材料力学第九章 交变应力
材料力学第九章动荷载和交变应力

kd 1 a g 1 2.5 9.8 1.26
st FNst / A W2 / A 127.3MPa d kd st 160.4MPa 1.05[ ]
∴ 钢索满足强度要求。
2.5m
FNd W2
W2 g
a
2.5m a
W2
2.梁的强度校核
W1
kd 1 a g 1 2.5 9.8 1.26
求σdmax、△Dd。不计梁的自重。 A
解:1.计算静态的△Cst、Mmax和
σstmax
W
h
D
2l / 3 l
C
B
l/3
由 w Fb(l 2 b2 ) x Fb x3
6EIl
6EIl
得
Δ Cst
W
l [l 2 ( l )2]
3
3
6EIl
2l 3
Wl 3
6EIl
( 2l )3 3
4Wl 3 0.19mm 243EI
结论:梁满足强度要求。
三、提高构件抗冲击能力的措施
d kdst Fd kdW d kd st
kd 1
1 2h — —竖向冲击动荷因数
st
kd
v2 水平冲击动荷因数
gst
在静应力不变的情况下,减小动荷系数可以减小冲击应力。
即加大冲击点沿冲击方向的静位移: 被冲击物采用弹性模量低、变形大的材料制作; 或在被冲击物上垫上容易变形的缓冲附件。
W
h C
z Iz = 1130cm4 Wz =141cm3
A
B
1.梁本身的变形
1.5m
1.5m
k
ΔCst1
Wl 3 48EI
0.474mm
2.支座缩短量
材料力学-交变应力课件

reversed cycle)交变应力.
(1)若 非对称循环交变应力中的最小应力等于零( min)
r min 0
max
max
O
min=0
t
r=0 的交变应力,称为脉动循环 (fluctuating cycle)交变应力
a
m
max
材料力学-交变应力课件
1 交变应力与疲劳失效(Alternating stress and fatigue failure) 2 交变应力的循环特征、应力幅和平均应力 (The cycle symbol,stress amplitude and mean stress for alternating stress) 3 持久极限(Endurance limit)
(Enduring limit curve) 7 不对称循环下构件的疲劳强度计算
(Calculation of the fatigue strength of the member under unsymmetric cycles) 8 弯扭组合交变应力的强度计算
(Calculation of the strength of composit deformations)
K
( 1 )d ( 1 )k
K
( 1 )d ( 1 )k
K
2.60 2.40
b 1000MPa
M
2.20
800
2.00
900
1.80 700
1.60 600
1.40
b 500MPa
1.20
1.000 0.02 0.04 0.06 0.08 0.10 0.12
材料力学第九章交变应力1

由表查尺寸系数 0.77
2.扭转时的有效应力集中系数和尺寸系数
由图表查有效应力集中系数
当 :b 10 M 0时 P 0 ,K a 1 .28
当 :b 9M 00时 PK a , 1 .25
当 :b92M 0 P时 a,应用直线插值法
K 1.2 5 1 1 .20 1 9 8.2 00 (9 502 900 ) 1.0 26
形速率疲劳条件下,是类似于蠕变变形的位错攀移机制。当循 环次数增加时,发现有循环软化现象,即:外加载荷非对称, 应变响应近似对称。
2、变幅与过载影响裂纹扩展速率 通过对带有环状V型切口的45#--钢圆棒料在恒幅过载
和变幅过载下的低周次疲劳试验,表明变幅递增过载的裂纹 扩展速率比恒幅过载裂纹扩展速率显著增大。基于试验事实 和断口分析,说明过载时裂纹扩展速率瞬时显著增大是裂纹 钝化的结果 。
谢谢大家!
材料力学第九章交变应力1
§11-1 交变应力与疲劳失效
交变应力:随时间周期性变化的应力。
P
P PP(t)P(tT)
(t)(tT)
a a2 a
a
a
1
•
1
31
4a
M y(t)
I
2
• •
3
y(t)Rsi nt
1
•
t
•
4
齿轮传动:齿轮啮合点处的应力随时间作周期性变化,这 种应力就是交变应力。
强度。
f70 f50
M
M 解:① 确定危险点应力及循环
特征
r=7.5
r min 1 max
maxW Mmin
8003265.2MPa
0.053
为对称循环
② 查图表求各影响系数,计算构件持久限。
材料力学之交变应力

0 1
d
K
1
1
01
n
ndK 1
max1 ndK 1
构件的工作安全系数:
强度条件:
n
0 1
d
K max max
1
(13-11)
n n 即:
d maxK
1
n
(13-12)
二、应用举例:
某减速器第一轴如图所示,键槽为端铣加工,A-A截面上的弯矩M=860Nm,轴的材料为
A5钢,
b52M 0 N m2
maxW M12.3861006 70MNm2 m in70MNm2
r 1
2.确定 K
由刘鸿文主编〈材料力学〉图13-9,a 中曲线2查得端铣加工的键槽,当材料
b52M 0 N m2 时, K 1.65。由表13-1
查得
0.84,由表13-2,使用插入法求得
0.936 。
3.校核强度:
a m 12max
(4)静应力: 也可以看成是交变应力的一种特性:
maxmin
a 0
ma x min m r 1
(5)稳定交变应力:交变应力的最大应力和最小应力的 值, 在工作过程中始终保持不变, 称为稳定交变应力, 否则称为不稳定交变应力。
目录
§13-3 材料的持久极限
如前所述:构件在交变应力下, 当最大应力低于屈服 极限时, 就可能发生疲劳破坏。因此, 屈服极限或强度极限 等静强度指标已不能作为疲劳破坏的强度指标。
nbK 1ma x0.51 .4 6 0 2.9 5 23 07 60 1.5n1.4
故满足强度条件,A-A截面处的疲劳强度是足够的。
§13-6 持久极限曲线及其简化折线
一、持久极限曲线:
材料力学之交变应力

§3-1 §3-2 §3-3 §3-4 §3-5
动载荷
概述 构件作 冲击时应力和变形的计算 冲击韧度 提高构件抗冲击能力的措施
§4-1
概述
一、交变应力的概念 交变应力:随时间作周期性变化的应力,金属 在交变应力作用下发生的破坏称为疲劳破坏。 如:机车车轴
§4-1
概述
My Pa d sin t I I 2
min
m
o
max :最大应力
m :应力幅度
t
min :最小应力
a :平均应力
§4-2 交变应力的循环特征
a
a
max
min m
min 循环特征:r max
t
o
1 1 m max min max (1 r ) 2 2 1 1 a max min max (1 r ) 2 2 min m a max m a
n
1
k
a m
§4-6
对于塑性材料制成的构件,除应满足疲劳强度 外,危险点的应力不应超过屈服极限.
a
非对称循环下构件的 疲劳强度计算
L
* 1
K
1
A1
s
P1
K
C1
* 1
P2
m
O
s
C
J
B
§4-6
疲劳强度计算
非对称循环下构件的 疲劳强度计算
N
r
O
r 1
E
D
C
A
N0
材料的疲劳极限与强度极限的近似关系:
弯曲: 拉压: 扭转:
交变应力的定义

交变应力的定义以交变应力的定义为标题,本文将从概念、原因、测量和应用四个方面进行阐述,旨在全面解释交变应力的含义和重要性。
一、概念交变应力是材料受到交替作用力时所产生的应力。
在材料受到交变载荷作用时,由于载荷的周期性变化,材料内部会出现交替的应变变化,从而导致应力的交变。
交变应力是材料力学性能中的重要参数,对材料的疲劳寿命和强度有着重要影响。
二、原因交变应力的产生主要是由于材料受到交替作用力的影响。
在实际工程中,材料常常会受到交变载荷的作用,如机械零件的振动、风载、水流冲刷等。
这些外力的周期性作用导致材料内部应力和应变的周期性变化,从而形成交变应力。
三、测量为了准确测量交变应力,科学家们发展了多种方法和设备。
其中一种常用的方法是应变片法。
应变片是一种用于测量应变的薄片材料,在受到应力作用时,应变片会发生形变,通过测量形变的大小和方向,可以计算出应变的大小,从而间接得到交变应力的数值。
此外,还有一些电子设备,如应变计、应力计等,也可以用于测量交变应力。
四、应用交变应力在工程中具有广泛的应用价值。
首先,交变应力是疲劳寿命的重要参数。
当材料受到周期性作用力时,交变应力会导致材料内部出现微小裂纹,随着时间的累积,这些裂纹会逐渐扩展并最终导致材料的破坏。
因此,了解交变应力的大小和分布对于预测和延长材料的疲劳寿命至关重要。
交变应力还直接影响材料的强度。
材料在受到交变载荷作用时,由于交变应力的存在,材料的强度会发生变化。
在设计和制造过程中,需要根据交变应力的大小来选择合适的材料和工艺,以确保结构的安全性和可靠性。
交变应力还与材料的变形和塑性变形有关。
在交变应力的作用下,材料会发生弹性变形和塑性变形,这对于材料的加工和成形具有重要意义。
交变应力是材料力学性能中的重要参数,对于材料的疲劳寿命、强度和塑性变形等方面具有重要影响。
准确测量和合理应用交变应力,对于工程设计和材料选择具有重要意义。
因此,深入理解和研究交变应力的定义和特性,对于科学研究和工程实践具有重要价值。
材料力学-交变应力

材料力学-交变应力是一个重要的主题,它涉及材料在应力作用下的行为。在 本次演讲中,将介绍交变应力的定义、分类、特点、影响因素、疲劳寿命变应力是材料在交替受力作用下产生的应力状态。它包括正应力、剪应力 以及它们之间的相互影响。
应力的分类
1 静力应力
由恒定受力引起的应力,如静载、自重等。
2 动力应力
由变化受力引起的应力,如流体作用、振动等。
3 交变应力
由交替受力引起的应力,如往复运动、周期加载等。
交变应力的特点
交变应力具有周期性、不均匀性和非线性的特点。它会导致材料的疲劳破坏。
交变应力的影响因素
1 应力幅度
交变应力的最大值与最小值之间的差异。
结构设计。
3
机械制造
提高机械零部件的使用寿命和安全性能。
结论和要点
交变应力是材料力学的重要内容,了解其定义、分类、特点和影响因素对于研究材料的实际应用具有重要意义。
3 载荷频率
交变应力的往复次数。
2 平均应力
交变应力的平均值。
4 材料特性
材料的强度、硬度和韧性等。
材料的疲劳寿命
交变应力会影响材料的疲劳寿命,即在交变应力下材料可承受的循环次数。疲劳寿命取决于材料的特性和应力 条件。
交变应力的应用
1
交通工程
分析道路和桥梁等交通基础设施的疲劳
航空航天
2
破坏。
研究飞机、火箭等飞行器的疲劳性能和
交变应力的定义

交变应力的定义交变应力是材料力学中的一个重要概念,它指的是物体受到交变载荷作用时所产生的应力。
在日常生活和工程实践中,我们经常会遇到交变载荷的情况,比如机械零件的振动、汽车的行驶、桥梁的风荷载等,这些都会对材料产生交变应力的影响。
交变应力的定义是指在交变载荷作用下,物体内部发生的应力变化。
交变应力通常由交变载荷引起的应力循环引起,这种应力循环会导致材料内部的应力不断变化,从而对材料的力学性能产生影响。
交变应力的产生原因主要有两个方面。
一方面是由于交变载荷作用下物体的形变,使得物体内部的应力状态发生变化。
另一方面是由于交变载荷引起的应力循环,使得物体内部的应力不断变化。
在交变载荷作用下,物体内部的应力会随着载荷的变化而变化。
当载荷增加时,物体内部的应力也会增加;当载荷减小时,物体内部的应力也会减小。
这种应力的变化可以是周期性的,也可以是随机的。
交变应力的大小与载荷的幅值、频率和载荷的形式有关。
幅值越大、频率越高、载荷形式越复杂,交变应力的大小就越大。
例如,当物体受到周期性的交变载荷作用时,交变应力的大小与载荷的幅值成正比,与载荷的频率成反比。
交变应力对材料的影响主要体现在疲劳寿命和疲劳强度两个方面。
疲劳寿命是指材料在交变载荷作用下能够承受的循环次数,而疲劳强度则是指材料在交变载荷作用下能够承受的最大应力。
交变应力越大,疲劳寿命就越短,疲劳强度也就越低。
为了提高材料的抗疲劳性能,可以采取一些措施。
例如,可以通过合理设计材料的形状和结构,使得材料的应力分布更加均匀,减小交变应力的大小。
此外,还可以通过材料的热处理和表面处理等方法,提高材料的强度和硬度,增强材料的抗疲劳性能。
交变应力是材料力学中一个重要的概念,它指的是物体在交变载荷作用下所产生的应力。
交变应力的大小与载荷的幅值、频率和形式有关,对材料的疲劳寿命和疲劳强度有着重要的影响。
为了提高材料的抗疲劳性能,可以采取合理的设计和处理方法。
通过对交变应力的研究和理解,可以更好地应对工程实践中的交变载荷问题,保证材料的安全可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
3.静循环: r min 1 max
a 0
m max
材料的持久1
0.42
~
0.46 b
扭 1
0.25
~
0.27 b
拉压 1
0.32
~
0.37
b
铸钢,可锻铸铁及铜合金
弯 1
0.3
~
0.4 b
同一种材料在不同 应力循环下的持久极限,
对称循环的持久极限最小。
例1 发动机连杆大头螺钉工作时最大拉力Pmax =58.3kN,最小拉
力Pmin =55.8kN ,螺纹内径为 d=11.5mm,试求 a 、m 和 r。
解:
m
ax
Pm a x A
405.081310502
由表查尺寸系数
0.81
§11–5 对称循环下构件的疲劳强度计算
一、对称循环的疲劳容许应力:
1
0 1
1
n n K
1
二、对称循环的疲劳强度条件:
max 1
例3 旋转碳钢轴上,作用一不变的力偶 M=0.8kN·m,轴表面经
过精车, b=600MPa,–1= 250MPa,规定 n=1.9,试校核轴的
一、材料持久限(疲劳极限):
循环应力只要不超过某个“最大限度”,构件就可以经历无
数次循环而不发生疲劳破坏,这个限度值称为“疲劳极限”,用
r 表示。
二、 —N 曲线(应力—寿命曲线):
A
A—名义持久限。
N0—循环基数。
r
N(次数)
r—材料持久限。
NA
N0
§11–4 构件持久限及其计算
第十四章 疲劳强度
§11–1 交变应力与疲劳失效 §11–2 交变应力的几个名词术语 §11–3 材料持久限及其测定 §11–4 构件持久限及其计算 §11–5 对称循环下构件的疲劳强度计算 §11–6 非常温静载下材料力学性能简介
§11-1 交变应力与疲劳失效
交变应力:随时间周期性变化的应力。
P
由表查尺寸系数 0.77
2.扭转时的有效应力集中系数和尺寸系数
由图表查有效应力集中系数
当: b1000 MPa 时, K 1.28 当: b900 MPa 时,K 1.25 当: b920 MPa 时, 应用直线插值法
K
1.251.281.25(920900)1.26 100900
疲劳破坏:构件在交变应力的作用下发生的破坏。
疲劳破坏的主要特点:
1.最大工作应力远小于材料强度极限,甚至小于屈服 极限;破坏时的循环次数大约在105~107
2.无论塑性材料还是脆性材料都发生脆性断裂;
3.断口具有明显的特征。
粗
光滑区
糙
区 交变应力长期作用
下由于裂纹萌生、扩展
裂纹源
而导致的脆性断裂。
疲劳强度:抵抗疲劳破坏的能力。
强度。
f70 f50
M
M 解:① 确定危险点应力及循环
特征
r=7.5
r min 1 max
maxWM min 800.00533265.2MPa
构件持久限
(
r
)
光滑试件持久限 ( r )d
如果循环应力为剪应力,将上述公式中的正应力换为剪应力即可。
0 r
K
r
对称循环下 ,r= -1 。上述各系数均可查表而得。
例2 阶梯轴如图,材料为铬镍合金钢,b=920MPa,–1= 420MPa , –1= 250MPa ,分别求出弯曲和扭转时的有效应力集中系数和尺
寸系数。 解:1.弯曲时的有效应力集中系数和尺寸系数
f50 f40
D 50 1.25 d 40
r 5 0.125 d 40
由图表查有效应力集中系数
r=5 当: b1000 MPa 时 ,K 1.55
当: b900 MPa 时 ,K 1.55
当: b920 MPa 时 ,K 1.55
2
m
in
三、应力幅:
a
m a x
2
m in
四、几种特殊的交变应力:
max
m min
a
T
1.对称循环:
r min 1 max
a max
t
m 0
max
m
a
t
min
mmax min
t
五、稳定交变应力:循环特征及周期不变。
2.脉动循环: r min 0 max
二、疲劳破坏的发展过程: 材料在交变应力下的破坏,习惯上称为疲劳破坏。
1.亚结构和显微结构发生变化,从而永久损伤形核。 2.产生微观裂纹。 3.微观裂纹长大并合并,
形成“主导”裂纹。
4.宏观主导裂纹稳定扩展。
5.结构失稳或完全断裂。
三、疲劳破坏的特点:
1. 工作 静态极限应力
2.断裂发生要经过一定的循环次数
P P P(t) P(t T )
(t) (t T )
a a2 a
a
a
1
•
1
31
4a
M y(t)
I
2
• •
3
y(t) R sint
1
•
t
•
4
齿轮传动:齿轮啮合点处的应力随时间作周期性变化,这 种应力就是交变应力。
PP
PP
折铁丝
高周疲劳
应力循环:交变应力每重复变化一次的过程。
3.破坏均呈脆断
4.“断口”分区明显。 (光滑区和粗糙区)
§11–2 交变应力的几个名词术语
max
m min
a
T
一、循环特征:
min
r
m m
ax ax
min
;( min max ) ;( max min )
二、平均应力:
t
m
m
ax
561MPa
m
in
Pm in A
405.051810502
537.2MPa
a
m
ax
2
m
in
56153712MPa 2
m
max
2
m in
561537549MPa 2
r min 537 0.957 max 561
§11–3 材料持久限及其测定
一、构件持久限—r 0
r0 与 r 的关系:
0 r
K
r
1. K —有效应力集中系数:
K
无应力集中的光滑试件 的持久限
同尺寸有应力集中的试 件的持久限
( (
r r
)d )k
2. —尺寸系数:
大尺寸光滑试件的持久 光滑小试件的持久限
限
( r ) r
3. —表面质量系数: