Halcon例子说明
halcon边缘检测例子

halcon边缘检测例子Halcon是一款功能强大的机器视觉库,其边缘检测功能可以帮助我们在图像中找出物体的边缘,从而实现目标检测和分割。
下面将以Halcon边缘检测例子为题,列举一些常用的边缘检测方法和技巧。
一、Sobel算子边缘检测Sobel算子是一种常用的边缘检测算法,它通过计算图像的一阶导数来寻找边缘。
Halcon中可以使用函数SobelA来实现Sobel算子的边缘检测,可以设置不同的参数来调整检测结果的灵敏度。
二、Canny算子边缘检测Canny算子是一种经典的边缘检测算法,它结合了高斯滤波、梯度计算和非最大值抑制等步骤,可以得到更准确的边缘检测结果。
Halcon中可以使用函数EdgesSubPix来实现Canny算子的边缘检测,可以设置不同的参数来调整检测结果的质量和灵敏度。
三、Laplacian算子边缘检测Laplacian算子是一种基于二阶导数的边缘检测算法,它可以检测出图像中的高频变化,从而找到边缘。
Halcon中可以使用函数Laplace来实现Laplacian算子的边缘检测,可以设置不同的参数来调整检测结果的灵敏度。
四、Roberts算子边缘检测Roberts算子是一种简单但有效的边缘检测算法,它通过计算图像中像素点的灰度差来判断是否存在边缘。
Halcon中可以使用函数RobertsA来实现Roberts算子的边缘检测,可以设置不同的参数来调整检测结果的灵敏度。
五、Prewitt算子边缘检测Prewitt算子是一种基于一阶导数的边缘检测算法,它通过计算图像中像素点的灰度变化来寻找边缘。
Halcon中可以使用函数PrewittA来实现Prewitt算子的边缘检测,可以设置不同的参数来调整检测结果的灵敏度。
六、Scharr算子边缘检测Scharr算子是一种改进的Sobel算子,它可以更好地抵抗噪声干扰,提供更准确的边缘检测结果。
Halcon中可以使用函数ScharrA来实现Scharr算子的边缘检测,可以设置不同的参数来调整检测结果的灵敏度。
halcon目标检测案例

halcon目标检测案例Halcon是一款强大的机器视觉软件,拥有丰富的图像处理和分析功能。
其中,目标检测是Halcon的重要功能之一,能够帮助用户实现对图像中目标的自动检测和定位。
下面列举了十个关于Halcon目标检测的案例,以展示其在实际应用中的优势和灵活性。
1. 工业品质检测:在工业生产线上,Halcon可以通过目标检测技术实现对产品外观缺陷的检测,如表面瑕疵、颜色偏差等。
通过训练算法,Halcon能够快速准确地检测出产品中的异常情况,提高生产效率和产品质量。
2. 药品包装检测:在药品生产过程中,Halcon可以应用于药品包装的检测和识别。
通过目标检测算法,Halcon可以检测药品包装盒上的标签和二维码等信息,确保药品的包装符合规定标准,从而保证药品的质量和安全性。
3. 路标识别:在智能交通系统中,Halcon可以应用于路标的识别和检测。
通过训练模型,Halcon能够准确地识别出道路上的各种标识,如交通信号灯、限速标志等,为智能驾驶系统提供准确的环境感知能力。
4. 农作物病害检测:在农业领域,Halcon可以应用于农作物病害的检测和识别。
通过图像处理和机器学习算法,Halcon能够自动识别出农作物叶片上的病害,提前预警农民并采取相应的措施,保证农作物的健康生长。
5. 人脸识别:在安防领域,Halcon可以应用于人脸识别系统的开发。
通过目标检测和特征提取算法,Halcon能够对图像中的人脸进行准确的识别,实现对人员身份的自动判断,提高安全性和便利性。
6. 垃圾分类:在环境保护领域,Halcon可以应用于垃圾分类系统的开发。
通过目标检测和图像识别算法,Halcon能够自动识别垃圾中的有害物质,并将其分离出来,实现自动化的垃圾分类,提高垃圾处理的效率和准确性。
7. 医学影像分析:在医疗领域,Halcon可以应用于医学影像的分析和识别。
通过目标检测和图像分割算法,Halcon能够自动识别医学影像中的病变区域,并提供准确的测量和分析结果,帮助医生进行疾病的诊断和治疗。
精品课件-HALCON数字图像处理-第10章 HALCON相关实例

2、基于表面的三维匹配 【例10.6】基于表面的三维匹配实例,如图所示。
(a)原图
(d)模型场景和关 键点的可视化
HALCON数字图像
(b)选择表面模(板c区)域待搜索图像
(e)基于表面模 板的3D匹配结果
10.5 图像拼接
图像拼接(image mosaic)技术是将一组相互间重叠
字符的识别主要包含两个部分,第一个部分:将图像中的单个 字符分割出来;第二个部分:将分割出来的字符进行分类。其中 字符识别主要由字符分割、特征提取、字符分类三部分组成。
HALCON数字图像
10.1 字符分割识别
【例10.1】字符识别实例如图10-1所示。 关键点: (1) 获取单个字符的区域region(具体依据情况使用图 像增强,区域分割) (2) 选取合适的字符库,使用分类器识别字符
(a)原图 边缘映射图
HALCON数字图像
(b)3D模型 (c)匹配结果及位姿显示图
2、基于表面的三维匹配
基于表面3D模型匹配一般由下面几步组成: (1)创建表面模型所需的3D对象模型
(2)从上面的3D对象模型创建表面模型 (3)访问代表搜索数据的3D对象模型 (4)使用表面模型在搜索数据中搜索对象 (5)销毁匹配结果的句柄、所有的3D对象模型和表 面模型
(b)
二维条形码识别及实例 1.二维条码定位及解码 不同码制的二维条码具有不同的特性,彼此具有不同的 寻像图形或定位图形,因此所采用的定位方法也有所不同。 以Data Matrix条码为例,其定位图形则是由构成L形的两 条黑实线进行定位。Data Matrix二维条码如图所示。
HALCON数字图像
HALCON数字图像
10.3 去雾算法
halcon变形模板匹配例子讲解

halcon变形模板匹配例子讲解
Halcon 是一种机器视觉开发软件,可用于图像分析、目标检测和跟踪等应用。
其中,模板匹配是图像分析中常用的一种技术,用于找到两个图像中的相似区域,进而实现物体的识别、跟踪等应用。
在 Halcon 中,有多种模板匹配方法可供选择,包括基于灰度值的匹配、基于形状的匹配等。
下面是一个基于 Halcon 变形模板匹配的例子,用于识别物体并跟踪其运动轨迹。
1. 创建图像
在 Halcon 中创建一张背景图像和一个目标图像。
背景图像可以是随机生成的,也可以是已有的图像。
目标图像需要包含要被识别的物体,可以使用已有的图像或者创建一个新的图像。
2. 创建模板
在 Halcon 中,可以使用多种模板匹配方法来创建模板。
例如,可以使用基于灰度值的匹配方法来创建模板,也可以选择使用基于形状的匹配方法来创建模板。
具体哪种模板匹配方法更适合,需要根据应用场景来选择。
3. 匹配模板
在 Halcon 中,可以使用多种方法来匹配模板。
例如,可以使用基于灰度值的匹配方法来匹配模板,也可以选择使用基于形状的匹配方法来匹配模板。
具体哪种方法更适合,需要根据应用场景来选择。
4. 处理结果
在 Halcon 中,匹配模板后可以得到一些结果,例如匹配模板的得分、相似度等。
这些结果可以帮助开发者进一步处理和优化图像,以达到更好的效果。
Halcon 中的模板匹配方法有很多种,开发者可以根据应用场景选择合适的方法。
同时,为了提高匹配的精度和速度,开发者也可以对模板匹配的参数进行调整和优化。
halcon矩形实例 -回复

halcon矩形实例-回复Halcon是一款广泛应用于机器视觉领域的强大软件工具。
它提供了丰富的图像处理和识别功能,帮助用户快速准确地完成各种视觉任务。
在Halcon中,矩形是一种常用的形状,它可以用于检测和描述各种物体。
在本文中,我们将以Halcon中的矩形实例为主题,一步一步地介绍如何在Halcon中使用矩形进行物体检测和测量。
首先,让我们了解一下Halcon中的矩形是如何定义和表示的。
在Halcon 中,矩形可以由矩形的中心坐标、宽度和高度来确定。
通过这些参数,我们可以在图像中创建一个矩形区域。
接下来,我们将详细介绍如何使用矩形进行物体检测和测量。
第一步是加载图像。
在Halcon中,我们可以使用read_image函数加载图像文件。
假设我们要加载一张名为"image.bmp"的图像,可以使用以下代码:read_image(Image, 'image.bmp')第二步是对图像进行预处理。
在进行物体检测之前,通常需要对图像进行一些预处理操作,以提高算法的准确性。
在这个例子中,我们将使用smooth_image函数对图像进行平滑处理,以减少噪声干扰。
代码如下:smooth_image(Image, SmoothedImage, 'gauss')第三步是进行物体检测。
在Halcon中,我们可以使用find_shape_models 函数来寻找与预定义模型匹配的物体。
在这个例子中,我们将使用矩形作为模型,并设置一些参数来定义匹配的准确性和稳定性。
代码如下:create_rectangle2(Model, Row, Column, Phi, Length1, Length2)find_shape_model(SmoothedImage, Model, AngleStart, AngleExtent, MinScore, 1, 0, SubPixel, NumMatches, Angle, Score)在这个例子中,我们使用create_rectangle2函数创建一个矩形模型,并通过find_shape_model函数在平滑图像中寻找与该模型匹配的矩形物体。
halcon单目视觉模板匹配例子

在进行高质量、深度和广度兼具的文章撰写之前,我首先需要对您提出的主题进行全面评估和研究。
在本文中,我将按照您的要求,从简到繁地探讨“halcon单目视觉模板匹配例子”这一主题,以便您能更深入地理解。
在文章中,我会反复提及这一主题,并在总结回顾部分共享我的个人观点和理解。
请您耐心等待我的文章完成。
在深度了解halcon单目视觉模板匹配例子之前,我们需要先了解一些基础知识。
Halcon是一种先进的机器视觉库,它具有强大的图像处理和分析能力,可以应用于工业自动化、质量控制、医学影像等领域。
而单目视觉模板匹配则是Halcon中的重要功能之一,它能够在图像中找到指定模板的位置,从而实现对象识别和定位的功能。
通过模板匹配,我们可以实现自动化生产线上的零件检测、物体定位和跟踪等任务。
接下来,让我们以最简单的例子开始,来了解单目视觉模板匹配的基本原理。
假设我们有一张包含特定物体的模板图像,我们希望在另一张大图像中找到并定位该物体的位置。
这时,我们可以利用Halcon提供的模板匹配功能来实现这一目标。
我们需要在模板图像中提取出物体的特征,然后将其用于在大图像中进行匹配。
Halcon的模板匹配功能可以帮助我们快速准确地找到并定位物体的位置,实现自动化检测和定位的需求。
然而,现实中的应用场景往往更加复杂和多样化。
在工业生产线上,我们可能需要处理物体旋转、缩放、遮挡等情况。
这就需要我们对单目视觉模板匹配功能有更深入的理解和应用。
Halcon提供了丰富的参数和算法,可以帮助我们应对各种复杂情况。
通过设置旋转不变性参数,我们可以在一定范围内实现对旋转变换的兼容;通过使用多尺度匹配算法,我们可以处理物体尺度的变化;通过使用区域过滤器,我们可以处理部分遮挡的情况。
这些高级功能使得Halcon在工业自动化领域具有广泛的应用前景。
对于个人的理解和观点,我认为单目视觉模板匹配是机器视觉领域中一项非常重要的技术。
它可以帮助我们实现自动化生产和质量控制,提高生产效率和产品质量。
halcon 模板匹配案例

halcon 模板匹配案例Halcon是一种机器视觉软件,可以用于图像分析和处理。
下面是一个Halcon模板匹配的案例:1. 准备模板图像和待匹配图像。
模板图像是参考图像,待匹配图像是需要进行匹配的图像。
2. 使用Halcon的create_template操作来创建模板。
这个操作会在模板图像上提取出特征,并将这些特征保存到一个模板文件中,以供后续的匹配使用。
3. 使用Halcon的find_template操作来进行模板匹配。
这个操作会在待匹配图像中找到与模板相似的区域,并返回一个包含匹配结果的数据结构。
4. 通过分析匹配结果,可以得到匹配的位置、角度、缩放因子等信息。
可以根据这些信息来进一步处理图像,如将匹配结果标记在图像上,或者计算两个匹配图像之间的差异。
下面是一个简单的Halcon模板匹配案例的代码:```read_image(模板图像, 模板图像对象)read_image(待匹配图像, 待匹配图像对象)create_template(模板图像对象, 模板参数)find_template(待匹配图像对象, 模板参数, 匹配结果)get_shape_model_origin(模板参数, 模板原点X, 模板原点Y) NumMatches := num_instances(匹配结果)for i := 1 to NumMatchesget_instance_contour(匹配结果, 匹配轮廓, i)get_match_result(匹配结果, 匹配位置X, 匹配位置Y, 匹配角度, 匹配缩放因子, i)// 对匹配位置、角度、缩放因子进行进一步处理endfor```这只是一个简单的模板匹配案例,实际使用时可能需要根据具体情况进行一些调整和优化。
Halcon提供了许多其他的操作和函数,可以根据需要进行进一步的图像处理和分析。
halcon标定例子

halcon标定例子Halcon标定是一种用于机器视觉系统中相机和图像采集设备的校准方法。
通过标定,可以获得相机的内部参数和外部参数,从而提高图像处理和计算机视觉系统的精度和稳定性。
下面是十个关于Halcon标定的例子:1. Halcon标定的基本原理Halcon标定是通过采集一系列已知位置和姿态的标定板图像,从而计算出相机的内部参数和外部参数。
这些参数可以用于图像校正、三维重建等应用。
2. Halcon标定的步骤Halcon标定的主要步骤包括:选择标定板、采集标定图像、提取标定板角点、计算相机参数、优化标定结果等。
3. Halcon标定的精度评估Halcon标定的精度可以通过重投影误差来评估,即将标定板上的角点投影到图像上,然后计算投影点与实际角点之间的距离。
4. Halcon标定的误差来源Halcon标定的误差来源主要包括相机畸变、标定板姿态误差、标定板角点检测误差等。
这些误差会影响标定结果的精度。
5. Halcon标定的应用场景Halcon标定广泛应用于机器视觉系统中的目标检测、定位、测量等任务。
通过标定,可以提高系统的测量精度和稳定性。
6. Halcon标定的优化方法Halcon标定可以通过优化算法来提高标定结果的精度。
常用的优化方法包括非线性最小二乘法、Bundle Adjustment等。
7. Halcon标定的注意事项在进行Halcon标定时,需要注意选择合适的标定板、保证标定板的平整度、正确设置相机参数等。
8. Halcon标定的挑战和解决方案Halcon标定在实际应用中可能面临光照变化、相机运动等挑战。
针对这些问题,可以采用多视角标定、动态标定等方法来解决。
9. Halcon标定的未来发展趋势随着机器视觉技术的不断发展,Halcon标定也在不断演进。
未来的发展趋势包括更精确的标定方法、更高效的标定算法等。
10. Halcon标定的局限性虽然Halcon标定可以提高机器视觉系统的精度和稳定性,但仍然存在一些局限性,如对标定板的要求较高、对标定图像的要求较严格等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Halcon实例说明
1、inspect_bottle_mouth。
hdev:易拉管缺陷检测。
用到了极坐标变换
2、circular_barcode。
hdev:一维条码检测,用到坐标变换.弧形拉直。
用到了极坐标变换
3、surface_scratch.hdev:表面划伤检测.
4、ball.hdev:PCB板焊锡点检测。
用到常用算子及开运算opening。
5、best_match_rot_mg_clip1.hdev:带方向的基本模版匹配
6、bin_threshold.hdev:计算图片中的灰度直方图
7、bin_threshold2.hdev:程序说明怎样bin_threshold与threshold之间的相等转换计算。
8、bottle.hdev:OCR字符的检测
9、bottlet.hdev:OCR字符的检测
10、check_blister.hdev:药品颗粒检测。
用一些常用算子及坐标变换,图片旋转。
11、check_bottle_crate。
hdev:圆孔检测。
用到opening_circle、select_shape等常用处理算子.
12、check_hazelnut_wafers。
hdev:检测物体表面缺陷。
很好的用到了开运算算子opening_circle和闭运算算子closing_circle
13、check_smd_tilt.hdev:检测SMD用到算子sobel_amp边缘检测,measure_projection
14、check_soft_cheese.hdev:用到算子有彩色图转换为灰度图(rgb1_to_gray),模版匹配
15、create_shape_model、find_shape_models,图像坐标变转vector_angle_to_rigid 、
affine_trans_contour_xld等算子.
16、circles。
hdev:圆拟合算子(fit_circle_contour_xld),边缘检测(edges_sub_pix)。
17、circular_barcode。
hdev:求圆环区域及图像坐标变转vector_angle_to_rigid。
18、clip。
hdev;clip_contours_xld.hdev;clip_region。
hdev:裁剪函数运用。
19、close_contour_xld.hdev:主要用到close_contours_xld算子.
20、codabar.hdev;code128.hdev;code39。
hdev:一维条码的读取,find_bar_code。
21、color_fuses.hdev:RGB图像的处理,主要用到算子:decompose3, trans_from_rgb.
22、color_segmentation_pizza。
hdev::RGB彩色物体图像处理。
主要用到算子: decompose3,
trans_from_rgb。
23、contlength.hdev:计算region的长度,主要用到算子: contlength。
24、count_fish_sticks:计算鱼条,用到遍历全文件下图片,很好的运用closing_circle、difference算子提取所需孔洞,measure_projection、create_funct_1d_array、local_min_max_funct_1d、get_y_value_funct_1d等利用灰度值差分离相连物体间的边缘。
还不是很明白
count_pellets。
hdev:很好的运用了erosion_circle,dilation_circle来分离相连的物体,很精典的例子。
形态学算法。
25、cbm_sbm.hdev:对基于形状和组件(或成分、元素)的模版匹配做了对比;运用了算子有:inspect_shape_model、create_shape_model、find_shape_models、create_component_model、
find_component_model。
在多个形状做匹配时用基于形状需要一个个匹配,而用基于组件就可一次性到位,大大缩减了匹配时间。
26、check_blister.hdev:药丸检测用到坐标变换算子.orientation_region、vector_angle_to_rigid 、
affine_trans_image及多个region合并处理.
27、check_bottle_crate。
hdev:很好的运用了形态学,主要算子有select_shape、opening_circle、difference。
28、check_hazelnut_wafers。
hdev:检查饼干的完整性,很好的运用了形态学的开、闭运算
opening_circle 、closing_circle 、opening_circle 、area_holes、rectangularity .
circles.hdev:拟合圆,算子有:fit_circle_contour_xld、get_contour_global_attrib_xld、
segment_contours_xld、gen_circle_contour_xld。
29、circular_barcode。
hdev:工件圆弧的二维码检测,用到极坐标变换,圆弧拉伸成水平检测。
polar_trans_image_ext、polar_trans_region_inv圆弧拉伸算子。
30、codabar。
hdev:很经典的1 维条码的读取,主要算子create_bar_code_model 、set_bar_code_param、find_bar_code。
31、count_fish_sticks。
hdev:鱼条个数计算。
create_funct_1d_array、local_min_max_funct_1d、
get_y_value_funct_1d、measure_projection算子没整明白???
32、create_average_shape_model.hdev:很典型的带比例的模版匹配.create_scaled_shape_model、
find_scaled_shape_model、get_shape_model_params、get_shape_model_contours。
33、create_model_grenn_dot。
hdev:创建模版及保存模版.inspect_shape_model、
create_scaled_shape_model、write_shape_model。
34、create_calib_deformable_model_xld。
hdev:坐标标定,用到了读CAD图的算子
read_contour_xld_dxf、count_obj、select_obj 、get_contour_xld
create_planar_uncalib_deformable_model_xld。
hdev
说明:33、34例子是从外部读出CAD图来做模版进行模版标定。
read_contour_xld_dxf、
create_planar_uncalib_deformable_model_xld、get_deformable_model_contours、
find_planar_uncalib_deformable_model。
35、create_roi_via_vision.hdev:基于形状的模版匹配,模版匹配主要算子:create_shape_model、
find_shape_model,模版轮廓提取算子:inspect_shape_model、select_obj、get_shape_model_contours、模版轮廓映射算子:vector_angle_to_rigid、affine_trans_contour_xld。
36、create_shape_model_3d_ignore_part_polarity。
hdev:基于形状的3D模版匹配。
37、create_shape_model_xld.hdev:基于XLD形状的模版匹配。
38、crystal。
hdev:检测表面空孔,mean_image 、dyn_threshold、shape_trans、select_shape、select_gray。