,激发学生的好奇心。
3.掌握了一些基本的数学运算方法。
可能存在的学习障碍有:
1.对随机现象和必然现象的理解不够深入,容易混淆;
2.对概率的定义及计算方法掌握不够熟练,运用时容易出错;
3.在解决实际问题中,难以将问题转化为概率问题,缺乏运用概率知识解决实际问题的能力。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
(2)概率的定义及计算方法;
(3)概率在实际问题中的应用。
2.教学难点
(1)理解随机现象的本质特征;

概率课件人教版九年级数学上册

概率课件人教版九年级数学上册
人教版九年级数学上册
25.1.2概率
导入新课
(1)打开电视正在播放世界杯足球预选赛. 随机事件
(2)卡塔尔将举办2022年世界杯足球赛. 必然事件
(3)杜老师将参加2022年世界杯足球赛. 不可能事件
FIFAWORLD CUP
Qat ar2022
公平吗?
问题1:足球比赛开始前,主裁判抛一枚硬币,正面向上则紫队梅西开球.
随机掷出
共同
特征
e
(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.
在这些试验中出现的事件为等可能事件.
探究新知
例 如 :问题2的掷骰子试验中,“点数为2”这个事件包含工种可能结果,在全部6 种可能的结果中所占的比为
想一想:“点数为奇数”事件的概率是多少呢?
这样设计合理吗?为什么?
拓展探索
给你一个空白的圆盘,你会怎么设计?
课后探索
这一天还会发生什么事情?请发挥你的想象力,利用我们所 学的概率,设计各种事件,使用合理的工具,并求出相应事件的 概率 .
课堂小结
ቤተ መጻሕፍቲ ባይዱ
知识小结
1、概率的定义: 一般地,对一个随机事件A, 我们把刻画其发生可能性大小的数值,称为
这样做公平吗?
形状规则 质地均匀 随机掷出
1.骰子向上一面有几种可能?分别是?
向上一面的点数有6种可能,即:1,
2,3,4,5,6.
2.它们的可能性相等吗?
每种点数出现的可能性相等.
3.能否用数值刻画可能性大小呢?
我们用二表示每个数字被抽到的可能性大小.
6
概率的定义
数值2 和 刻画了问题1和问题2中随机事件发生的可能性大小.

人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)

人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)
P(没有中奖).
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.

九年级数学人教版(上册)第25章小结与复习

九年级数学人教版(上册)第25章小结与复习

乙转盘
第一回 第二回
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6
共有9种等可能结果,其中中奖的有4种;
∴P(乙)=
4; 9
(2)如果只考虑中奖因素,你将会选择去哪个超市
购物?说明理由.
选甲超市.理由如下:
∵P(甲)>P(乙), ∴选甲超市.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
必然事件
事 件 不可能事件
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
A. 2
B. 3
C. 8
D. 1 3
5
5
25
25
4. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相
同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
随机事件 与概率



步 列举法求


用频率估 计概率
侵权必究
概率
随机事件
定义
刻画随机事件发生可能 性大小的数值
计算 公式
P(A) m (m为试验总结果数, n
n为事件A包含的结果种数)
直接列举法 列表法
画树状图法
适合于两个试验因素或分两步进行 适合于三个试验因素或分三步进行
频率与概 率的关系
在大量重复试验中,频率具有 稳定性时才可以用来估计概率
那么重转一次,直到指针指向 4 3
某一份为止).
12

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。

本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。

通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。

二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。

在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。

但概率概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。

三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。

2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。

四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。

2.难点:概率公式的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。

2.合作学习法:分组讨论,培养学生团队合作精神。

3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。

六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。

2.教学工具:多媒体课件,黑板,粉笔。

3.学生活动:提前分组,准备进行合作学习。

七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。

2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。

同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为


1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能

人教版初中数学九年级上册教学课件 第二十五章 概率初步 随机事件与概率 随机事件

人教版初中数学九年级上册教学课件 第二十五章 概率初步 随机事件与概率 随机事件
25.1 随机事件与概率 25.1.1 随机事件
• R·九年级上册
新课导入
情景:5名同学参加演讲比赛,现要确定选手的比赛出场顺 序,为了体现比赛的公平性,决定采取临时抽签的方式决 定出场先后顺序. 签筒中有5张形状、大小相同的纸签,上 面分别标有出场的数字1,2,3,4,5.小军首先抽签,他 在看不到纸签上的数字的情况下从签筒中随机(任意)地抽取 一张纸签.
摸到黑球的可能性大些,摸到球的可能 性大小与袋子中该种球的多少有关.

能否通过改变袋子中某种颜色的球的数量,
使“摸出黑球”和“摸出白球”的可能性大小相
同?
试一试!
• 一般地,随机事件发生的可能性是有大 小的,不同的随机事件发生的可能性的大小 有可能相同.
你能举一些反映随机事件发生的可能性大小 的例子吗?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
2. 桌上倒扣着背面图案相同的5张扑克牌,其中3张黑桃、
2张红桃.从中随机抽取1张.
【教材P129练习 第2题】
(1)能够事先确定抽取的扑克牌的花色吗? 不能
(2)你认为抽到哪种花色的可能性大? 抽到黑桃的可能性大.
(3)能否通过改变某种花色的扑克牌的數量,使“抽到
黑桃”和“抽到红桃”的可能性大小相同?
件.例如:抛掷一枚质地均匀的骰子,骰子停止后朝上的
点数为9是不可能事件;抛掷一枚质地均匀的骰子,骰子
停止后朝上的点数都小于7是必然事件.
课堂小结
必然事件 在一定的条件下,必然会发生的事件. 不可能事件 在一定的条件下,必然不会发生的事件.
随机事件 在一定的条件下,可能发生也可能不发生的事件.
一般地,随机事件发生的可能性是有大小的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学九年级上册ห้องสมุดไป่ตู้25.1.2 概 率》(共32张PPT)
解:(1)掷出的点数大于4的结果只有2种:掷出的点数
分别是5、6.所以P(掷出的点数大于4)=
2 1; 63
(2)掷出的点数是偶数的结果有3种:掷出的点
数分别是2、4、6.所以P(掷出的点数是偶数)=
3 1. 62
方法总结:概率的求法关键是找准两点:①全部情况 的总数;②符合条件的情况数目.二者的比值就是其发 生的概率.
巩固练习
1.掷一个骰子,观察向上的一面的点数,求下列 事件的概率:
(1)点数为2;
(1)点数为2有1种可能,因此
P(点数为2)=
1 6

(2)点数为奇数; (2)点数为奇数有3种可能,即点数为1,
3,5,因此P(点数为奇数)=
1;
事件发生的可能性越大,它的概率越接近于1;反之,事件 发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1
0
不可能发生
事件发生的可能性越来越小
1
概率的值
事件发生的可能性越来越大 必然发生
特别地:当A为必然事件时,P(A)=1,当A为不可能事件 时,P(A)=0.
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
考点探究1 简单掷骰子的概率计算
例1 任意掷一枚质地均匀骰子. (1)掷出的点数大于4的概率是多少? (2)掷出的点数是偶数的概率是多少? 分析:任意掷一枚质地均匀的骰子,所有可能的结果 有6种:掷出的点数分别是1、2、3、4、5、6,因为 骰子是质地均匀的,所以每种结果出现的可能性相等.
(1)抽到的序号有几种可能的结果?

每次抽签的结果不一定相同,序号1,2,3,4,
签 2
5都有可能抽到,共有5种可能的结果,但是事先
不能预料一次抽签会出现哪一种结果.
模仿抽签决定演讲比赛出场顺序 (2)抽到的序号小于6吗?
抽到的序号 一定小于6; (3)抽到的序号会是0吗?
抽到的序号不会是0; 想一想:能算出抽到每个数字的可能数值吗?
3、4、5、6.
因为骰子形状规则、质地均匀,又是随机掷出,所以每 种点数出现的可能性大小相等.我们用 1 表示每一种点数出现
6
的可能性大小.
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
一般地,对于一个随机事件A,我们把刻 画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).
因为纸团看上去完全一样,又是随机抽取,所以每个数 字被抽取的可能性大小相等,所以我们可以用 1 表示每一个数
5
字被抽到的可能性大小.
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
活动2 掷骰子 掷一枚骰子,向上一面的点数有6种可能,即1、2、
学习目标
1. 理解一个事件概率的意义。 2. 会在具体情境中求出一个事件的概率。 3. 会进行简单的概率计算及应用。
探究新知 人教版数学九年级上册《25.1.2 概 率》(共32张PPT) 新知一 概率的定义
活动1:抽纸团 从分别有数字1、2、3、4、5的五个纸团中随机
抽取一个,这个纸团里的数字有5种可能,即1、2、3、 4、5.
1 2
正面朝上
开 始
反面朝上
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
【思考】上述试验都具有什么样的共同特点? 具有两个共同特征: 每一次试验中,可能出现的结果只有有 限个; 每一次试验中,各种结果出现的可能 性相等.
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
【议一议】
一个袋中有5个球,分别标有1、2、3、4、5这5
个号码,这些球除号码外都相同,搅匀后任意摸出
一个球.
(1)会出现哪些可能的结果? 1、2、3、4、5 (2)每个结果出现的可能性相同吗?猜一猜它
们的概率分别是多少? 相同
1
5
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
例如:“抽到1”事件的概率:P(抽到1)= 1
5
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
新知二 简单概率的计算
试验1:抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果? 6种
(2)各点数出现的可能性会相等吗? 相等
(3)试猜想:各点数出现的可能性大小是多少?
1 6
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
试验2: 掷一枚硬币,落地后: (1)会出现几种可能的结果? 两种
(2)正面朝上与反面朝上的可能性会相等吗?相等
(3)试猜想:正面朝上的可能性有多大呢?
在这些试验中出现的事件为等可能事件.
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
具有上述特点的试验,我们可以用事件所 包含的各种可能的结果数在全部可能的结果数 中所占的比,来表示事件发生的概率.
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
人教版数学九年级上册
25.1 随机事件与概率 25.1.2 概 率
情景导入
模仿抽签决定演讲比赛出场顺序
5名同学参加讲演比赛,以抽签方式决定每个人的出场 顺序,签筒中有5根形状、大小相同的纸签,上面分别标 有出场的序号1,2,3,4,5.小军首先抽签,他在看不到 纸签上的数字的情况下从签筒中随机(任意)地取一根 纸签,请考虑以下问题:
归纳新知 人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
一般地,如果一个试验有n个可能的结果, 并且它们发生的可能性都相等。事件A包含其中 的m个结果,那么事件A发生的概率为:
P( A) m . n
人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
探究新知 人教版数学九年级上册《25.1.2 概 率》(共32张PPT)
相关文档
最新文档