halcon相机标定方法

合集下载

第11章 HALCON标定方法

第11章 HALCON标定方法
之间的差值。
HALCON编程基础与工程应用
相机坐标系到图像坐标系
从相机坐标系到图像坐标系属于透视投影变换关系,即将3D图像信 息转换成2D图像信息。其中点P是相机坐标系中的点,点p(x,y)是像 极坐标系中的点P在图像坐标系上的投影点。
ABOC ~ oCOC
AB AOC PB XC ZC YC oC oOC pC x f y
R(
)


0
1
0

sin 0 cos
cos sin 0
R( ) sin cos 0
0
0 1
总的旋转矩阵,也就是三者的乘积。
R(, , ) R()R( )R( )
平移矩阵T (tx,ty ,tz ) ,tx、ty、tz 是世界坐标系原点与相机坐标系目标点
第11章 HALCON标定方法
◆ 11.1 标定的目的 ◆ 11.2 标定理论 ◆ 11.3 HALCON标定流程 ◆ 11.4 HALCON标定助手 ◆ 11.5 标定应用例程之二维测量
HALCON编程基础与工程应用
11.1 标定的目的
相机需要标定的原因之一就是镜头畸变。所有光学相机镜头都存 在畸变的问题,畸变属于成像的几何失真,它是由于焦平面上不同 区域对影像的放大率不同而形成的画面扭曲变形现象,这种变形的 程度从画面中心至画面边缘依次递增,主要在画面边缘反映的较为 明显。所以相机标定就是为了消除相机镜头在拍摄过程中产生的畸 变。和梯 形畸变。
HALCON编程基础与工程应用
11.3 HALCON标定流程 相机参数确定 HALCON标定板规格 生成标定板
HALCON编程基础与工程应用
1、相机参数确定

halcon相机标定和测量示例

halcon相机标定和测量示例

Halcon单相机标定和测量示例相机标定有很多方式:九点标定法、棋盘格标定法、圆形阵列标定法;本次采用圆形阵列标定法。

1Halcon相机标定1.1标定板描述文件编制此次相机标定采用的是网购的标定板(直接在万能的某宝搜halcon标定板),如图1。

采购的时候卖家会提供标定板的相应参数,如图2。

图1标定板图 2 标定板参数用halcon标定助手标定的时候需要用到标定板的描述文件,此文件可以用gen_caltab算子自己编制。

如下为函数说明:gen_caltab( : : XNum, YNum, MarkDist, DiameterRatio, CalPlateDescr, CalPlatePSFile : ) 函数说明:创建一个标定文件和相应的脚本文件。

函数参数:Xnum:输入X方向标记(圆点)的数量,Xnum>1;Ynum:输入Y方向标记(圆点)的数量,Ynum>1;MarkDist:标记圆圆心间距离,单位“m”;(我看过一个资料翻译为标记点大小,差点被坑死)DiameterRatio:两标记点距离和标记直径的比值,默认:0.5。

0<DiameterRatio<1.0;CalPlateDescr:输入要保存的标定文件(此文件保存路径在算子窗口可更改),默认值: 'caltab.descr',参考: 'caltab.descr', 'caltab_100mm.descr', 'caltab_10mm.descr', 'caltab_200mm.descr', 'caltab_30mm.descr';CalPlatePSFile :标定板图像文件的文件路径(此文件保存路径在算子窗口可更改),默认: 'caltab.ps',后缀:ps。

此算子“XNum, YNum, MarkDist, DiameterRatio”这四个参数根据图2所示的标定板参数设置。

Halcon算子笔记3_相机标定+矫正图像

Halcon算子笔记3_相机标定+矫正图像

Map_image.hdev: 矫正图像*关闭窗口dev_close_window ()dev_close_window ()*打开指定大小、颜色背景的窗口dev_open_window (0, 0, 768/2, 576/2, 'black', WindowHandle1)dev_update_pc ('off')dev_update_window ('off')dev_update_var ('off')dev_update_time ('off')dev_set_draw ('margin')dev_set_line_width (3)** Calibrate the camera.(标定相机)步骤一** 标定板描述文件CaltabName := 'caltab_big.descr'* make sure that the file 'CaltabDescrName' is in the current directory,* the HALCONROOT/calib directory, or use an absolut path*初始相机参数:焦距、畸变系数Kappa,Sx,Sy,Cx,Cy,ImageWidth,ImageHeight StartCamPar := [0.008,0,0.0000086,0.0000086,384,288,768,576]*物体在空间坐标系中的位姿数组NStartPose := []*行角点数组NRow := []*列角点数组NCol := []*X、Y、Z从标定表文件获取计算值caltab_points (CaltabName, X, Y, Z)*创建空的图像元组gen_empty_obj (Images)*图像的数目NumImages := 10*接下来for循环,依次读取、处理NumImages张图像for I := 1 to NumImages by 1*读取图像:Image得到图像数据read_image (Image, 'calib/calib-3d-coord-'+I$'02d')*将单个Image加入元组Images中concat_obj (Images, Image, Images)*显示Imagedev_display (Image)*在图像中找到标定板的区域:图像,标定板描述文件,滤波核大小,二值化值find_caltab (Image, Caltab, CaltabName, 3, 112, 5)*设置区域颜色:绿色dev_set_color ('green')*显示图像中标定板的区域dev_display (Caltab)*(核心函数:搜寻图像的原始点)在图像中找到标定板的各个角点坐标和初始位姿find_marks_and_pose (Image, Caltab, CaltabName, StartCamPar, 128, 10, 18, 0.9, 15, 100, RCoord, CCoord, StartPose)*设置颜色:红色dev_set_color ('red')*在窗口上圆形标记角点的位置disp_circle (WindowHandle1, RCoord, CCoord, gen_tuple_const(|RCoord|,1.5))*一个图像位姿加入位姿元组NStartPose := [NStartPose,StartPose]*所有图像角点行坐标数组相连NRow := [NRow,RCoord]*所有图像角点列坐标数组相连NCol := [NCol,CCoord]endfordev_update_time ('on')disp_continue_message (WindowHandle1, 'black', 'true')stop ()** Calculate the mapping.(计算带矫正信息的图像)步骤二**(核心函数)标定相机参数,对步骤一的数据进行计算处理camera_calibration (X, Y, Z, NRow, NCol, StartCamPar, NStartPose, 'all', CamParam, NFinalPose, Errors)*生成空的对象:包含矫正映射信息的图像gen_empty_obj (Maps)*for循环一次处理一组对应的图像for NumImage := 1 to NumImages by 1* Obtain the pose of the calibration table.*获取标定出来的位姿3DPose := NFinalPose[(NumImage-1)*7:(NumImage-1)*7+6]*设置新的原始3D位姿set_origin_pose (Pose, -1.125, -1.0, 0, PoseNewOrigin)*(核心函数)生成带矫正映射信息的图像MapSinglegen_image_to_world_plane_map (MapSingle, CamParam, PoseNewOrigin, 768, 576, 900, 800, 0.0025, 'bilinear')*将单张图像加入图像元组Mapsconcat_obj (Maps, MapSingle, Maps)endfordisp_continue_message (WindowHandle1, 'black', 'true')stop ()*代码到此处:有了NumImages张标定的原图+ NumImages张带矫正映射信息的图像,*接下来While循环,一张一张的矫正图像** Map the images.(矫正图像)步骤三**窗口设置dev_open_window (0, 391, 900/2, 800/2, 'black', WindowHandle2)Button := 0NumImage := 1while (Button # 1)dev_set_window (WindowHandle1)dev_set_part (0, 0, 575, 767)dev_clear_window ()*从图像元组中选择一张图像select_obj (Images, Image, NumImage)*显示选择的图像dev_display (Image)disp_message (WindowHandle1, 'Press any mouse button to stop', 'image', -1, -1, 'black', 'true')*选择对应位置的带矫正信息的图像select_obj (Maps, MapSingle, NumImage)*(核心函数)矫正图像:原图,带矫正信息图,矫正结果图map_image (Image, MapSingle, ImageMapped)*以下为窗口、循环之类的处理,与图像处理没什么关系dev_set_window (WindowHandle2)dev_set_part (0, 0, 799, 899)dev_clear_window ()dev_display (ImageMapped)NumImage := NumImage + 1if (NumImage > NumImages)NumImage := 1endifdev_error_var (Error, 1)dev_set_check ('~give_error')get_mposition (WindowHandle1, R, C, Button)dev_error_var (Error, 0)dev_set_check ('give_error')if (Error#H_MSG_TRUE)Button := 0endifif (Button)breakendifendwhiledev_set_window (WindowHandle2) dev_close_window ()。

halcon自标定方法

halcon自标定方法

halcon自标定方法Halcon自标定方法Halcon是一种常用的机器视觉软件,用于开发和实现各种图像处理和机器视觉应用。

在机器视觉领域,相机的标定是非常重要的一步,它能够精确地确定相机的内部参数和外部参数,从而提高图像处理的精度和准确性。

Halcon提供了自标定方法,使相机的标定过程更加简便和高效。

自标定方法基于相机的特征点,通过在图像中检测和匹配特征点来确定相机的内部参数和外部参数。

下面将详细介绍Halcon的自标定方法。

1. 特征点提取在自标定过程中,首先需要从图像中提取特征点。

Halcon提供了多种特征点提取算法,如Harris角点检测、SIFT算法等。

根据实际应用场景的需求,选择合适的算法进行特征点提取。

2. 特征点匹配特征点提取后,需要进行特征点的匹配。

Halcon提供了多种特征点匹配算法,如基于描述子的匹配算法、基于相似性变换的匹配算法等。

通过计算特征点之间的相似性,确定它们之间的对应关系。

3. 相机标定特征点匹配完成后,即可进行相机的标定。

Halcon提供了基于特征点的标定方法,通过求解相机的内部参数和外部参数,得到相机的准确标定结果。

标定过程中需要提供已知的标定板,通过测量标定板上的特征点坐标和图像中对应特征点的像素坐标,计算相机的内部参数和外部参数。

4. 标定结果评估标定过程完成后,需要对标定结果进行评估。

Halcon提供了多种评估方法,如重投影误差、畸变系数等。

通过对比实际观测值和标定结果的差异,评估标定的准确性和精度。

5. 标定结果应用标定结果可以应用于各种机器视觉应用中,如图像校正、目标检测和跟踪等。

通过应用标定结果,可以提高图像处理和机器视觉算法的准确性和稳定性。

总结:Halcon的自标定方法是一种简便高效的相机标定方法,通过特征点提取和匹配,求解相机的内部参数和外部参数,从而实现对相机的准确标定。

标定结果可以应用于各种机器视觉应用中,提高图像处理和算法的准确性和稳定性。

Halcon单相机标定板标定

Halcon单相机标定板标定

Halcon单相机标定板标定⾸先得到相机的内参gen_cam_par_area_scan_division (0.012, 0, 0.00000375, 0.00000375, 640, 480, 1280, 960, StartCamPar)普通的畸变:’area_scan_division’ [’area_scan_division’, Focus, Kappa, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight⾼精度畸变(多项式⼦):’area_scan_polynomial’ [’area_scan_polynomial’, Focus, K1, K2, K3, P1, P2, Sx, Sy, Cx, Cy, ImageWidth, ImageHeight然后建⽴标定对象:create_calib_data ('calibration_object', 1, 1, CalibDataID)//建⽴标定对象set_calib_data_cam_param (CalibDataID, 0, [], StartCamPar)//设置相机的参数set_calib_data_calib_object (CalibDataID, 0, 'calplate_80mm.cpd')//设置标定板的⽂件//查找标定板NumImages := 7for I := 1 to NumImages by 1read_image (Image, ImgPath + 'calib_image_' + I$'02d')dev_display (Image)find_calib_object (Image, CalibDataID, 0, 0, I, [], [])get_calib_data_observ_contours (Caltab, CalibDataID, 'caltab', 0, 0, I)get_calib_data_observ_points (CalibDataID, 0, 0, I, Row, Column, Index, StartPose)//获取标定板的位姿dev_set_color ('green')dev_display (Caltab)dev_set_color ('red')disp_circle (WindowHandle, Row, Column, gen_tuple_const(|Row|,1.5))endfor//纠正实际世界坐标位姿set_origin_pose (Pose, 0, 0, 0.002, Pose)//由于标定板的厚度是0.02,所以Z平移到相机坐标需要加上0.02//标定相机calibrate_cameras (CalibDataID, Errors)//标定相机get_calib_data (CalibDataID, 'camera', 0, 'params', CamParam)//得到相机标定后的相机内参,这个内参包含了畸变参数get_calib_data (CalibDataID, 'calib_obj_pose', [0,1], 'pose', Pose)//以第⼀张图作为参考平⾯,得到参考平⾯的坐标位姿//坐标转换image_points_to_world_plane (CamParam, Pose, Row, Col, 'mm', X1, Y1)//将相机平⾯映射到实际坐标位置位姿:描述是世界坐标转换到相机坐标的旋转平移参数,也就是该点在相机坐标系下的位姿。

halcon九点及旋转标定流程

halcon九点及旋转标定流程

halcon九点及旋转标定流程一、啥是九点标定和旋转标定呀。

咱先唠唠这九点标定和旋转标定是个啥玩意儿。

九点标定呢,就像是给相机和要测量的物体之间建立一种特殊的联系,就好比是两个人互相认识得有个介绍过程一样。

通过九个特定的点,让相机知道这个物体在它眼里的位置关系,这样相机就能更准确地测量这个物体啦。

那旋转标定呢,这就更酷了。

想象一下,物体在空间里可能会转来转去的,旋转标定就是让相机能明白这个物体不管怎么转,它都能准确地知道物体的状态。

这就好比你和小伙伴玩捉迷藏,不管小伙伴怎么转着躲,你都能找到他一样。

二、准备工作。

1. 硬件准备。

咱们得有个好相机呀,这相机就像是我们的眼睛一样。

要确保相机安装得稳稳当当的,要是相机晃来晃去的,那可就像近视眼没戴眼镜看东西,肯定不准。

然后呢,要有一个标定板,这个标定板上面有那些个用来标定的点,它可是很重要的哦。

就像考试的试卷一样,上面的题目就是那些点,相机得好好“答题”。

2. 软件准备。

当然得有halcon软件啦。

打开这个软件就像打开一个魔法盒子,里面有各种神奇的功能等着我们去探索。

在软件里要设置好一些基本的参数,比如说图像的分辨率呀,这些参数就像是做菜时候的调料,放得合适了,做出来的菜才美味,图像才清晰准确。

三、九点标定流程。

1. 采集图像。

让相机对着标定板,就像小朋友看黑板一样,要看得清清楚楚的。

然后采集标定板的图像,这时候要注意啦,采集的图像质量要好,如果图像模糊不清,那就像是雾里看花,后面的标定肯定会出问题的。

多采集几张图像,就像多做几次实验一样,这样更保险。

2. 找角点。

在采集到的图像里,要找到标定板上的那些角点。

这可有点像寻宝游戏,在一幅图里找到那些隐藏的宝贝角点。

halcon有专门的函数可以用来找角点,用起来还挺方便的,就像用魔法棒一点,角点就出现了。

3. 计算标定参数。

找到角点之后呢,就可以根据这些角点的信息来计算标定参数啦。

这个过程有点复杂,就像做一道很难的数学题,不过好在halcon会帮我们完成大部分的计算工作。

halcon标定例子

halcon标定例子Halcon标定是一种用于机器视觉系统中相机和图像采集设备的校准方法。

通过标定,可以获得相机的内部参数和外部参数,从而提高图像处理和计算机视觉系统的精度和稳定性。

下面是十个关于Halcon标定的例子:1. Halcon标定的基本原理Halcon标定是通过采集一系列已知位置和姿态的标定板图像,从而计算出相机的内部参数和外部参数。

这些参数可以用于图像校正、三维重建等应用。

2. Halcon标定的步骤Halcon标定的主要步骤包括:选择标定板、采集标定图像、提取标定板角点、计算相机参数、优化标定结果等。

3. Halcon标定的精度评估Halcon标定的精度可以通过重投影误差来评估,即将标定板上的角点投影到图像上,然后计算投影点与实际角点之间的距离。

4. Halcon标定的误差来源Halcon标定的误差来源主要包括相机畸变、标定板姿态误差、标定板角点检测误差等。

这些误差会影响标定结果的精度。

5. Halcon标定的应用场景Halcon标定广泛应用于机器视觉系统中的目标检测、定位、测量等任务。

通过标定,可以提高系统的测量精度和稳定性。

6. Halcon标定的优化方法Halcon标定可以通过优化算法来提高标定结果的精度。

常用的优化方法包括非线性最小二乘法、Bundle Adjustment等。

7. Halcon标定的注意事项在进行Halcon标定时,需要注意选择合适的标定板、保证标定板的平整度、正确设置相机参数等。

8. Halcon标定的挑战和解决方案Halcon标定在实际应用中可能面临光照变化、相机运动等挑战。

针对这些问题,可以采用多视角标定、动态标定等方法来解决。

9. Halcon标定的未来发展趋势随着机器视觉技术的不断发展,Halcon标定也在不断演进。

未来的发展趋势包括更精确的标定方法、更高效的标定算法等。

10. Halcon标定的局限性虽然Halcon标定可以提高机器视觉系统的精度和稳定性,但仍然存在一些局限性,如对标定板的要求较高、对标定图像的要求较严格等。

halcon九点标定原理

halcon九点标定原理Halcon是世界领先的机器视觉软件,被广泛应用于制造、医疗、安全监控和智能交通等领域。

其中,九点标定原理是Halcon中常用的一种标定方法。

标定是指确定相机的内参和外参,以便于机器视觉系统进行三维重建、测量、定位和识别等操作。

而九点标定原理就是在已知相机内参的情况下,通过对标定板上九个已知点的像素坐标和实际坐标进行对应,来求解相机的外参。

下面,我将详细介绍Halcon九点标定原理的具体步骤:1. 准备标定板首先,我们需要准备一个标定板。

标定板可以是黑白底纹、格子图案或者其他规则的图案,这里以黑白相间的格子为例。

标定板上需要标注出九个已知点的实际坐标。

这里建议按照“从左到右、从上到下”的顺序依次标号,方便后续计算。

2. 摄像头拍摄标定板将标定板固定在平面上,并使用相机对其进行拍摄。

需要注意的是,拍摄时应保持相机固定不动,同时注意光照条件的稳定性,以避免影响标定精度。

3. 识别标定板上的九个点使用Halcon中的find_pattern函数对标定板上的九个点进行识别。

该函数的作用是匹配标定板的模板图案,返回每个点的像素坐标以及定位误差。

4. 求解相机的外参通过对比标定板上的实际坐标和相机拍摄得到的像素坐标,使用Halcon中的calibrate_cameras函数来求解相机的外参。

该函数会返回相机的旋转矩阵和平移向量,即可确定相机在世界坐标系下的位置。

5. 验证标定结果最后,我们需要对标定结果进行验证,以确保标定精度达到要求。

通常可以使用Halcon中的project_3d_point函数将三维对象投影到图像上,并与实际拍摄的图像进行对比,来判断标定误差是否在可接受的范围内。

总结:九点标定原理是一种简单、快速、精度较高的标定方法,适用于大部分机器视觉应用。

在实际操作过程中,需要注意拍摄条件的稳定性、标定板的精度以及标定结果的验证等问题,以确保标定精度达到要求。

halcon单相机标定详细说明

相机标定1 相机标定基本原理1.1 相机成像模型目前大多数相机模型都是基于针孔成像原理建立的,因为针孔成像原理简单,并且能满足建模的要求。

除此之外还有基于应用歪斜光线追踪法和近轴光线追踪法的成像模型[1]。

针孔成像虽然已经展示出了相机的成像原理,但是由于针孔成像是理想的物理模型,没有考虑相机本身的尺寸、镜头与相机轴心的偏斜等因素的影响,因此精度很低,不能满足工业机器视觉的要求。

为了使相机模型能高精度的反应相机的实际成像过程,需要再针孔成像模型的基础上考虑镜头畸变等的因素。

图1 针孔成像基于针孔成像原理建立的相机的成像模型,如下图所示。

在相机的成像模型中,包含有几个坐标系分别是世界坐标系、相机坐标系、图像坐标系,相机的成像过程的数学模型就是目标点在这几个坐标系中的转化过程。

图2 针孔成像模型(1)世界坐标系(X w,Y w,Z w),就是现实坐标系,是实际物体在现实世界中的数学描述,是一个三维的坐标空间。

(2)摄像机坐标系(X c, Y c),以针孔相机模型的聚焦中心为原点,以摄像机光学轴线为Z c轴(3)图像坐标系:分为图像像素坐标系和图像物理坐标系为了便于数学描述将图像平面移动到针孔与世界坐标系之间。

如下图所示。

图3 将相机平面移至针孔与目标物体之间后的模型1.2 坐标系间转换从世界坐标系到相机坐标系:P(X c ,Y c ,Z c )=R(α,β,γ)∗P(X w ,Y w ,Z w )+T每一个世界坐标的对象都可以通过旋转和平移转移到相机坐标系上。

将目标点旋转θ角度,等价于将坐标系方向旋转θ。

如下图所示,是二维坐标的旋转变换,对于三维坐标而言,旋转中绕某一个轴旋转,原理实际与二维坐标旋转相同。

如果,世界坐标分别绕X ,Y 和Z 轴旋转α,β,γ,那么旋转矩阵分别为R (α),R (β),R (γ)图4 坐标旋转原理R (α)=[1000cosα−sinα0sinαcosα] (1-1) R (β)=[cosβ0sinβ010−sinβ0cosβ] (1-2)R (γ)=[cosγsinγ0−sinγcosγ0001] (1-3)总的旋转矩阵就是三者的乘积:R(α,β,γ)=R (α)∗R (β)∗R(γ)平移矩阵T =(t x ,t y ,t z ),t x ,t y ,t z 是世界坐标系原点与摄相机坐标系原点之间的差值。

HALCON编程及工程应用第11章 HALCON标定方法图文模板


成像平面上的投影点(点q)的变化过程
上图是将相机平面移至针孔与目标物体之间后的模型示意 图,描述的是在这个移动过程中,成像平面上的投影点(点q) 的变化情况。
根据空间一点成像到图像平面上的路线,先由世界坐标系变 换到相机坐标系,然后又由相机坐标系变换到成像坐标系,但 是这个过程有畸变,需要进行变换处理,再由成像平面坐标系 HA变LC换ON到编图程像基像础素与坐工标程系应,用中间大致分为以下几个步骤:
的相机成像模型。在相机的 成像模型中,包含有几个坐 标系:世界坐标系、相机坐 标系、图像坐标系。相机成 像过程的数学模型就是目标 点在这几个坐标系中的转化 过程。
HALCON编程基础与工程应用
三种坐标系定义
在计算机视觉中常采用右手定则来定义上图中的坐标系。图中
存在三个不同层次坐标系,以下是对这三种坐标系的定义。 1.世界坐标系(Xw,Yw,Zw) 就是现实坐标系,或全局坐标系,它是客观世界的绝对坐标, 由用户任意定义的三维空间坐标系,一般的3D场景用的就是这 种坐标(HALCON标定中以标定板为参考坐标系基准)。 2.相机坐标系(Xc,Yc) 以小孔相机模型针孔平面上的聚焦中心为原点,以相机光轴为 Zc构成三维坐标系,其中Xc、Yc与成像平面坐标系平行。 3.图像坐标系:分为成像平面坐标系和图像像素坐标系。 成像平面坐标系(x,y):其原点为透镜光轴与成像平面交点, X、Y轴分别平行于相机坐标系Xc轴和Yc轴,是平面直角坐标系, 单位mm。 图像像素坐标系(u,v):固定在图像上的以像素为单位的平 面直角坐标系,其原点位于图像左上角,其横纵两轴(对于数 HA字LCO图N编像程,基是础行与和工列程)应分用别平行于成像平面坐标系的横、纵坐标
图像像素坐标系的转化关系
HALCON编程基础与工程应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

halcon相机标定方法
【实用版3篇】
《halcon相机标定方法》篇1
Halcon相机标定方法可以采用以下步骤:
1. 确定畸变系数。

畸变系数表示相机成像过程中的畸变程度,其值介于0和0.00001之间。

在标定过程中,需要确定畸变系数。

2. 确定标定板。

标定板是用于相机标定的已知几何信息的板状物体。

标定板通常由一系列等边直角三角形组成,每条边上都有四个角,共12个点。

这些角可以用于计算相机的内部参数和畸变系数。

3. 获取标定板图像。

获取标定板图像并将其输入到Halcon中。

4. 提取角点信息。

使用Halcon中的“find_features”函数来提取标定板图像中的角点信息。

该函数将自动检测图像中的角点,并返回其坐标和类型。

5. 计算相机内部参数。

使用提取的角点信息,结合Halcon中的“find_feature_points”函数和“find_feature_matches”函数,可以计算相机的内部参数和畸变系数。

6. 验证标定结果。

为了验证标定结果,可以使用Halcon中的“check_calib”函数来检查相机内部参数和畸变系数是否正确。

以上是Halcon相机标定的基本步骤。

《halcon相机标定方法》篇2
Halcon相机标定方法有:
1. 传统六点标定法。

这种方法是通过一个平面上的六个点的位
置来确定整个平面的几何参数,进而求得相机的内参数。

2. 棋盘格标定法。

棋盘格标定法是通过棋盘格上两组对应点的
几何约束,解算出相机的畸变系数。

3. 标定板标定法。

《halcon相机标定方法》篇3
Halcon相机标定方法有以下几个步骤:
1. 建立棋盘格点在Halcon中,建立棋盘格点需要指定格点在图像中的实际坐标,这样可以正确计算出畸变系数。

如果只指定棋盘格在图像中的尺寸和数量,那么在畸变计算时会返回默认的(通常是不可靠的)畸变系数。

建立棋盘格点的方法如下:`2x2 to picture :诤友
棋盘格(squareSize:[20,20], gridNum:25)`
2. 确定相机位置和方向这里有两种方法:
方法一:建立一个动态的目标,不断改变目标与相机的距离和角度,然后计算目标的成像位置,从而得到相机的位置和方向。

方法二:用已知位置和方向的目标点进行标定。

假设有三个已知位置和方向的点,它们在图像中的坐标分别为(x1,y1)、(x2,y2)、(x3,y3),那么它们的中心点在相机坐标系下的位置可以表示为(u1,v1)、
(u2,v2)、(u3,v3)。

如果已知相机的(x,y) 坐标,也可以得到这三个点
的(u,v) 坐标。

然后,可以计算出相机的位置和方向。

3. 进行相机标定根据上面建立棋盘格点和确定相机位置和方向
的方法,可以编写标定程序。

相关文档
最新文档