最新精选2019七年级下册数学期中完整考试题库(含答案)
最新精选2019年七年级下册数学单元测试题《第三章-事件的可能性》完整考试题(含标准答案)

解析:4,2,0
15.在事件A 和事件B 中,事件A发生时,事件B不发生;事件
B发生时,事件A不发生,假若事件A发生的概率为 1 ,则事件B发生的概率是 . 4
解析: 3
4 16.如图,小南和小颖正在玩一个游戏:每人先抛掷骰子(骰子共有6个面,分别标有数字
1,2,3,4,5,6),骰子朝上的数字是几,就将棋子前进几格,并获得格子中的相应物
1
A.
9
2
B.
9
1
C.
3
2
D.
3
答案:A
3.一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸
出一个球,摸到白球的概率是( )
1
A.
3
1
B.
8
答案:C
4
C.
15
4
D.
11
4.从1 到 20 的 20 个自然数中任取一个,既是2 的倍数,又是 3 的倍数的概率是( )
A. 1 20
2019年七年级下册数学单元测试题
第三章 事件的可能性
一、选择题
1.下列事件中,为不确定事件的是( )
A.在空气中,汽油遇上火就燃烧
B.向上用力抛石头,石头落地
C.下星期六是晴天
D.任何数和0相乘,积仍为 0
答案:C
2.某班级想举办一次书法比赛,全班45名同学必须每人上交一份书法作品,设一等奖5名
,二等奖10名,三等奖15名,那么该班某位同学获一等奖的概率为( )
答案:D
B. 3 10
C. 1 2
D. 3 20
5.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针指向的可能性
2019-2020学年江苏省南通市如东县七年级下学期期中数学试卷 (解析版)

2019-2020学年江苏省南通市如东县七年级第二学期期中数学试卷一、选择题1.下列各数中,无理数是()A.B.C.D.3.14159265342.若x<y,则下列不等式中一定成立的是()A.x2<y2B.﹣3x<﹣3y C.>D.1﹣x>1﹣y 3.不等式组的解集在数轴上表示为()A.B.C.D.4.下列四个命题是真命题的是()A.内错角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直5.估计2﹣的值在()A.﹣2到﹣1之间B.﹣1到0之间C.0到1之间D.1到2之间6.如图,直线a,b被c所截,a∥b,若∠3=3∠2,则∠2的度数为()A.30°B.45°C.50°D.60°7.若关于x,y的方程组的解也是二元一次方程x﹣2y=1的解,则m的值为()A.B.C.D.18.关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1B.0≤a<1C.﹣1<a≤0D.﹣1≤a<09.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12B.14C.16D.2010.在平面直角坐标系中,点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0≤a<1C.﹣1<a<1D.﹣2<a<2二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.化简:=.12.已知方程组,则x﹣y=.13.在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=.14.如图,AB∥CD,∠1=48°,∠C和∠D互余,则∠B=°.15.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过80%,那么明年空气质量良好的天数比去年至少要增加天.16.如果点P(﹣3a﹣2,a2)在第二象限,那么a的取值范围是.17.若2m+1的值同时大于3m﹣2和m+2的值,且m为整数,则3m﹣5=.18.有这样的一列数a1、a2、a3、…、a n,满足公式a n=a1+(n﹣1)d,已知a2=197,a5=188,若a k>0,a k+1<0,则k的值为.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:﹣+﹣|2﹣|;(2)解方程组.20.若m是不等式组的最大整数解,求:1+m+m2+…+m2020的值.21.如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.22.填空完成推理过程:如图,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证AD∥BE.证明:∵AB∥CD(已知)∴∠4=∠BAF()∵∠3=∠4(已知)∴∠3=∠(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即∠BAF=∠CAD∴∠3=∠(等量代换)∴AD∥BE()23.平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0(1)当a=1时,点P到x轴的距离为;(2)若点P落在x轴上,点P平移后对应点为P′(a+15,b+4),求点P和P′的坐标;(3)当a≤4<b时,求m的最小整数值.24.疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款456万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:单价/万元工作效率/(只/h)A种型号164000B种型号14.83000(1)求购进A,B两种型号的口罩生产线各多少台.(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台同时进行生产.若工厂的工人每天工作8h,则至少租用A种型号的口罩机多少台才能在5天内完成任务?25.已知:点A、C、B不在同一条直线上,AD∥BE(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB 的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.26.在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.在平面直角坐标系中,已知点M(1,0),过点M作直线l平行于y轴.(1)试判断点A(﹣1,a)是否是直线l的“伴侣点”?请说明理由;(2)若点P(2m﹣5,8)是直线l的“伴侣点”,求m的取值范围;(3)若点A(﹣1,a)、B(b,2a)、C(﹣,a﹣1)是平面直角坐标系中的三个点,将三角形ABC进行平移,平移后点A的对应点为D,点B的对应点为E,点C的对应点为F.若点F刚好落在直线l上,F的纵坐标为a+b,点E落在x轴上,且三角形MFD 的面积为,试判断点B是否是直线l的“伴侣点”?请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.)1.下列各数中,无理数是()A.B.C.D.3.1415926534【分析】根据无理数、有理数的定义即可判定选择项.解:=6,,,3.1415926534是有理数,是无理数,故选:B.2.若x<y,则下列不等式中一定成立的是()A.x2<y2B.﹣3x<﹣3y C.>D.1﹣x>1﹣y【分析】根据不等式的性质求解即可.解:A、当x=﹣3,y=1时,x<y,x2>y2,故A不符合题意;B、两边都乘﹣3,不等号的方向改变,故B不符合题意;C、两边都除以2,不等号的方向不变,故C不符合题意;D、两边都乘﹣1,不等号的方向改变,两边都加1,不等号的方向不变,故D符合题意;故选:D.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解:由x﹣1≥0,得x≥1,由4﹣2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.4.下列四个命题是真命题的是()A.内错角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直【分析】根据平行线的性质与判定即可得出答案.解:A、内错角相等,假命题;B、如果两个角的和是180°,那么这两个角是邻补角;假命题;C、在同一平面内,平行于同一条直线的两条直线互相平行;真命题;D、在同一平面内,垂直于同一条直线的两条直线互相垂直;假命题;故选:C.5.估计2﹣的值在()A.﹣2到﹣1之间B.﹣1到0之间C.0到1之间D.1到2之间【分析】根据估算无理数的大小方法得出答案.解:∵﹣3<﹣<﹣2,∴﹣1<2﹣<0,故选:B.6.如图,直线a,b被c所截,a∥b,若∠3=3∠2,则∠2的度数为()A.30°B.45°C.50°D.60°【分析】根据平行线的性质求出∠1=∠2,求出∠3=3∠1,根据邻补角互补求出∠1即可.解:∵a∥b,∴∠1=∠2,∵∠3=3∠2,∴∠3=3∠1,∵∠1+∠3=180°,∴∠1=45°,即∠2=45°,故选:B.7.若关于x,y的方程组的解也是二元一次方程x﹣2y=1的解,则m的值为()A.B.C.D.1【分析】联立不含m的方程求出x与y的值,进而求出m的值即可.解:联立得:,①+②×2得:5x=10,解得:x=2,把x=2代入①得:y=,把x=2,y=代入得:2m+(2m﹣1)=7,解得:m=.故选:A.8.关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1B.0≤a<1C.﹣1<a≤0D.﹣1≤a<0【分析】根据题意可知:两个整数解是0,1,可以确定a取值范围.解:∵a<x<2有两个整数解,∴这两个整数解为0,1,∴a的取值范围是﹣1≤a<0,故选:D.9.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12B.14C.16D.20【分析】利用非负数的性质求出b的值,推出a=c,推出PQ=6,根据PQ向右平移a 个单位长度,其扫过的面积为24,推出a=4即可解决问题.解:∵|a﹣c|+=0,又∵|a﹣c|≥0,≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,∴a=4,∴a=c=4,∴a+b+c=4+8+4=16,故选:C.10.在平面直角坐标系中,点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0≤a<1C.﹣1<a<1D.﹣2<a<2【分析】根据“点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个”,得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.解:∵点A(a,0)在点B(2﹣a,0)的左边,∴a<2﹣a,解得:a<1,记边AB,BC,AC所围成的区域(含边界)为区域M,则落在区域M的横纵坐标都为整数的点个数为4个,∵点A,B,C的坐标分别是(a,0),(2﹣a,0),(1,﹣1),∴区域M的内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域M的边界上,∵点C(1,﹣1)的横纵坐标都为整数且在区域M的边界上,∴其他的3个都在线段AB上,∴2≤2﹣a<3.解得:﹣1<a≤0,故选:A.二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.化简:=3.【分析】根据算术平方根的定义求出即可.解:=3.故答案为:3.12.已知方程组,则x﹣y=﹣1.【分析】方程组中两方程相减即可求出所求.解:,①﹣②得:2x﹣2y=﹣2,则x﹣y=﹣1.故答案为:﹣1.13.在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=8.【分析】由MN∥y轴可知点M点N的横坐标相同,从而得出关于a的方程,解得a的值即可.解:∵MN∥y轴,∴点M(a﹣3,a+4)与点N(5,9)的横坐标相同,∴a﹣3=5,∴a=8.故答案为:8.14.如图,AB∥CD,∠1=48°,∠C和∠D互余,则∠B=138°.【分析】根据AB∥CD,∠1=48°,可以得到∠D的度数,然后根据∠C和∠D互余,可以得到∠C的度数,再根据∠C+∠B=180°,即可得到∠B的度数.解:∵AB∥CD,∴∠1=∠D,∠B+∠C=180°,∵∠1=48°,∴∠D=48°,∵∠C和∠D互余,∴∠C=42°,∴∠B=138°,故答案为:138.15.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过80%,那么明年空气质量良好的天数比去年至少要增加74天.【分析】设明年空气质量良好的天数比去年要增加x天,由去年该市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%且明年(365天)这样的比值要超过80%,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.解:设明年空气质量良好的天数比去年要增加x天,依题意,得:365×60%+x>365×80,解得:x>73.∵x为整数,∴x的最小值为74.故答案为:74.16.如果点P(﹣3a﹣2,a2)在第二象限,那么a的取值范围是a且a≠0.【分析】根据第二象限内点的坐标特点可得﹣3a﹣2<0,再解不等式即可.解:∵点P(﹣3a﹣2,a2)在第二象限,∴﹣3a﹣2<0且a≠0,解得:a>﹣且a≠0,故答案为:a>﹣且a≠0.17.若2m+1的值同时大于3m﹣2和m+2的值,且m为整数,则3m﹣5=1.【分析】根据题意列出不等式组,求出解集即可求得m=2,代入3m﹣5求得结果即可.解:根据题意得:,解得:1<m<3,∵m为整数,∴m=2,∴3m﹣5=1故答案为1.18.有这样的一列数a1、a2、a3、…、a n,满足公式a n=a1+(n﹣1)d,已知a2=197,a5=188,若a k>0,a k+1<0,则k的值为67.【分析】根据题意可得,解得,所以a n=200﹣3(n﹣1),再根据a k>0,a k+1<0,即可求得k的值.解:根据题意可知:,解得,所以a n=200﹣3(n﹣1),所以a k=200﹣3(k﹣1),a k+1=200﹣3k,∵a k>0,a k+1<0,200﹣3(k﹣1)>0,解得k<,200﹣3k<0,解得k>,所以66<k<67则k的值为67.故答案为:67.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:﹣+﹣|2﹣|;(2)解方程组.【分析】(1)原式利用平方根、立方根定义,以及绝对值的代数意义,计算即可求出值;(2)方程组利用加减消元法求出解即可.解:(•)原式=5﹣+3﹣(﹣2)=5﹣+3﹣+2=﹣;(2),①×2+②得:11x=33,解得:x=3,把x=3代入①得:y=3,则方程组的解为.20.若m是不等式组的最大整数解,求:1+m+m2+…+m2020的值.【分析】先求出每个不等式的解集,再求出不等式组的解集,求出最大整数解,代入求出即可.解:,由不等式①,得x≥﹣2,由不等式②,得x<0,所以不等式组的解集为:﹣2≤x<0,解集中最大的整数为:﹣1,则m=﹣1,所以1+m+m2+…+m2018=1+(﹣1)+(﹣1)2+…+(﹣1)2020=1﹣1+1﹣1+…+1=1.21.如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为(0,4)、(﹣1,1)、(3,1);(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.【分析】(1)首先确定A、B、C三点向上平移3个单位长度,再向右平移2个单位长度后对应点的位置,再连接即可;(2)根据平面直角坐标写出坐标即可;(3)设P(0,y),再根据三角形的面积公式得×4×|h|=6,进而可得y的值.解:(1)如图所示:(2)由图可得:A1(0,4)、B1(﹣1,1);C1(3,1),故答案为:(0,4)、(﹣1,1)、(3,1);(3)设P(0,y),再根据三角形的面积公式得:S△PBC=×4×|h|=6,解得|h|=3,求出y的值为(0,1)或(0,﹣5).22.填空完成推理过程:如图,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证AD∥BE.证明:∵AB∥CD(已知)∴∠4=∠BAF(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠BAE(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即∠BAF=∠CAD∴∠3=∠CAD(等量代换)∴AD∥BE(内错角相等,两直线平行)【分析】根据已知条件和解题思路,利用平行线的性质和判定填空.解:AD∥BE,理由如下:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠BAE(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).故答案是:两直线平行,同位角相等;BAE;CAD;内错角相等,两直线平行.23.平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0(1)当a=1时,点P到x轴的距离为6;(2)若点P落在x轴上,点P平移后对应点为P′(a+15,b+4),求点P和P′的坐标;(3)当a≤4<b时,求m的最小整数值.【分析】(1)求出点P坐标即可解决问题;(2)根据坐标轴上点的特征,可知b=0,可得P(﹣,0),延长即可解决问题;(3)构建不等式组,求出m的取值范围即可解决问题;解:(1)∵a=1,∴2﹣3m+1=0,∴m=1,∴3b﹣2﹣16=0,∴b=6,∴P(1,6),∴点P到x轴的距离为6,故答案为6.(2)∵点P落在x轴上,∴b=0,∴﹣2m﹣16=0,∴m=﹣8,∴2a+24+1=0,∴a=﹣,∴P(﹣,0),P′(,4).(3)由题意:≤4<,解得:﹣2<m≤3,∴m的最小整数值为﹣1.24.疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款456万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:单价/万元工作效率/(只/h)A种型号164000B种型号14.83000(1)求购进A,B两种型号的口罩生产线各多少台.(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台同时进行生产.若工厂的工人每天工作8h,则至少租用A种型号的口罩机多少台才能在5天内完成任务?【分析】(1)设购进A种型号的口罩生产线x台,B种型号的口罩生产线y台,根据财政拨款456万元购进A,B两种型号的口罩生产线共30台,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据工作总量=工作效率×时间结合在5天内完成200万只口罩的生产任务,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设购进A种型号的口罩生产线x台,B种型号的口罩生产线y台,依题意得:,解得:.答:购进A种型号的口罩生产线10台,B种型号的口罩生产线20台.(2)设租用A种型号的口罩机m台,则租用B种型号的口罩机(15﹣m)台,依题意得:5×8×[4000m+3000(15﹣m)]≥2000000,解得:m≥5.答:至少租用A种型号的口罩机5台才能在5天内完成任务.25.已知:点A、C、B不在同一条直线上,AD∥BE(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB 的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°﹣∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=(∠CBE﹣∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB 的度数,将其代入∠DAC:∠ACB:∠CBE中可求出结论.解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°﹣∠B,∴∠ACB=∠ACF+∠BCF=180°﹣(∠B﹣∠A)=120°.(2)在图②中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=∠CAD,∠EBQ=∠CBE,∴∠AQB=∠BQM﹣∠AQM=(∠CBE﹣∠CAD).∵∠C=180°﹣(∠CBE﹣∠CAD)=180°﹣2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=∠CAD,∠ACP=∠PBQ=∠CBE,∴∠ACB=180°﹣∠ACP=180°﹣∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°﹣(∠CBE﹣∠CAD)=120°,∴∠DAC:∠ACB:∠CBE=60°:120°:120°=1:2:2.26.在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.在平面直角坐标系中,已知点M(1,0),过点M作直线l平行于y轴.(1)试判断点A(﹣1,a)是否是直线l的“伴侣点”?请说明理由;(2)若点P(2m﹣5,8)是直线l的“伴侣点”,求m的取值范围;(3)若点A(﹣1,a)、B(b,2a)、C(﹣,a﹣1)是平面直角坐标系中的三个点,将三角形ABC进行平移,平移后点A的对应点为D,点B的对应点为E,点C的对应点为F.若点F刚好落在直线l上,F的纵坐标为a+b,点E落在x轴上,且三角形MFD 的面积为,试判断点B是否是直线l的“伴侣点”?请说明理由.【分析】(1)求出点A到直线l的距离即可判断;(2)由点P(2m﹣5,8)是直线l的“伴侣点”得出1﹣(2m﹣5)≤1,或2m﹣5﹣1≤1,解不等式即可;(3)构建方程组求出a、b的值即可判断;解:(1)点A(﹣1,a)不是直线l的“伴侣点”,理由如下:∵点M(1,0),过点M作直线l平行于y轴,∴直线l:x=1,∵A(﹣1,a),∴点A到直线l的距离为2,2>1,∴点A不是直线l的“伴侣点”.(2)∵点P(2m﹣5,8)是直线l的“伴侣点”,∴1﹣(2m﹣5)≤1,或2m﹣5﹣1≤1,解得:m≥2.5,或m≤3.5,∴m的取值范围是2.5≤m≤3.5;(3)点B是直线l的“伴侣点”,理由如下:∵C(﹣,a﹣1)→F(1,a+b),∴横坐标加,纵坐标加b+1,∴D(,a+b+1),E(b+,2a+b+1),∵点E落在x轴上,∴2a+b+1=0,∵三角形MFD的面积为,∴••|a+b|=,∴a+b=±,当a+b=时,解得a=﹣,b=2,此时B(2,﹣3),点B是直线l的“伴侣点”.当a+b=﹣时,解得a=﹣,b=0,此时B(0,﹣1),点B是直线l的“伴侣点”.。
【3套打包】重庆巴蜀中学最新七年级下册数学期中考试题(1)

最新人教版七年级(下)期中模拟数学试卷(含答案)人教版七年级下学期期中考试数学试题(完卷时间:120分钟 满分:100分)一、选择题(共10小题,每小题2分,满分20分)1. 观察下面图案在A 、B 、C 、D 四幅图案中,能通过图案平移得到的是( )A. B. C. D.2. 下列四个数中,无理数是( )A.41.0B.711 C.2- D.1.0- 3. 如图,在阴影区域内的点可以是( )A.()21,B.()23-,C.()23,-D.()23--, 4. 若b a <,则下列不等式中成立的是( )A.55+>+b aB.b a 55->-C.b a 33>D.33b a > 5. 下列台题中是假命题的是( )A.同旁内角互补,两直线平行B.在同一平面内,若直线b a ⊥,则a 与b 相交所成的角为直角C.如果两个角互补,那么这两个角是一个锐角,一个钝角D.平行于同一条直线的两条直线平行6. 满足02019>+x 的最小整数解是( )A. 2020-B. 2019-C. 2018-D. 2020 7. 已知a ,b 满足方程组⎩⎨⎧=-=+43125b a b a ,则b a +的值为( )A. 4-B. 4C. 2-D. 28. 如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A 与表示3的点重合,滚动一周后到达点B ,点B 表示的数是( )第1题图第3题图A.π2-B. π23-C. π23--D.π23+-9. 平面直角坐标系中,点()32,-A ,()41-,B ,经过点A 的直线y L //轴,若点C 为直线L 上的个动点,则当线段BC 的长度最小时,点C 的坐标为( )A.()41,B.()32--,C.()31,D.()42--, 10. 把m 12长的彩绳截成m 2或m 3的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A.1种B.2种C.3种D.4种二、填空题(共8小题,每小题3分,满分24分)11. 41的算术平方根为 . 12. 命题“对顶角相等”,写成“如果……,那么……”是 .13. 已知⎩⎨⎧=-=21y x 是二元一次方程1=+ky x 的一组解,则=k .14. 如图,CD AB //,DE BC //,若 40=∠B ,则D ∠的度数是 .已知点()183--a a P ,,若点P 在y七年级下学期期中考试数学试题(答案)一、选择题(共10小题,每小题3分,满分30分)1.4的算术平方根是 ( )A .± 2 B. 2 C .±2 D .22.在平面直角坐标系中,点A(-2,a)位于x 轴的上方,则a 的值可以是( )A .0B .-1 C. 3 D .±33.下列实数:3,0, 12,- 2 ,0.35,其中最小的实数是 ( ) A .3 B .0 C .- 2 D .0.354.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上.若∠1=25°,则∠2的度数是 ( )A .25°B .30°C .35°D .60°5.下列命题中,假命题是 ( )A .若A(a ,b)在x 轴上,则B(b ,a)在y 轴上B .如果直线a ,b ,c 满足a ∥b ,b ∥c ,那么a ∥cC .两直线平行,同旁内角互补D .相等的两个角是对顶角6.如图是围棋棋盘的一部分,将它放置在某个平面直角坐标系中,若白棋②的坐标为(-3,-1),白棋④的坐标为(-2,-5),则黑棋①的坐标为 ( )A .(-1,-4)B .(1,-4)C .(3,1)D .(-3,-1)7.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是 ( )A .AB .BC .CD .D8.如图,点E 在BC 的延长线上,下列条件不能判定AB ∥CD 的是( )第14题图A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.9.下列命题中,是真命题的是 ( )A .同位角相等B .邻补角一定互补.C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.10.在平面直角坐标系中,点A ( 1 , 1 )关于原点对称的点是 ( )A.( 1,-1)B.( -1 , 1)C.(-1 ,-1)D.( 1 , 1 )二、填空题(共6小题,每小题4分,满分24分)11.在实数:8,0,364,1.010 010 001,4.2·1·,π,247中,无理数有______个. 12.计算 ; .13.命题“平行于同一条直线的两条直线互相平行”的题设是__________________________,结论是____________________.14.如图,直线a ∥b ,AC ⊥AB ,∠1=60°,则∠2的度数是________.15.若(2a +3)2+b -2=0,则a b=________.16.已知点M(3,2)与点N(x ,y)在同一条垂直于x 轴的直线上,且点N 到x 轴的距离为5,那么点N 的坐标是______________.三、解答题(共3小题,每小题6分,满分18分)17.(1)16+38-(-5)2; (2)(-2)3+|1-2|×(-1)2 019-3125.18.(1)(x+5)2+16=80 (2)(x-1)2-9=019.如图,已知EF ∥AD ,∠1=∠2.求证∠DGA +∠BAC =180°.请将下列证明过程填写完整: =9=|2-1|证明:∵EF∥AD(已知),∴∠2=________(________________________________).又∵∠1=∠2(已知),∴∠1=∠3(________________).∴AB∥________(________________________________).∴∠DGA+∠BAC=180°(________________________________).四、解答题(共3小题,每小题7分,满分21分)20.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°.求∠COF的度数.21.如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.22.我们知道2是无理数,其整数部分是1,于是小明用2-1来表示2的小数部分.请解答下列问题:(1)如果5的小数部分为a,13的整数部分为b,求a+人教版七年级数学下册期中考试试题【答案】一、选择题(每小题3分,共30分)1、点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在实数,,0.121221221…,3.1415926,,﹣中,无理数有()A.2个 B.3个 C.4个 D.5个3、如图a∥b,∠3=108°,则∠1的度数是()A.72° B.80° C.82° D.108°4、如图,直线AB与CD相交于点O,∠COE=2∠BOE.若∠AOC=120°,则∠DOE等于()A.135° B.140° C.145° D.150°5、下列四个命题:①坐标平面内的点与有序数对一一对应;②若a大于0,b不大于0,则点P(﹣a,﹣b)在第三象限;③在x轴上的点的纵坐标都为0;④当m=0时,点P(m2,﹣m)在第四象限.其中,是真命题的有()A.1个 B.2个 C.3个 D.4个6、下列各式正确的是()A. =±4 B.±=4 C. =﹣4 D. =﹣37、如图的围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(5,2),白棋④的坐标为(6,﹣2)那么黑棋①的坐标应该是()A.( 9,3 ) B.(﹣1,﹣1) C.(﹣1,3) D.( 9,﹣1)8、如图,在下列给出的条件下,不能判定AB∥DF的是()A.∠A+∠2=180°; B.∠A=∠3 C.∠1=∠4 D.∠1=∠A9、的平方根是()A.﹣4 B.±2 C.±4 D.410、已知:AB∥CD,∠ABE=120°,∠C=25°,则∠α度数为()A.60° B.75° C.85° D.80°二、填空题(每小题3分,共18分)11、垂直于y轴的直线上有A和B两点,若A(2,2),AB的长为,则点B的坐标为________.12、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA的度数为40°,则∠GFB的度数为.13、某数的平方根是2a+3和a﹣15,则这个数为.14、若与|x+2y﹣5|互为相反数,则(x﹣y)2019= .15、如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2= .16、如图,已知四边形ABCD的顶点为A(1,2),B(﹣1,2),C,(﹣1,﹣2),D(1,﹣2),点M和点N同时从E点出发,沿四边形的边做环绕匀速运动,M点以1单位/s的速度做逆时针运动,N点以2单位/s的速度做顺时针运动,则点M和点N第2019次相遇时的坐标为.三、解答题(共10小题,满分72分)17、计算:(1)(2)+﹣()2(3)+﹣2+3.18、求下列各式中的x 的值:(1) x 3-2=0 ; (2)()25122=-x ;19、已知:如图,∠1=∠2,∠C =∠D 。
2019-2020学年天津市和平区七年级下学期期中数学试卷 (解析版)

2019-2020学年天津市和平区七年级第二学期期中数学试卷一、选择题(共12小题).1.64的立方根是()A.4B.±4C.8D.±82.估算的值是()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间3.下面四个点位于第四象限的是()A.(﹣1,2)B.(﹣2,﹣2)C.(2,5)D.(6,﹣2)4.点A为直线a外一点,点B是直线a上一点,点A到直线a的距离为5cm,则AB的长度可能为()A.2cm B.3cm C.4cm D.18cm5.将点P(1,﹣5)向左平移3个单位,再向上平移6个单位,得到点Q,点Q的坐标为()A.(﹣2,1)B.(4,1)C.(4,﹣11)D.(﹣2,﹣11)6.已知小明从点O出发,先向西走10米,再向南走20米,到达点M,如果点M的位置用(﹣10,﹣20)表示,那么(10,﹣10)表示的位置是()A.点A B.点B C.点C D.点D7.已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为()A.(﹣5,6)B.(﹣6,5)C.(5,﹣6)D.(6,﹣5)8.下列各组数中,是方程组的解是()A.B.C.D.9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.在以下说法中:①实数分为正有理数、0、负有理数.②实数和数轴上的点一一对应.③过直线外一点有且只有一条直线和已知直线垂直.④过一点有且只有一条直线和已知直线平行.⑤假命题不是命题.⑥如果两条直线都和第三条直线平行,那么这两条直线也互相平行.⑦若一个数的立方根和平方根相同,那么这个数只能是0.其中说法正确的个数是()A.3B.4C.5D.611.已知,EF∥AB,CD⊥DF,判断∠1,∠2,∠3之间的关系满足()A.∠1+∠2+∠3=180°B.∠2=∠3+∠1C.∠1+∠2﹣∠3=90°D.∠2+∠3﹣∠1=90°12.已知关于x,y的方程组和有相同的解,那么的平方根是()A.0B.±1C.D.±2二、填空题:(每题3分,共18分)13.已知如图,若满足,则可以判定AB∥CD.(仅可添加一个条件)14.如图,同旁内角有对.15.某楼梯的截面如图,其中ER=5米,RQ=10米,若在楼梯上铺设地毯,至少需要米.16.比较下列各数的大小关系:①2;②2;③.17.已知△ABC的面积为16,其中两个顶点的坐标分别是A(﹣7,0),B(1,0),顶点C在y轴上,那么点C的坐标为.18.阅读材料后完成.有这样一个游戏,游戏规则如下所述:如图①﹣图④,都是边长为1的5×5网格图,其中每条实线称为格线,格线与格线的交点称为格点.在图①和图②中,可知EF⊥EH,LM⊥AB.在图③和图④中,可知CD∥AB.根据上面的游戏规则,同学们开始闯关吧!第一关:在图⑤的6×6网格图中,所给各点均为格点,经过给定的一点(不包括边框上的点),在图中画出一条与线段AB垂直的线段(或者直线)BC,再画出与线段AB 平行的一条线段(或者直线)EF;第二关:在图⑥的6×6网格图中,所给各点均为格点,经过两对给定的点,构造两条互相垂直的直线.(在图中直接画出)三、解答题:本大题共7小题,共58分.其中19、20、22、23题每小题0分,21题6分,24、25题每小题0分,解答应写出文字说明、演算步骤或简单推理过程.19.计算:(1);(2);20.解下列二元一次方程组(1);(2);21.已知如图,在△ABC中,三个顶点的坐标分别为A(2,3),B(5,﹣1),C(1,1),将△ABC沿x轴负方向平移4个单位长度,再沿y轴负方向平移2个单位长度,得到△DEF,其中点A的对应点为点D,点B的对应点为点E,点C的对应点为点F.(1)直接写出平移后的△DEF的顶点坐标:D、E、F;(2)在坐标系中画出平移后的△DEF;(3)求出△DEF的面积.22.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.23.现有36卷相同的布料做工作服,每卷布料可制作成上衣25件,或者制作成裤子40件,一件上衣和两件裤子组成一套,问,用多少卷布料制作上衣,多少卷布料制作裤子可以使上衣和裤子正好配套?24.已知,△ABC,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E做DE∥BC,交直线AB于点D,连接BE,过点F作FG∥BE,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:∠DEB=∠GFC;(2)在(1)的条件下,判断∠DEC、∠EGF、∠BFG这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由;(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出∠DEC、∠EGF、∠BFG之间的关系;(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出∠DEC、∠EGF、∠BFG之间的关系.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b)且a,b满足,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的线路移动.(1)求点B的坐标为;当点P移动5秒时,点P的坐标为;(2)在移动过程中,当点P移动11秒时,求△OPB的面积;(3)在(2)的条件下,坐标轴上是否存在点Q,使△OPQ的面积与△OPB的面积相等,若存在,求点Q的坐标;若不存在,说明理由.参考答案一、选择题:本大题共12小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.64的立方根是()A.4B.±4C.8D.±8【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解:∵4的立方等于64,∴64的立方根等于4.故选:A.2.估算的值是()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】根据,可以估算出所在的范围.解:∵,∴,故选:B.3.下面四个点位于第四象限的是()A.(﹣1,2)B.(﹣2,﹣2)C.(2,5)D.(6,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.解:A、(﹣1,2)在第二象限,故本选项不合题意;B、(﹣2,﹣2)在第三象限,故本选项不合题意;C、(2,5)在第一象限,故本选项不合题意;D、(6,﹣2)在第四象限,故本选项符合题意.故选:D.4.点A为直线a外一点,点B是直线a上一点,点A到直线a的距离为5cm,则AB的长度可能为()A.2cm B.3cm C.4cm D.18cm【分析】垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.解:∵A为直线a外一点,B是直线a上一点,点A到直线a的距离为5cm,∴AB最短为5cm.∴AB≥5cm,∴AB的长度可能为18cm.故选:D.5.将点P(1,﹣5)向左平移3个单位,再向上平移6个单位,得到点Q,点Q的坐标为()A.(﹣2,1)B.(4,1)C.(4,﹣11)D.(﹣2,﹣11)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.解:将点P(1,﹣5)向左平移3个单位,再向上平移6个单位,得到点Q,点Q的坐标为(﹣2,1)故选:A.6.已知小明从点O出发,先向西走10米,再向南走20米,到达点M,如果点M的位置用(﹣10,﹣20)表示,那么(10,﹣10)表示的位置是()A.点A B.点B C.点C D.点D【分析】直接根据题意得出横纵坐标的意义,进而得出答案.解:∵点M的位置用(﹣10,﹣20)表示,∴(10,﹣10)表示D点.故选:D.7.已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为()A.(﹣5,6)B.(﹣6,5)C.(5,﹣6)D.(6,﹣5)【分析】根据第二象限内点到x轴的距离是点的纵坐标,点到y轴的距离是横坐标的相反数,可得答案.解:A位于第二象限,到x轴的距离为5,到y轴的距离为6,则点A的坐标为(﹣6,5),故选:B.8.下列各组数中,是方程组的解是()A.B.C.D.【分析】方程组的解,指的是该数值满足方程组中的每一方程,直接解方程组即可求解.解:方程组,两方程相加得到2x=12,解得x=6,把x=6代入其中一个方程得6+y=8,解得y=2.故原方程组的解为.故选:B.9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.【分析】根据关键语句“用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克”找到等量关系列出方程即可.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.在以下说法中:①实数分为正有理数、0、负有理数.②实数和数轴上的点一一对应.③过直线外一点有且只有一条直线和已知直线垂直.④过一点有且只有一条直线和已知直线平行.⑤假命题不是命题.⑥如果两条直线都和第三条直线平行,那么这两条直线也互相平行.⑦若一个数的立方根和平方根相同,那么这个数只能是0.其中说法正确的个数是()A.3B.4C.5D.6【分析】根据实数、的分类、实数与数轴、垂直的定义、命题的概念、平方根和立方根的概念判断即可.解:①实数分为正实数、0、负实数,本说法错误;②实数和数轴上的点一一对应,本说法正确;③在同一平面内,过直线外一点有且只有一条直线和已知直线垂直,本说法错误;④过直线外一点有且只有一条直线和已知直线平行,本说法错误;⑤假命题也是命题,本说法错误;⑥如果两条直线都和第三条直线平行,那么这两条直线也互相平行,本说法正确;⑦若一个数的立方根和平方根相同,那么这个数只能是0,本说法正确;故选:A.11.已知,EF∥AB,CD⊥DF,判断∠1,∠2,∠3之间的关系满足()A.∠1+∠2+∠3=180°B.∠2=∠3+∠1C.∠1+∠2﹣∠3=90°D.∠2+∠3﹣∠1=90°【分析】延长CD交EF于点M,延长DC交AB于点N,先由CD⊥DF得出∠DMF=90°﹣∠1,结合EF∥AB知∠DMF=∠CNA=90°﹣∠1,再根据∠2=∠3+∠CNA可得答案.解:如图,延长CD交EF于点M,延长DC交AB于点N,∵CD⊥DF,∴∠MDF=90°,∴∠DMF=90°﹣∠1,又∵EF∥AB,∴∠DMF=∠CNA=90°﹣∠1,∵∠2=∠3+∠CNA,∴∠2=∠3+90°﹣∠1,则∠1+∠2﹣∠3=90°,故选:C.12.已知关于x,y的方程组和有相同的解,那么的平方根是()A.0B.±1C.D.±2【分析】根据已知条件,知x,y的值适合四个方程,故可以联立解方程组,求得x,y的值后,再联立解方程组,从而求解.解:根据题意得,解得,把代入含有a,b的两个方程得,解得,则=2,2的平方根是.故选:C.二、填空题:(每题3分,共18分)13.已知如图,若满足∠1=∠2(答案不唯一),则可以判定AB∥CD.(仅可添加一个条件)【分析】直接利用平行线的判定方法得出答案.解:当∠1=∠2时,则AB∥CD.故答案为:∠1=∠2(答案不唯一).14.如图,同旁内角有4对.【分析】根据同旁内角定义进行分析即可.解:∠1和∠2,∠1和∠6,∠2和∠6,∠3和∠7是同旁内角,共4对,故答案为:4.15.某楼梯的截面如图,其中ER=5米,RQ=10米,若在楼梯上铺设地毯,至少需要15米.【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,可求得其长度.解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为10米,5米,则地毯的长度为10+5=15(米),故答案为:15.16.比较下列各数的大小关系:①2<;②<2;③<.【分析】①先对+1进行估算,然后与2进行比较即可;②先对进行估算,然后估算出的值,最后与2进行比较即可得出答案;③分别对与进行估算,然后进行比较即可.解:①2<;②<2;③<.故答案为:<,<,<.17.已知△ABC的面积为16,其中两个顶点的坐标分别是A(﹣7,0),B(1,0),顶点C在y轴上,那么点C的坐标为(0,±4).【分析】由A、B的坐标,易求得AB的长,以AB为底,根据△ABC的面积,即可求出C点坐标.解:根据题意,得:AB=1﹣(﹣7)=8;∴S△ABC=AB•|y C|==16,可得:h=4,所以点C的坐标为(0,±4),故答案为:(0,±4).18.阅读材料后完成.有这样一个游戏,游戏规则如下所述:如图①﹣图④,都是边长为1的5×5网格图,其中每条实线称为格线,格线与格线的交点称为格点.在图①和图②中,可知EF⊥EH,LM⊥AB.在图③和图④中,可知CD∥AB.根据上面的游戏规则,同学们开始闯关吧!第一关:在图⑤的6×6网格图中,所给各点均为格点,经过给定的一点(不包括边框上的点),在图中画出一条与线段AB垂直的线段(或者直线)BC,再画出与线段AB 平行的一条线段(或者直线)EF;第二关:在图⑥的6×6网格图中,所给各点均为格点,经过两对给定的点,构造两条互相垂直的直线.(在图中直接画出)【分析】利用数形结合的思想,根据要求画出图形即可.解:第一关:在图⑤中,线段BC,线段EF即为所求.第二关:在图⑥中,直线EF,直线GH即为所求.三、解答题:本大题共7小题,共58分.其中19、20、22、23题每小题0分,21题6分,24、25题每小题0分,解答应写出文字说明、演算步骤或简单推理过程.19.计算:(1);(2);【分析】(1)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.解:(1)原式=﹣3﹣π﹣(π﹣3)=﹣3﹣π﹣π+3=﹣2π;(2)原式===0.20.解下列二元一次方程组(1);(2);【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.解:(1)①﹣②得:6y=﹣12,解得:y=﹣2,把y=﹣2代入①得:x=﹣2,∴这个方程组的解为;(2),由①得,3x﹣2y=﹣10③,由②得:4x+3y=﹣2④,③×3+④×2,得:x=﹣2,把x=﹣2代入③得:y=2,∴这个方程组的解为.21.已知如图,在△ABC中,三个顶点的坐标分别为A(2,3),B(5,﹣1),C(1,1),将△ABC沿x轴负方向平移4个单位长度,再沿y轴负方向平移2个单位长度,得到△DEF,其中点A的对应点为点D,点B的对应点为点E,点C的对应点为点F.(1)直接写出平移后的△DEF的顶点坐标:D(﹣2,1)、E(1,﹣3)、F (﹣3,﹣1);(2)在坐标系中画出平移后的△DEF;(3)求出△DEF的面积.【分析】(1)利用点平移的坐标变换规律写出A、B、C的对应点D、E、F的坐标;(2)利用点D、E、F的坐标描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△DEF的面积.解:(1)D(﹣2,1);E(1,﹣3);F(﹣3,﹣1);(2)如图,△DEF为所作;(3)△DEF的面积=4×4﹣×2×1﹣×4×2﹣×4×3=5.22.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.23.现有36卷相同的布料做工作服,每卷布料可制作成上衣25件,或者制作成裤子40件,一件上衣和两件裤子组成一套,问,用多少卷布料制作上衣,多少卷布料制作裤子可以使上衣和裤子正好配套?【分析】设用x卷布料制作上衣,y卷布料制作裤子可以使上衣和裤子正好配套,根据制作的上衣和裤子正好配套,即可得出关于x,y的二元一次方程组,解之即可得出结论.解:设用x卷布料制作上衣,y卷布料制作裤子可以使上衣和裤子正好配套,依题意,得:,解得:.答:用16卷布料制作上衣,20卷布料制作裤子可以使上衣和裤子正好配套.24.已知,△ABC,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E做DE∥BC,交直线AB于点D,连接BE,过点F作FG∥BE,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:∠DEB=∠GFC;(2)在(1)的条件下,判断∠DEC、∠EGF、∠BFG这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由;(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出∠DEC、∠EGF、∠BFG之间的关系;(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出∠DEC、∠EGF、∠BFG之间的关系.【分析】(1)由DE∥BC,FG∥BE,其性质得∠DEB=∠EBC,∠EBC=∠GFC,再根据等量代换证明∠DEB=∠GFC;(2)由FG∥BE,其性质得∠EBC+∠BFG=180°,∠BEG+∠EGF=180°,再根据等式的性质得∠EBC+∠BFG+∠BEG+∠EGF=360°,最后由平行线的性质,等量代换,角的和差证明∠DEC+∠EGF+∠BFG=360°,其值是一个定值;(3)当点E在线段AC的延长线上时,同理可得∠DEC+∠EGF+∠BFG=360°,(2)中结论仍然成立;(4)当点E在线段CA的延长线上时,同理可得∠DEC+∠EGF+∠BFG=180°,(2)中结论不成立.解:(1)如图①所示:∵DE∥BC,∴∠DEB=∠EBC,又∵FG∥BE,∴∠EBC=∠GFC,∴∠DEB=∠GFC;(2)∠DEC+∠EGF+∠BFG=360°.如图①所示,理由如下:又∵FG∥BE,∴∠EBC+∠BFG=180°,∠BEG+∠EGF=180°,∴∠EBC+∠BFG+∠BEG+∠EGF=360°,又∵DE∥BC,∴∠DEB=∠EBG,∴∠DEB+∠BFG+∠BEG+∠EGF=360°,又∵∠DEC=∠DEB+∠BEG,∴∠DEC+∠EGF+∠BFG=360°,即三个角的和是一个定值;(3)当点E在线段AC的延长线上时(2)结论仍然成立.如图②所示,理由如下:∵FG∥BE,∴∠EGF+∠GEB=180°,∠BFG+∠FBE=180°,又∵BC∥DE,∴∠BED=∠FBC,∴∠DEC+∠EGF+∠BFG=∠DEB+∠BEC+∠EGF+∠BFG=∠FBE+∠BEC+∠EGF+∠BFG=360°;(4)点E在线段CA的延长线上时不成立.如图③所示,理由如下:∠EGF=180°﹣∠CGF,∠BFG=180°﹣∠CFG,∴∠EGF+∠BFG=360°﹣(∠CGF+∠CFG),又∵∠C=180°﹣(∠CGF+∠CFG)∴∠EGF+∠BFG=180°﹣∠C,又∵DE∥BC,∴∠DEC=∠C,∴∠EGF+∠BFG=180°﹣∠DEC,∴∠DEC+∠EGF+∠BFG=180°,即点E在线段CA的延长线上时不成立.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b)且a,b满足,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的线路移动.(1)求点B的坐标为(6,12);当点P移动5秒时,点P的坐标为(8,2);(2)在移动过程中,当点P移动11秒时,求△OPB的面积;(3)在(2)的条件下,坐标轴上是否存在点Q,使△OPQ的面积与△OPB的面积相等,若存在,求点Q的坐标;若不存在,说明理由.【分析】(1)由非负数的性质可得a、b的值,据此可得点B的坐标;由点P运动速度和时间可得其运动5秒的路程,结合OA=8知AP=2,从而得出其坐标;(2)先根据点P运动11秒判断出点P的位置,再根据三角形的面积公式求解可得;(3)分点Q在x轴和y轴上两种情况,根据三角形的面积公式求出OQ的长,从而得出答案.解:(1)∵a,b满足,∴a=8,b=12,∴点B(6,12);当点P移动5秒时,其运动路程为5×2=10,∵OA=8,∴AP=2,则点P坐标为(8,2),故答案为:(6,12)、(8,2);(2)如图1,当点P移动11秒时,11×2=22,∵OA=AB=8+12=20<22,OA+AB+BC=8+12+8=28>22,∴点P在边BC上,此时PB=22﹣20=2.∴;△OPQ的面积与△OPB的面积相等(3)①当点Q在x轴上时,∵,∴OQ=2,∴Q(2,0)或者Q(﹣2,0);②当点Q在y轴上时,CP=6,∵,∴OQ=4,∴Q(0,4)或者Q(0,﹣4).综上所述,Q1(2,0),Q2(﹣2,0),Q3(0,4),Q4(0,﹣4)。
五三(浑南新)初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

五三(浑南新)初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在下列不等式中,是一元一次不等式的为()A. 8>6B. x²>9C. 2x+y≤5D. (x-3)<0【答案】D【考点】一元一次不等式的定义【解析】【解答】A、不含未知数,不是一元一次不等式,不符合题意;B、未知数的指数不是1,不是一元一次不等式,不符合题意;C、含有两个未知数,不是一元一次不等式,不符合题意;D、含有一个未知数,未知数的指数都为1,是一元一次不等式,符合题意.故答案为:D.【分析】根据一元一次不等式的定义,含有一个未知数,含未知数的最高次数是1的不等式,对各选项逐一判断。
2、(2分)某商场店庆活动中,商家准备对某种进价为600元、标价为1200元的商品进行打折销售,但要保证利润率不低于10%,则最低折扣是()A. 5折B. 5.5折C. 6折D. 6.5折【答案】B【考点】一元一次不等式的应用【解析】【解答】解:设至多可以打x折1200x-600≥600×10%解得x≥55%,即最多可打5.5折.故答案为:B【分析】设至多可以打x折,根据利润=售价减进价,利润也等于进价乘以利润率,即可列出不等式,求解得出答案。
3、(2分)下列说法:①两个无理数的和一定是无理数;②两个无理数的积一定是无理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积一定是无理数。
其中正确的个数是()A. 0B. 1C. 2D. 3【答案】B【考点】无理数的认识【解析】【解答】解:①两个无理数的和不一定是无理数,如互为相反数的两个无理数的和为0;②两个无理数的积可能是无理数,也可能是有理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积可能是无理数,也可能是有理数.故正确的序号为:③,故答案为:B.【分析】无限不循环的小数就是无理数,根据无理数的定义,用举例子的方法即可一一判断。
2019-2020学年湖北省黄冈市蕲春县七年级下学期期中数学试卷 (解析版)

2019-2020学年湖北省黄冈市蕲春县七年级第二学期期中数学试卷一、选择题1.在平面直角坐标系中,点M(﹣,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,下列条件中不能判断a∥b的是()A.∠2=∠6B.∠3+∠5=180°C.∠4+∠6=180°D.∠1=∠43.下列四个实数中,无理数的是()A.B.3.14C.D.4.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°5.下列说法不正确的是()A.的平方根是±3B.是的平方根C.带根号的数不一定是无理数D.a2的算术平方根是a6.在平面直角坐标系中,在第二象限内有一点P,它到x轴的距离为4,到y轴的距离为5,则点P的坐标为()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)7.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对8.设4+的整数部分是a,小数部分是b,则a和b的值为()A.4,B.6,﹣2C.4,﹣2D.6,9.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°10.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点…则边长为8的正方形内部的整点的个数为()A.64个B.49个C.36个D.25个二、细心填一填,相信你一定能填好.(每小题3分,共30分)11.36的平方根是.12.如图,计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是.13.如图,AB∥CD,BE平分∠ABC,∠BDC=30°,则∠CBD=.14.将点A(x,﹣2)向上平移3个单位,再向左平移2个单位,得到点B(1,y),则=.15.已知x的两个平方根分别是2a﹣1和a﹣5,则x=.16.实数a,b在数轴上的位置如图所示,则+a的化简结果为.17.如图,已知FC∥AB∥DE,H为FC上一点,∠BHD:∠D:∠B=2:3:4,则∠D =.18.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=.19.已知,x、y是有理数,且y=+﹣4,则2x+3y的立方根为.20.如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.三、解答题(共60分)21.求下列各式中的x:(1)4(x+2)2﹣16=0;(2)(2x﹣1)3+=1.22.计算:(1)++;(2)﹣|2﹣|.23.如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)写出点A,点B的坐标;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,在图中画出△A'B'C'并写出三个顶点A'、B'、C'的坐标;(3)求△ABC的面积.24.如图,已知∠1=∠2,DF∥AC,∠C与∠D相等吗?为什么?25.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.26.如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.27.如图1,在平面直角坐标系中点A、B在坐标轴上,其中A(0,a),B(b,0),满足|a﹣3|+=0.(1)求点A、B的坐标;(2)将AB平移到CD,点A对应点C(﹣2,m),若△ABC面积为13,连接CO,求点C的坐标;(3)在(2)的条件下,求证:∠AOC=∠OAB+∠OCD;(4)如图2,若AB∥CD,点C、D也在坐标轴上,点F为线段AB上一动点(不包含A、B两点),连接OF,FP平分∠BFO,∠BCP=2∠PCD,试证明:∠COF=3∠P﹣∠OFP(提示:可直接利用(3)的结论).参考答案一、精心选一选,每题只有唯一选项.(每题3分,共30分)1.在平面直角坐标系中,点M(﹣,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的坐标符号可得答案.解:点M(﹣,2)所在的象限为第二象限,故选:B.2.如图,下列条件中不能判断a∥b的是()A.∠2=∠6B.∠3+∠5=180°C.∠4+∠6=180°D.∠1=∠4【分析】根据平行线的判定定理对各选项进行逐一判断即可.解:A、∠2=∠6可以判定a,b平行,不符合题意;B、∠3+∠5=180°,可以判定a,b平行,不符合题意;C、∠4+∠6=180°,可以判断a、b平行,不符合题意;D、∠1=∠4,不能判定a,b平行,符合题意.故选:D.3.下列四个实数中,无理数的是()A.B.3.14C.D.【分析】根据无理数、有理数的定义解答即可.解:=﹣,,3.14,是有理数,是无理数,故选:D.4.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°【分析】先根据三角形外角的性质求出∠EDG的度数,再由平行线的性质得出∠4CEF 度数,由直角三角形的性质即可得出结论.解:如图,根据对顶角的性质得:∠1=∠3,∠2=∠4,∵∠EDG是△ADG的外角,∴∠EDG=∠A+∠3=30°+20°=50°,∵l1∥l2,∴∠EDG=∠CEF=50°,∵∠4+∠FEC=90°,∴∠FEC=90°﹣50°=40°,∴∠2=40°.故选:C.5.下列说法不正确的是()A.的平方根是±3B.是的平方根C.带根号的数不一定是无理数D.a2的算术平方根是a【分析】根据平方根的定义,判断A与B的正误,根据无理数的定义判断C的正误,根据算术平方根的定义判断D的正误.解:的平方根是:,故A正确;,则是的平方根,故B正确;是有理数,则带根号的数不一定是无理数,故C正确;∵a2的算术平方根是|a|,∴当a≥0,算术平方根为a,当a<0时,算术平方是﹣a,故a2的算术平方根是a不正确.故D不一定正确;故选:D.6.在平面直角坐标系中,在第二象限内有一点P,它到x轴的距离为4,到y轴的距离为5,则点P的坐标为()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)【分析】根据各象限内点的坐标特征,可得答案.解:由题意,得|y|=4,|x|=5.又∵在第二象限内有一点P,∴x=﹣5,y=4,∴点P的坐标为(﹣5,4),故选:A.7.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对【分析】利用平行线的性质和角平分线的定义找等角.解:∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB,又∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DBE=∠DEB.所以图中相等的角共有5对.故选:C.8.设4+的整数部分是a,小数部分是b,则a和b的值为()A.4,B.6,﹣2C.4,﹣2D.6,【分析】估算无理数的大小方法得出整数部分a,小数部分b,进而解答即可.解:∵4<5<9,∴2<<3,∴6<4+<7,∴4+的整数部分是6,小数部分是4+﹣6=﹣2,即a=6,b=﹣2,故选:B.9.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【分析】首先过点P作PA∥a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.解:过点P作PA∥a,则a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠NPA=180°,∴∠1+∠2+∠3=360°.故选:C.10.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点…则边长为8的正方形内部的整点的个数为()A.64个B.49个C.36个D.25个【分析】求出边长为1、2、3、4、5、6、7的正方形的整点的个数,得到边长为1和2的正方形内部有1个整点,边长为3和4的正方形内部有9个整点,边长为5和6的正方形内部有25个整点,推出边长为7和8的正方形内部有49个整点,即可得出答案.解:设边长为8的正方形内部的整点的坐标为(x,y),x,y都为整数.则﹣4<x<4,﹣4<y<4,故x只可取﹣3,﹣2,﹣1,0,1,2,3共7个,y只可取﹣3,﹣2,﹣1,0,1,2,3共7个,它们共可组成点(x,y)的数目为7×7=49(个).故选:B.二、细心填一填,相信你一定能填好.(每小题3分,共30分)11.36的平方根是±6.【分析】根据平方根的定义求解即可.解:36的平方根是±6,故答案为:±6.12.如图,计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是垂线段最短.【分析】根据垂线断的性质解答即可.解:计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是垂线段最短,故答案为:垂线段最短.13.如图,AB∥CD,BE平分∠ABC,∠BDC=30°,则∠CBD=30°.【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABD的度数,又由BE平分∠ABC,即可求得答案.解:∵AB∥CD,∴∠ABD=∠BDC=30°,∵BE平分∠ABC,∴∠CBD=∠ABD=30°.故答案为:30°.14.将点A(x,﹣2)向上平移3个单位,再向左平移2个单位,得到点B(1,y),则=2.【分析】利用点平移的坐标变化规律求解.解:由题意:1=x﹣2,y=﹣2+3,∴x=3,y=1,∴==2,故答案为2.15.已知x的两个平方根分别是2a﹣1和a﹣5,则x=9.【分析】直接利用平方根的性质得出a的值,进而得出答案.解:∵x的两个平方根分别是2a﹣1和a﹣5,∴2a﹣1+a﹣5=0,解得:a=2,则2a﹣1=3,故x=9.故答案为:9.16.实数a,b在数轴上的位置如图所示,则+a的化简结果为﹣b.【分析】根据数轴得出b<0<a,|b|>a,根据二次根式的性质求出即可.解:∵从数轴可知:b<0<a,|b|>a,∴+a=﹣(a+b)+a=﹣b,故答案为:﹣b.17.如图,已知FC∥AB∥DE,H为FC上一点,∠BHD:∠D:∠B=2:3:4,则∠D =108°.【分析】由平行线的性质可得到∠B+∠BCF=180°,∠D=∠FCD,再由条件代入可求得∠D的度数.解:∵∠BCD:∠D:∠B=2:3:4,∴可设∠BCD=2x°,∠D=3x°,∠B=4x°,∵FC∥AB∥DE,∴∠FCB+∠B=180°,∠D=∠FCD,∴∠D=∠BCD+180°﹣∠B,即3x=2x+180﹣4x,解得x=36,∴∠D=3×36°=108°.故答案为:108°.18.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=﹣3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b 的值.解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴2a+3b=﹣8,3a+1=﹣2,解得a=﹣1,b=﹣2,∴a+b=﹣3,故答案为:﹣3.19.已知,x、y是有理数,且y=+﹣4,则2x+3y的立方根为﹣2.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.解:由题意得:,解得:x=2,则y=﹣4,2x+3y=2×2+3×(﹣4)=4﹣12=﹣8.所以=﹣2.故答案是:﹣2.20.如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.【分析】根据平移的性质可得△DEF≌△ABC,S△DEF=S△ABC,则阴影部分的面积=梯形BEFG的面积,再根据梯形的面积公式即可得到答案.解:∵RT△ABC沿AB的方向平移AD距离得△DEF,∴△DEF≌△ABC,∴EF=BC=8,S△DEF=S△ABC,∴S△ABC﹣S△DBG=S△DEF﹣S△DBG,∴S四边形ACGD=S梯形BEFG,∵CG=3,∴BG=BC﹣CG=8﹣3=5,∴S梯形BEFG=(BG+EF)•BE=(5+8)×5=.故答案为:.三、解答题(共60分)21.求下列各式中的x:(1)4(x+2)2﹣16=0;(2)(2x﹣1)3+=1.【分析】(1)先求出(x+2)的值,然后解方程即可;(2)求出(2x﹣1)的值,解方程即可得出x的值.解:(1)由题意得,4(x+2)2=16,∴(x+2)2=4,∴x+2=±2,解得x=0或﹣4;(2)由题意得,(2x﹣1)3=,∴2x﹣1=,∴x=.22.计算:(1)++;(2)﹣|2﹣|.【分析】(1)首先根据二次根式和立方根的性质进行化简,再计算加减即可;(2)首先根据二次根式和立方根和绝对值的性质进行化简,再计算乘法,后算加减即可.解:(1)原式=﹣3+3﹣1=﹣1;(2)原式=4﹣×﹣(﹣2)=4﹣1﹣+2=5﹣.23.如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)写出点A,点B的坐标;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,在图中画出△A'B'C'并写出三个顶点A'、B'、C'的坐标;(3)求△ABC的面积.【分析】(1)直接根据图形可得点A、B坐标;(2)将三个顶点分别向左平移2个单位长度,再向上平移1个单位长度得到对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.解:(1)由图可知点A坐标为(2,﹣1),点B的坐标为(4,3);(2)如图所示,△A'B'C'即为所求,由图知A'(0,0)、B'(2,4)、C'(﹣1,3);(3)△ABC的面积为3×4﹣×2×4﹣×1×3﹣×1×3=5.24.如图,已知∠1=∠2,DF∥AC,∠C与∠D相等吗?为什么?【分析】根据∠1=∠2,∠1=∠3,可以得到DB∥EC,从而可以得到∠C和∠DBA的关系,然后根据DF∥AC,可以得到∠D和∠DBA的关系,从而可以证明结论成立.解:∠C=∠D,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠DBA,∵DF∥AC,∴∠D=∠DBA,∴∠C=∠D.25.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.【分析】(1)由点M在y轴负半轴上,可得点M的横坐标等于0,列出关于a的绝对值方程,可解得a的值,则点M的坐标可求得;(2)将(1)中所求得的a的值代入计算即可;(3)由直线MN∥x轴及点M的坐标,可设N(x,﹣2),结合线段MN长度为4,可得关于x的方程,解得x的值,则点N的坐标可得.解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣2a<0,∴a=±3,且a>2,∴a=3.∴4﹣2a=﹣2,M(0,﹣2);(2)∵a=3,∴(2﹣a)2020+1=(2﹣3)2020+1=1+1=2;(3)∵直线MN∥x轴,M(0,﹣2),∴设N(x,﹣2),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣2)或(﹣4,﹣2).26.如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.【分析】根据平行线的性质,可以得到∠DAG和∠CAG度数,然后根据AP平分∠CAD,即可得到∠PAG的度数.解:∵DB∥FG∥EC,∴∠BDA=∠DAG,∠ACE=∠CAG,∵∠ADB=60°,∠ACE=36°,∴∠DAG=60°,∠CAG=36°,∴∠DAC=96°,∵AP平分∠CAD,∴∠CAP=48°,∴∠PAG=12°.27.如图1,在平面直角坐标系中点A、B在坐标轴上,其中A(0,a),B(b,0),满足|a﹣3|+=0.(1)求点A、B的坐标;(2)将AB平移到CD,点A对应点C(﹣2,m),若△ABC面积为13,连接CO,求点C的坐标;(3)在(2)的条件下,求证:∠AOC=∠OAB+∠OCD;(4)如图2,若AB∥CD,点C、D也在坐标轴上,点F为线段AB上一动点(不包含A、B两点),连接OF,FP平分∠BFO,∠BCP=2∠PCD,试证明:∠COF=3∠P﹣∠OFP(提示:可直接利用(3)的结论).【分析】(1)利用非负数的性质求解即可.(2)如图1中,分别过点B,A作x轴,y轴的垂线交于点M,过点C作CN⊥AM于N.根据S△ABC=S四边形MNCB﹣S△ABM﹣S△ACN构建方程求解即可.(3)利用平行线的性质,三角形的外角的性质求解即可.(4)如图2中,延长AB交CP的延长线于M.首先证明∠BCD=3(∠CPF﹣∠OFP),再利用结论∠FOC=∠OFB+∠BCD,求解即可.解:(1)∵|a﹣3|+=0,又∵|a﹣3|≥0,≥0,∴a=3,b=4,∴A(0,3),B(4,0).(2)如图1中,分别过点B,A作x轴,y轴的垂线交于点M,过点C作CN⊥AM于N.∵S△ABC=S四边形MNCB﹣S△ABM﹣S△ACN,∴13=•(3+3﹣m)•(4+2)﹣×2×(3﹣m)﹣×3×4,解得m=﹣2,∴C(﹣2,﹣2).(3)如图1中,设CD交y轴于T.∵AB∥CD,∠BAO=∠ATO,∵∠AOC=∠OCD+∠CTO,∴∠AOC=∠OCD+∠BAO.(4)如图2中,延长AB交CP的延长线于M.∵AM∥CD,∴∠DCM=∠M,∵∠BCP=2∠PCD,∴∠BCD=3∠DCM=3∠M,∵∠M=∠FPC﹣∠MFP,∠MFP=∠OFP,∴∠BCD=3(∠CPF﹣∠OFP),∵∠FOC=∠OFB+∠BCD,∴∠FOC=2∠OFP+3∠CPF﹣3∠OFP,∴∠FOC=3∠CPF﹣∠OFP.。
2018-2019学年七年级下册期中数学试卷(有答案及解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.如图:直线a、b被直线c所截,则∠1,∠2,∠3,∠4中,∠1的同位角是()A.∠3B.∠2C.∠4D.不确定2.如图:若∠1=∠2,则()A.AD∥BC B.AB∥CD C.∠A=∠C D.AB⊥BC3.如图:a∥b,若∠1=∠2,则∠2的度数为()A.30°B.90°C.120°D.150°4.已知:等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或105.已知:等腰△ABC中,∠B=∠C,若该三角形有一个内角80°,则顶角为()A.80°B.20°C.80°或20°D.100°6.已知:x m=3,则x2m=()A.6B.9C.12D.187.把0.00091科学记数表示为()A.91×10﹣5B.0.91×10﹣3C.9.1×104D.9.1×10﹣48.下列多项式因式分解能用平方差公式的是()A.﹣x2+1B.﹣x2﹣1C.49﹣x3D.49+x9.在二元一次方程x+3y=10中,若x、y均为正数,则该方程的正整数解的个数为()A.1个B.2个C.3个D.4个10.从长度分别为3cm、4cm、5cm、6cm、9cm的小木棒中任取三根,能搭成三角形的组数有()A.4B.5C.6D.7二、填空题(共8小题,每小题3分,满分24分)11.已知:∠α的两条边分别平行∠β的两条边,若∠α=40°,则∠β=.12.如图AB∥CD,AE,CE分别平分∠BAC,∠ACD,那么∠AEC=度.13.已知多边形的内角和为540°,则该多边形的边数为.14.已知:a m=10,a n=2,则a2m﹣n=.15.若关于x的代数式x2+(m﹣3)x+16 是一个完全平方式,则m=.16.已知:实数a、b满足a2+b2+2a+4b+5=0,则b=.17.若是二元一次方程3x+by=5的一个解,则b=.18.已知:a2+b2+c2﹣ab﹣ac﹣ca=0,则a、b、c的大小关系为.三、解答题(56分)19.(8分)如图:点D、E在AB上,点F在BC上,点G在AC上,若∠1=∠B,∠2=∠3,∠4=70°.(1)请说明EF∥DC(2)求∠ADC的度数(要求书写完整步骤)20.(8分)已知:△ABC中,AB<AC,AH是高,AD是∠BAC的平分线.(1)若∠B=60°,∠C=40°,求∠HAD的度数;(2)若∠B=m°,∠C=n°,(m>n).求∠HAD(用mn的代数式表示)21.(8分)计算:22.(8分)先化简,后求值:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2,其中x=,y=﹣1 23.(8分)把下列各式因式分解:(1)4x2﹣64(2)4(m+n)2﹣9(m﹣n)224.(8分)解下列方程组(1)(代入法)(2)25.(8分)观察并计算(1)①1×2×3×4+1=2②3×4×5×6+1=2限填正整数(2)猜想:写出一个反应上述等量关系的等式.(3)说明你猜想的理由.(4)应用:计算:10×11×12×13+1七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.【分析】根据同位角的定义即可求出答案.【解答】解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角.故选:B.【点评】本题考查同位角的定义,解题的关键是熟练理解同位角的定义,本题属于基础题型.2.【分析】∠1与∠2是直线AB、直线CD被直线BD所截形成的内错角,即∠1=∠2,所以AB ∥CD.【解答】解:∵∠1=∠2,∴AB∥CD,故选:B.【点评】此题考查平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.【分析】根据平行线的性质解答即可.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=∠2,解得:∠2=120°,故选:C.【点评】考查了平行线的判定和性质,平行线的性质有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.4.【分析】因为已知长度为2和4两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;当2为腰时,其它两边为2和4,∵2+2=4=4,所以不能构成三角形,故舍去,∴答案只有10.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【分析】若80°是顶角,则可直接得出答案;若80°是底角,则设顶角是y,根据三角形内角和为180°即可求解;【解答】解:若80°是顶角,则顶角为80°;若80°是底角,则设顶角是y,∴2×80°+y=180°,解得:y=20°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,关键是注意分类讨论.6.【分析】将x m=3代入x2m=(x m)2,计算可得.【解答】解:当x m=3时,x2m=(x m)2=32=9,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00091=9.1×10﹣4.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.【解答】解:A、﹣x2与1符号相反,能运用平方差公式,故本选项正确;B、﹣x2与﹣1符号相同,不能运用平方差公式,故本选项错误;C、49﹣x3,不能运用平方差公式,故本选项错误;D、49+x,不能运用平方差公式,故本选项错误.故选:A.【点评】本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.9.【分析】将方程变形为x=10﹣3y,再分别求出y=1、2、3时x的值即可得.【解答】解:∵x+3y=10,∴x=10﹣3y,当y=1时,x=7;当y=2时,y=4;当y=3时,x=1;∴该方程的正整数解有3组,故选:C.【点评】本题主要考查二元一次方程的解,解题的关键是熟练将方程变形为用含一个未知数的代数式表示另一个未知数及方程的解的定义.10.【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故选:C.【点评】此题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题(共8小题,每小题3分,满分24分)11.【分析】根据当两角的两边分别平行时,两角的关系可能可能相等也可能互补,即可得出答案.【解答】解:∵∠α=40°,∠α的两边分别和∠β的两边平行,∴∠β和∠α可能相等也可能互补,即∠β的度数是40°或140°,故答案为:40°或140°.【点评】本题考查了对平行线的性质的应用,注意:运用了分类思想.12.【分析】根据平行线的性质得∠BAC+∠DCA=180°,再根据角平分线的定义得∠EAC=∠BAC,∠ECA=∠DCA,则∠EAC+∠ECA=90°,然后根据三角形内角和定理可计算出∠AEC.【解答】解:∵AB∥CD,∴∠BAC+∠DCA=180°,∵AE,CE分别平分∠BAC,∠ACD,∴∠EAC=∠BAC,∠ECA=∠DCA,∴∠EAC+∠ECA=(∠BAC+∠DCA)=90°,∴∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.也考查了角平分线的定义.13.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为已知多边形的内角和为540°,所以可列方程求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=540°,解得n=5.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.14.【分析】根据同底数幂的除法法则和幂的乘方与积的乘方法则解答.【解答】解:∵a m=10,a n=2,∴a2m﹣n===50.故答案是:50.【点评】考查了同底数幂的除法和幂的乘方与积的乘方,属于基础计算题.15.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+(m﹣3)x+16 是一个完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故答案为:11或﹣5【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.【分析】将已知等式左边的5变为1+4,利用加法运算律变形后,再利用完全平方公式变形,根据两非负数之和为0,两非负数分别为0,即可求出a与b的值.【解答】解:∵a2+b2+2a+4b+5=0,∴a2+2a+1+b2+4b+4=0,即(a+1)2+(b+2)2=0,∴a+1=0且b+2=0,解得:a=﹣1,b=﹣2.故答案为:﹣2.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,灵活运用完全平方公式是解本题的关键.17.【分析】将x=3、y=4代入方程3x+by=5得到关于b的方程,解之可得.【解答】解:根据题意将x=3、y=4代入方程3x+by=5,得:9+4b=5,解得:b=﹣1,故答案为:﹣1.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握方程的解的定义.18.【分析】对a2+b2+c2﹣ab﹣bc﹣ca=0进行因式分解可得(a﹣b)2+(b﹣c)2+(c﹣a)2=0,进而解答即可.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故答案为a=b=c【点评】本题主要考查因式分解的应用,解题的关键是把所给式子进行因式分解.三、解答题(56分)19.【分析】(1)根据平行线的判定和性质得出DG∥BC,进而得出∠2=∠DCB,利用等量代换得出∠3=∠DCB,进而证明平行即可;(2)利用平行线的性质解答即可.【解答】解:(1)∵∠1=∠B,∴DG∥BC,∴∠2=∠DCB,∵∠2=∠3,∴∠3=∠DCB,∴EF∥DC;(2)∵EF∥DC,∴∠4=∠ADC═70°.【点评】此题考查平行线的判定和性质,关键是根据平行线的判定和性质得出DG∥BC.20.【分析】(1)先利用△ABC的内角和为180°,求出∠BAC的度数,再根据AD是∠BAC的平分线,求出∠BAD的度数,在△ABH中,求出∠BAH=180°﹣∠B﹣∠AHB=30°,根据∠HAD =∠BAD﹣∠BAH,即可解答;(2)根据(1)的解题过程,即可解答.【解答】解:(1)∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=40°,∵△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=60°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=30°,∴∠HAD=∠BAD﹣∠BAH=40°﹣30°=10°,(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣∠B﹣∠C═(180﹣m﹣n)°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=(180﹣m﹣n)°,∵:△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=m°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=(90﹣m)°,∴∠HAD=∠BAD﹣∠BAH=(180﹣m﹣n)°﹣(90﹣m)°=(m﹣n)°,【点评】本题考查了三角形的内角和定理和角平分线的性质,解决本题的关键是熟记三角形内角和定理.21.【分析】首先进行积的乘方运算,再利用单项式乘以多项式得出答案.【解答】解:原式=a2b2(﹣a2b﹣12ab+b2)=﹣8a4b3﹣a3b3+a2b4.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.22.【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2=25y2﹣x2﹣x2+10xy﹣25y2=﹣2x2+10xy,当x=,y=﹣1,原式==﹣﹣5=﹣5.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.23.【分析】(1)首先提取公因式4,再利用平方差公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+8)(x﹣8);(2)4(m+n)2﹣9(m﹣n)2=[2(m+n)+3(m﹣n)][2(m+n)﹣3(m﹣n)]=(5m﹣n)(﹣m+5n).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:y=﹣2x+8③,把③代入①得:3x+8x﹣32=1,解得:x=3,把x=3代入②得:y=2,则方程组的解为;(2)方程组整理得:,①+②得:4x=32,解得:x=8,把x=8代入②得:y=﹣6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.【分析】(1)各式计算得到结果即可;(2)归纳总结得到一般性结论,写出即可;(3)验证得到的等式即可;(4)利用得出的规律计算即可求出值.【解答】解:(1)①1×2×3×4+1=52;②3×4×5×6+1=192;故答案为:①5;②19;(2)猜想得到:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2;(3)等式左边=(n2+n)(n2+5n+6)+1=n4+6n3+11n2+6n+1,等式右边=(n2+3n)2+2(n2+3n)+1=n4+6n3+11n2+6n+1,左边=右边,等式成立;(4)根据题意得:原式=1312=17161.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.。
2019-2020学年北京市通州区七年级(下)期中数学试卷 (解析版)
2019-2020学年北京市通州区七年级第二学期期中数学试卷一、选择题1.(2分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A.﹣2<x<2B.x<2C.x≥﹣2D.x>22.(2分)下列运算:①x2•x3=x6;②x2+x2=2x2;③(x2)3=x6;④(﹣3x)2=9x2中,正确的是()A.②③④B.①②④C.①③④D.①②③3.(2分)解方程组时,由①﹣②,得()A.﹣2n=1B.﹣2n=3C.8n=3D.8n=14.(2分)如图,量得直线l外一点P到l的距离PB的长为5cm,点A是直线l上的一点,那么线段PA的长不可能是()A.15 cm B.5.5cm C.5cm D.4cm5.(2分)如果x<y,那么下列各式中一定成立的是()A.>B.﹣x>﹣y C.x+1>y+1D.x﹣c>y﹣c 6.(2分)已知二元一次方程组,把(2)代入(1),整理,得()A.x﹣2x+1=4B.x﹣2x﹣1=4C.x﹣6x﹣3=6D.x﹣6x+3=4 7.(2分)如果关于x的不等式组只有3个整数解,那么a的取值范围是()A.3≤a<4B.3<a≤4C.2≤a<3D.2<a≤38.(2分)用加减法解方程组,下列解法正确的是()A.①×3+②×2,消去y B.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去x D.①×2﹣②×3,消去x9.(2分)把一根长11cm的绳子截成1cm和3cm两种规格的绳子,要求每种规格的绳子至少1根,且无浪费.下面有四种说法:①规格为1cm的绳子可能截出8根;②规格为1cm的绳子可能截出5根;③规格为1cm的绳子可能截出2根;④规格为1cm的绳子可能截出1根.则所有正确说法的序号是()A.①②③④B.①②③C.①②④D.②③④10.(2分)如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤7二、填空题{本题共10个小题,每小题2分,共20分)11.(2分)根据数量关系“m的3倍与2的和不大于1”,列出不等式为.12.(2分)(2x﹣1)2=.13.(2分)如果关于x的不等式x≥的解集在数轴上表示如图所示,那么a的值为.14.(2分)如果关于x,y的二元一次方程的一个解为,那么这个方程可以是.15.(2分)已知x=2是关于x的不等式x﹣3m+1≤0的一个解,那么m的取值范围为.16.(2分)已知整式2a x+y b3﹣a2b x﹣y可以合并,那么代数式(x+y)(x﹣y)的值是.17.(2分)计算:52021×0.22020=.18.(2分)《九章算术》中有这样一个问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只燕、雀的重量各为多少?”译文如下:有5只麻雀和6只燕子,一共重16两;5只麻雀的重量超过了6只燕子的重量,如果互换其中的一只,重量恰好相等,则每只麻雀、燕子的平均重量分别为多少两?设每只麻雀的平均重量为x两,每只燕子的平均重量为y两,根据题意列出的方程组是.19.(2分)下表中的每一对x,y的值都是方程x+y=3的一个解.x…﹣2﹣1012345…y…543210﹣1﹣2…①当x<0时,y的值大于3;②当y<2时,x的值小于1;③y的值随着x的增大越来越小.上述结论中,所有正确结论的序号是.20.(2分)五一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠话动甲全场按标价的6折销售乙实行“满100元送100元的购物券“的优惠,购物券可以在再购买时冲抵现金(比如:顾客购买衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券丙实行“满100元减50元”的优惠(比如:某顾客购物320元,他只需付款170元)三个商场同时出售某种标价320元的破壁机和某种标价390元的空气炸锅,若张阿姨想买这两样厨房用具,她选择商场更合适.三、解答題(本题共60分,第21-24题,每小題5分;第25~27题,每小题5分;第28~29题,每小题5分;第30题8分)解答应写出文字说明、演算步骤或证明过程21.(5分)解方程组.22.(5分)解不等式组.23.(5分)计算:(x+y)2﹣(x+2y)(x﹣2y)﹣2y(x﹣2y).24.(5分)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位,某树栽种时的树围约为8cm,以后树围每年增加约4cm,这棵树至少生长多少年(年数取整数),其树围才能超过2m?25.(6分)若不等式的最大整数解为方程2x﹣ax=3的解,求a的值.26.(6分)某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示,y表示.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.27.(6分)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2).(1)设图1中阴影部分的面积为S₁,图2中阴影部分的面积为S₂,请用含a.b的式子表示:S₁=,S₂=;(不必化简)(2)以上结果可以验证的乘法公式是.(3)利用(2)中得到的公式,计算;20202﹣2019×2021.28.(7分)在数轴上,点A表示的数为2,点B表示的数为5.(1)如果C是数轴上的一点,那么点C到点A的距离与点C到点B的距离之和的最小值是;(2)求关于x的不等式组的解集;(3)如果关于x的不等式组的解集中每一个x值都不在线段AB上,求m的取值范围.29.(7分)阅读以下内容:已知有理数m,n满足m+n=3,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.30.(8分)如果一元一次方程的解是一元一次不等式组的一个解,那么称该一元一次方程为该不等式组的子集方程.(1)在方程x﹣3=0①,2x+1=0②,x﹣(3x+1)=﹣5③中,写出是不等式组的子集方程的序号:;(2)写出不等式组的一个子集方程,使得它的解是整数:;(3)若方程x=1,x=2都是关于x的不等式组的子集方程,求m的取值范围.参考答案一、选择题(本题共10个小題,每小题2分,共20分)每题均有四个选项,符合题意的选项只有一个.1.(2分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A.﹣2<x<2B.x<2C.x≥﹣2D.x>2解:根据数轴图示可知,这两个不等式组成的不等式组的解集为x>2,故选:D.2.(2分)下列运算:①x2•x3=x6;②x2+x2=2x2;③(x2)3=x6;④(﹣3x)2=9x2中,正确的是()A.②③④B.①②④C.①③④D.①②③解:x2•x3=x2+3=x5,因此①不正确;根据整式加减的计算方法,合并同类项可得x2+x2=2x2,因此②正确;(x2)3=x2×3=x6,因此③正确;④(﹣3x)2=(﹣3)2•x2=9x2,因此④正确;因此正确的有:②③④,故选:A.3.(2分)解方程组时,由①﹣②,得()A.﹣2n=1B.﹣2n=3C.8n=3D.8n=1解:解方程组时,由①﹣②,得8n=3.故选:C.4.(2分)如图,量得直线l外一点P到l的距离PB的长为5cm,点A是直线l上的一点,那么线段PA的长不可能是()A.15 cm B.5.5cm C.5cm D.4cm解:直线l外一点P到l的距离PB的长为5cm,点A是直线l上的一点,那么线段PA的长最短等于5cm,故不可能是4cm,故选:D.5.(2分)如果x<y,那么下列各式中一定成立的是()A.>B.﹣x>﹣y C.x+1>y+1D.x﹣c>y﹣c解:A、由x<y,可得:,选项不成立;B、由x<y,可得:﹣x>﹣y,选项成立;C、由x<y,可得:x+1<y+1,选项不成立;D、由x<y,可得:x﹣c<y﹣c,选项不成立;故选:B.6.(2分)已知二元一次方程组,把(2)代入(1),整理,得()A.x﹣2x+1=4B.x﹣2x﹣1=4C.x﹣6x﹣3=6D.x﹣6x+3=4解:,把(2)代入(1)得:x﹣3(2x﹣1)=4,整理,得:x﹣6x+3=4;故选:D.7.(2分)如果关于x的不等式组只有3个整数解,那么a的取值范围是()A.3≤a<4B.3<a≤4C.2≤a<3D.2<a≤3解:∵关于x的不等式组只有3个整数解,∴3个整数解是0,1,2,∴2≤a<3,故选:C.8.(2分)用加减法解方程组,下列解法正确的是()A.①×3+②×2,消去y B.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去x D.①×2﹣②×3,消去x解:用加减法解方程组,①×(﹣3)+②×2,消去x,故选:C.9.(2分)把一根长11cm的绳子截成1cm和3cm两种规格的绳子,要求每种规格的绳子至少1根,且无浪费.下面有四种说法:①规格为1cm的绳子可能截出8根;②规格为1cm的绳子可能截出5根;③规格为1cm的绳子可能截出2根;④规格为1cm的绳子可能截出1根.则所有正确说法的序号是()A.①②③④B.①②③C.①②④D.②③④解:设截成1cm的绳子x根,3cm的绳子y根,由题意得:x+3y=11,①当x=8时,y=1,即规格为1cm的绳子截出8根时,3cm规格的绳子可以截1根,正确;②当x=5时,y=2,即规格为1cm的绳子截出5根时,3cm规格的绳子可以截2根,正确;③当x=2时,y=3,即规格为1cm的绳子截出2根时,3cm规格的绳子可以截3根,正确;④当x=1时,y=,即规格为1cm的绳子截出1根时,3cm规格的绳子截不出整数根,所以不正确;正确说法的序号是①②③.故选:B.10.(2分)如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤7解:依题意,得,解得:4≤x<7.故选:B.二、填空题{本题共10个小题,每小题2分,共20分)11.(2分)根据数量关系“m的3倍与2的和不大于1”,列出不等式为3m+2≤1.解:根据题意得:3m+2≤1.故答案为:3m+2≤1.12.(2分)(2x﹣1)2=4x2﹣4x+1.解:原式=4x2﹣4x+1.故答案为4x2﹣4x+1.13.(2分)如果关于x的不等式x≥的解集在数轴上表示如图所示,那么a的值为﹣3.解:根据题意知=﹣2,∴a﹣1=﹣4,则a=﹣3,故答案为:﹣3.14.(2分)如果关于x,y的二元一次方程的一个解为,那么这个方程可以是x+y =1(答案不唯一).解:根据题意:x+y=1(答案不唯一),故答案为:x+y=1(答案不唯一).15.(2分)已知x=2是关于x的不等式x﹣3m+1≤0的一个解,那么m的取值范围为m ≥1.解:∵x=2是关于x的不等式x﹣3m+1≤0的一个解,∴2﹣3m+1≤0,解得:m≥1.故答案为:m≥1.16.(2分)已知整式2a x+y b3﹣a2b x﹣y可以合并,那么代数式(x+y)(x﹣y)的值是6.解:∵整式2a x+y b3﹣a2b x﹣y可以合并,∴x+y=2,x﹣y=3,∴(x+y)(x﹣y)=2×3=6,故答案为:6.17.(2分)计算:52021×0.22020=5.解:52021×0.22020=(5×0.2)2020×5=12020×5=5,故答案为:5.18.(2分)《九章算术》中有这样一个问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只燕、雀的重量各为多少?”译文如下:有5只麻雀和6只燕子,一共重16两;5只麻雀的重量超过了6只燕子的重量,如果互换其中的一只,重量恰好相等,则每只麻雀、燕子的平均重量分别为多少两?设每只麻雀的平均重量为x两,每只燕子的平均重量为y两,根据题意列出的方程组是.解:依题意,得:.故答案为:.19.(2分)下表中的每一对x,y的值都是方程x+y=3的一个解.x…﹣2﹣1012345…y…543210﹣1﹣2…①当x<0时,y的值大于3;②当y<2时,x的值小于1;③y的值随着x的增大越来越小.上述结论中,所有正确结论的序号是①③.解:观察表格得:①当x<0时,y>3;②当y<2时,x的值大于1;③y的值随着x 的增大越来越小.故答案为:①③.20.(2分)五一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠话动甲全场按标价的6折销售乙实行“满100元送100元的购物券“的优惠,购物券可以在再购买时冲抵现金(比如:顾客购买衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券丙实行“满100元减50元”的优惠(比如:某顾客购物320元,他只需付款170元)三个商场同时出售某种标价320元的破壁机和某种标价390元的空气炸锅,若张阿姨想买这两样厨房用具,她选择丙商场更合适.解:在甲商场购买所需费用(320+390)×0.6=426(元);在乙商场购买所需费用320+(390﹣300)=410(元);在丙商场购买所需费用(320+390)﹣50×7=360(元).∵426>410>360,∴选择丙商场更合适.故答案为:丙.三、解答題(本题共60分,第21-24题,每小題5分;第25~27题,每小题5分;第28~29题,每小题5分;第30题8分)解答应写出文字说明、演算步骤或证明过程21.(5分)解方程组.解:,①×3+②得:10x=﹣30,解得:x=﹣3,把x=﹣3代入②得:y=5,则方程组的解为.22.(5分)解不等式组.解:不等式组,由①得:x<2,由②得:x≤1,则不等式组的解集为x≤1.23.(5分)计算:(x+y)2﹣(x+2y)(x﹣2y)﹣2y(x﹣2y).解:原式=x2+2xy+y2﹣(x2﹣4y2)﹣(2xy﹣4y2)=x2+2xy+y2﹣x2+4y2﹣2xy+4y2=9y2.24.(5分)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位,某树栽种时的树围约为8cm,以后树围每年增加约4cm,这棵树至少生长多少年(年数取整数),其树围才能超过2m?解:设这棵树生长x年,其树围才能超过2m,由题意得8+4x>200解得:x>48∵x是整数,∴x=49.答:这棵树生长49年,其树围才能超过2m.25.(6分)若不等式的最大整数解为方程2x﹣ax=3的解,求a的值.解:不等式,去分母得:6﹣2(x﹣2)>3x,去括号得:6﹣2x+4>3x,移项合并得:﹣5x>﹣10,解得:x<2,不等式最大整数解为1,把x=1代入方程得:2﹣a=3,解得:a=﹣1,则a的值为﹣1.26.(6分)某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示甲工程队修建道路的长度,y表示乙工程队修建道路的长度.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.解:(1)由题意可知:x表示甲工程队修建道路的长度,y表示乙工程队修建道路的长度.故答案为:甲工程队修建道路的长度,乙工程队修建道路的长度.(2)根据题意,得,解得.∴200×0.02=4(千米),360×0.01=3.6(千米).答:甲工程队修建道路4千米,乙工程队修建道路3.6千米.27.(6分)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2).(1)设图1中阴影部分的面积为S₁,图2中阴影部分的面积为S₂,请用含a.b的式子表示:S₁=a2﹣b2,S₂=(a+b)(a﹣b);(不必化简)(2)以上结果可以验证的乘法公式是(a+b)(a﹣b)=a2﹣b2.(3)利用(2)中得到的公式,计算;20202﹣2019×2021.解:(1)根据图形以及正方形和长方形的面积计算公式可得:S₁=a2﹣b2,S₂=(a+b)(a﹣b)故答案为:a2﹣b2,(a+b)(a﹣b);(2)以上结果可以验证的乘法公式是a2﹣b2=(a+b)(a﹣b).故答案为:(a+b)(a﹣b)=a2﹣b2.(3)20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=20202﹣(20202﹣1)=20202﹣20202+1=1.28.(7分)在数轴上,点A表示的数为2,点B表示的数为5.(1)如果C是数轴上的一点,那么点C到点A的距离与点C到点B的距离之和的最小值是3;(2)求关于x的不等式组的解集;(3)如果关于x的不等式组的解集中每一个x值都不在线段AB上,求m的取值范围.解:(1)点C到点A的距离与点C到点B的距离之和的最小值是5﹣2=3,故答案为:3;(2)解不等式x﹣m≥﹣1,得x≥m﹣1,解不等式x﹣m<1,得:x<m+1,则不等式组的解集为m﹣1≤x<m+1;(3)∵关于x的不等式组的解集中每一个x值都不在线段AB上,∴m﹣1>5或m+1≤2,解得m>6或m≤1.29.(7分)阅读以下内容:已知有理数m,n满足m+n=3,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.解:(1)选择甲,,①×3﹣②×2得:5m=21k﹣8,解得:m=,②×3﹣①×2得:5n=2﹣14k,解得:n=,代入m+n=3得:+=3,去分母得:21k﹣8+2﹣14k=15,移项合并得:7k=21,解得:k=3;选择乙,,①+②得:5m+5n=7k﹣6,解得:m+n=,代入m+n=3得:=3,去分母得:7k﹣6=15,解得:k=3;选择丙,联立得:,①×3﹣②得:m=11,把m=11代入①得:n=﹣8,代入3m+2n=7k﹣4得:33﹣16=7k﹣4,解得:k=3;(2)根据题意得:,解得:,检验符合题意,则a和b的值分别为2,5.30.(8分)如果一元一次方程的解是一元一次不等式组的一个解,那么称该一元一次方程为该不等式组的子集方程.(1)在方程x﹣3=0①,2x+1=0②,x﹣(3x+1)=﹣5③中,写出是不等式组的子集方程的序号:①③;(2)写出不等式组的一个子集方程,使得它的解是整数:2x﹣2=0;(3)若方程x=1,x=2都是关于x的不等式组的子集方程,求m的取值范围.解:(1)解方程x﹣3=0得:x=3,解方程2x+1=0得:x=﹣,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:<x<,所以不等式组子集方程是①③,故答案为:①③;(2)解不等式2x﹣1<3,得:x<2,解不等式3x+1>﹣x﹣5,得:x>﹣,则不等式组的解集为﹣<x<2,∴其整数解为﹣1、0、1,则该不等式组的一个子集方程为2x﹣2=0.故答案为:2x﹣2=0;(3)解关于x的不等式组的得m<x≤m+2,∵方程x=1,x=2都是关于x的不等式组的子集方程,∴0≤m<1.。
苏教版七年级数学下册 期中复习《选择题》专练(含答案)
七年级数学期中复习《选择题》专练一.选择题(共30小题)1.过五边形的一个顶点的对角线共有()条.A.1 B.2 C.3 D.42.小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm、3cm、8cm、15cm的木条供她选择,那她第三根应选择()A.2cm B.3cm C.8cm D.15cm3.下列从左到右的变形,属于因式分解的是()A.(a+4)(a﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1C.8m2n3=2m2•4n2D.m2﹣2m+1=(m﹣1)24.如图,下列条件中:(1)∠B+∠BAD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5;能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个5.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠D=∠DCE C.∠B=∠D D.∠1=∠26.如图,AB∥CD.一副三角尺按如图所示放置,∠AEG=20度,则∠HFD为()A.25°B.35°C.55°D.45°7.如图,直线AB∥CD,点E在CD上,点O、点F在AB上,∠EOF的角平分线OG交CD于点G,过点F作FH⊥OE于点H,已知∠OGD=148°,则∠OFH的度数为()A.26°B.32°C.36°D.42°8.下列说法,其中错误的有()①相等的两个角是对顶角②若∠1+∠2=180°,则∠1与∠2互为邻补角③同位角相等④垂线段最短⑤同一平面内,两条直线的位置关系有:相交、平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个9.以下四种沿AB折叠的方法中,由相应条件不一定能判定纸带两条边线a,b互相平行的是()A.展开后测得∠1=∠2B.展开后测得∠1=∠2且∠3=∠4C.测得∠1=∠2D.测得∠1=∠210.要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.11.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.下列条件:①∠A﹣∠B=∠C;②∠A:∠B:∠C=2:3:5;③∠A∠B∠C;④∠A=∠B=2∠C;⑤∠A=∠B∠C,其中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个13.如图,在△ACB中,∠ACB=90°,∠A=24°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′的度数为()A.42°B.40°C.30°D.24°14.若2x=3,4y=5,则2x+2y的值为()A.15 B.﹣2 C.D.15.如果a=(﹣2019)0,b=(﹣0.1)﹣1,c=()﹣2,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a16.人体中红细胞的直径约为0.0000077m,用科学记数法表示该数据为()A.0.77×10﹣6B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣717.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.418.下列运算正确的是()A.3x3•5x2=15x6 B.(﹣3x)2•4x3=﹣12x5C.4y•(﹣2xy2)=﹣8xy3 D.(﹣2a)3•(﹣3a)2=﹣54a519.长方形的长是1.6×103cm,宽是5×102cm,则它的面积是()A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm2 20.计算(﹣4m2)•(3m+2)的结果是()A.﹣12m3+8m2B.12m3﹣8m2C.﹣12m3﹣8m2D.12m3+8m2 21.等式(x﹣2)0=1成立的条件是()A.x≠﹣2 B.x≠2 C.x≤﹣2 D.x≥﹣222.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,则需要C类卡片张数为()A.2 B.3 C.4 D.523.如图,用代数式表示阴影部分面积为()A.ac+(b﹣c)c B.(a﹣c)(b﹣c)C.ac+bc D.a+b+2c(a﹣c)+(b﹣c)24.若4a2+12ab+m是关于a,b的完全平方式,则m等于()A.3b2B.9b2C.36b2D.9b425.下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)26.杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是()A.36 B.45 C.55 D.6627.数形结合是初中数学重要的思想方法,下图就是用几何图形描述了一个重要的数学公式,这个公式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.a(a﹣b)=a2﹣ab D.(a﹣b)2=a2﹣b228.从边长为a的大正方形纸板挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)(a﹣b)=a2﹣b229.已知x﹣y=3,y﹣z=2,x+z=4,则代数式x2﹣z2的值是()A.9 B.18 C.20 D.2430.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值()A.3 B.2 C.1 D.0答案与解析一.选择题(共30小题)1.(2019秋•江岸区期中)过五边形的一个顶点的对角线共有()条.A.1 B.2 C.3 D.4【分析】直接利用多边形的性质画出对角线,即可求解.【解析】如图所示:过五边形的一个顶点可作2条对角线.故选:B.2.(2019春•铜山区期中)小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm、3cm、8cm、15cm的木条供她选择,那她第三根应选择()A.2cm B.3cm C.8cm D.15cm【分析】设第三根木条的长度为xcm,再由三角形的三边关系即可得出结论.【解析】设第三根木条的长度为xcm,则8﹣5<x<8+5,即3<x<13.故选:C.3.(2019春•高邮市期中)下列从左到右的变形,属于因式分解的是()A.(a+4)(a﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1C.8m2n3=2m2•4n2D.m2﹣2m+1=(m﹣1)2【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【解析】A、是整式乘法,不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.4.(2019春•徐州期中)如图,下列条件中:(1)∠B+∠BAD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5;能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个【分析】根据平行线的判定定理,(3)(4)能判定AB∥CD.【解析】(1)∠B+∠BCD=180°,能判定AD∥BC,则不能判定AB∥CD;(2)∠1=∠2,能判定AD∥BC,所不能判定AB∥CD;(3)∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;(4)∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.满足条件的有(3),(4).故选:B.5.(2019春•秦淮区校级期中)如图,点E在BC的延长线上,下列条件中能判断AB∥CD 的是()A.∠3=∠4 B.∠D=∠DCE C.∠B=∠D D.∠1=∠2【分析】根据平行线的判定定理对四个选项进行逐一分析即可.【解析】A、由∠3=∠4可以判定AD∥BC,不能判断AB∥CD,故本选项错误;B、由∠D=∠DCE可以判定AD∥BC,不能判断AB∥CD,故本选项错误;C、由∠B=∠D不能判断AB∥CD,故本选项错误;D、由∠1=∠2可以判定AB∥CD,依据是“内错角相等,两直线平行”,故本选项正确;故选:D.6.(2019春•如皋市期中)如图,AB∥CD.一副三角尺按如图所示放置,∠AEG=20度,则∠HFD为()A.25°B.35°C.55°D.45°【分析】过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.【解析】过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°﹣∠GFC﹣∠GFP﹣∠EFH=35°.故选:B.7.(2019春•相城区期中)如图,直线AB∥CD,点E在CD上,点O、点F在AB上,∠EOF的角平分线OG交CD于点G,过点F作FH⊥OE于点H,已知∠OGD=148°,则∠OFH的度数为()A.26°B.32°C.36°D.42°【分析】依据平行线的性质即可得到∠GOB的度数,再根据角平分线即可得出∠HOF的度数,依据三角形内角和定理即可得到∠OFH的度数.【解析】∵AB∥CD,∠OGD=148°,∴∠GOF=32°,又∵GO平分∠EOF,∴∠HOF=2∠GOB=64°,∵FH⊥OE于点H,∴∠OFH=90°﹣64°=26°,故选:A.8.(2019春•海安县期中)下列说法,其中错误的有()①相等的两个角是对顶角②若∠1+∠2=180°,则∠1与∠2互为邻补角③同位角相等④垂线段最短⑤同一平面内,两条直线的位置关系有:相交、平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个【分析】根据对顶角,同位角,邻补角定义,垂线的性质,平行公理逐个判断即可.【解析】相等的两个角不一定是对顶角,如图:∠1=∠2,但不是对顶角;故①错误;若∠1+∠2=180°,则∠1与∠2不一定是邻补角,如图:∠A+∠B=180°,但∠A和∠B不是邻补角,故②错误;同位角不一定相等,如图:∠1和∠2是同位角,但是∠1和∠2不相等,故③错误;垂线段最短,故④正确;同一平面内,两条直线的位置关系有:相交和平行,故⑤错误;过直线外一点,有且只有一条直线与这条直线平行,故⑥正确;即错误的有4个,故选:D.9.(2019春•吴江区期中)以下四种沿AB折叠的方法中,由相应条件不一定能判定纸带两条边线a,b互相平行的是()A.展开后测得∠1=∠2B.展开后测得∠1=∠2且∠3=∠4C.测得∠1=∠2D.测得∠1=∠2【分析】根据平行线的判定定理,进行分析,即可解答.【解析】A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、∠1=∠2,根据同位角相等,两直线平行进行判定,故正确.故选:C.10.(2019春•大丰区期中)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解析】过点C作AB边的垂线,正确的是C.故选:C.11.(2019春•徐州期中)如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF =2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【解析】∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°∠ABC,∴∠ADB不等于∠CDB,∴③错误;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC∠EAC,∠DCA∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°(∠EAC+∠ACF)=180°(∠ABC+∠ACB+∠ABC+∠BAC)=180°(180°+∠ABC)=90°∠ABC,∴④正确;∠BDC=∠DCF﹣∠DBF∠ACF∠ABC∠BAC,∴⑤正确,故选:D.12.(2019春•常州期中)下列条件:①∠A﹣∠B=∠C;②∠A:∠B:∠C=2:3:5;③∠A∠B∠C;④∠A=∠B=2∠C;⑤∠A=∠B∠C,其中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【分析】根据三角形内角和定理、直角三角形的定义解答.【解析】①∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∴∠A=90°,即△ABC为直角三角形;②设∠A、∠B、∠C分别为2x、3x、5x,由三角形内角和定理得,2x+3x+5x=180°,解得,x=18°,∠C=5x=90°,即△ABC为直角三角形;③∠A∠B∠C,则∠C=3∠A,∠B=2∠A,由三角形内角和定理得,∠A+2∠A+3∠A=180°,解得,∠A=30°,∴∠C=3∠A=90°,即△ABC为直角三角形;④∠A=∠B=2∠C,由三角形内角和定理得,2∠C+2∠C+∠C=180°,解得,∠C=36°,∠A=∠B=2∠C=72°,即△ABC不是直角三角形;⑤∠A=∠B∠C,由三角形内角和定理得,∠C∠C+∠C=180°,解得,∠C=90°,即△ABC是直角三角形;故选:C.13.(2019春•江阴市期中)如图,在△ACB中,∠ACB=90°,∠A=24°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′的度数为()A.42°B.40°C.30°D.24°【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.【解析】∵在Rt△ACB中,∠ACB=90°,∠A=24°,∴∠B=90°﹣24°=66°,∵△CDB′由△CDB折叠而成,∴∠CB′D=∠B=66°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=66°﹣24°=42°.故选:A.14.(2019秋•崇川区校级期中)若2x=3,4y=5,则2x+2y的值为()A.15 B.﹣2 C.D.【分析】根据幂的乘方与同底数幂的乘法法则解答即可.【解析】∵2x=3,4y=22y=5,∴2x+2y=2x•22y=3×5=15.故选:A.15.(2019春•天宁区校级期中)如果a=(﹣2019)0,b=(﹣0.1)﹣1,c=()﹣2,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【分析】将三个数化简后即可求出答案.【解析】a=1,b=()﹣1=﹣10,c=()2,∴a>c>b,故选:C.16.(2019春•玄武区期中)人体中红细胞的直径约为0.0000077m,用科学记数法表示该数据为()A.0.77×10﹣6B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解析】0.0000077=7.7×10﹣6.故选:C.17.(2019春•秦淮区期中)如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.4【分析】由于任何非0数的0次幂等于1和1的任何指数为1,所以分两种情况讨论.【解析】当x+3=0时,x=﹣3;当2x﹣3=1时,x=2.∴x的值为2,﹣3,当x=1时,等式(2x﹣3)x+3=1,故选:C.18.(2019春•淮安期中)下列运算正确的是()A.3x3•5x2=15x6 B.(﹣3x)2•4x3=﹣12x5C.4y•(﹣2xy2)=﹣8xy3 D.(﹣2a)3•(﹣3a)2=﹣54a5【分析】根据单项式乘单项式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解析】A、结果是15x5,故本选项错误;B、结果是36x5,故本选项错误;C、结果是﹣8xy3 ,故本选项正确;D、结果是﹣72a5,故本选项错误;故选:C.19.(2019春•东台市期中)长方形的长是1.6×103cm,宽是5×102cm,则它的面积是()A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm2【分析】根据长方形的长是1.6×103cm,宽是5×102cm,根据面积=长×宽列式,然后利用单项式的乘法法则和同底数幂的乘法的性质计算.【解析】(1.6×103)×(5×102)=(1.6×5)×(103×102)=8×105(cm2).故选:C.20.(2019秋•崇川区校级期中)计算(﹣4m2)•(3m+2)的结果是()A.﹣12m3+8m2B.12m3﹣8m2C.﹣12m3﹣8m2D.12m3+8m2【分析】直接利用单项式乘以多项式运算法则求出即可.【解析】(﹣4m2)•(3m+2)=﹣12m3﹣8m2.故选:C.21.(2020春•亭湖区校级期中)等式(x﹣2)0=1成立的条件是()A.x≠﹣2 B.x≠2 C.x≤﹣2 D.x≥﹣2【分析】根据零指数幂的概念列出不等式,解不等式即可.【解析】由题意得,x﹣2≠0,解得,x≠2,故选:B.22.(2019春•沭阳县期中)如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,则需要C类卡片张数为()A.2 B.3 C.4 D.5【分析】多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.【解析】大长方形面积=(a+2b)•(2a+b)=2a2+5ab+2b2所以大长方形是由2个A类正方形、5个C类长方形、2个B类正方形组成,故选:D.23.(2018秋•崇川区校级期中)如图,用代数式表示阴影部分面积为()A.ac+(b﹣c)c B.(a﹣c)(b﹣c)C.ac+bc D.a+b+2c(a﹣c)+(b﹣c)【分析】先表示出阴影部分的面积,再根据整式的运算法则进行化简,最后判断即可.【解析】阴影部分的面积是ac+bc﹣c2,A、ac+(b﹣c)c=ac+bc﹣c2,故本选项符合题意;B、(a﹣c)(b﹣c)是空白部分的面积,不是阴影部分的面积,故本选项不符合题意;C、ac+bc不是阴影部分的面积,故班选项不符合题意;D、a+b+2c(a﹣c)+b﹣c=a+2b﹣2c2﹣c不能阴影部分的面积,故本选项不符合题意;故选:A.24.(2019秋•崇川区校级期中)若4a2+12ab+m是关于a,b的完全平方式,则m等于()A.3b2B.9b2C.36b2D.9b4【分析】利用完全平方公式的结构特征判断即可求出m的值.【解析】∵4a2+12ab+m是关于a,b的完全平方式,∴m=9b2,故选:B.25.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)【分析】利用平方差公式的结构特征判断即可.【解析】能用平方差公式计算的是(a2﹣1)(﹣a2﹣1)=﹣(a2﹣1)(a2+1),相同项是a2,相反项是1.故选:C.26.(2019秋•江都区期中)杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是()A.36 B.45 C.55 D.66【分析】从第3行开始依次确定第三个数,即是完全平方公式中的第三项的系数,找到规律即可.【解析】依据规律可得到:(a+n)10的展开式的系数是杨辉三角第11行的数,第3行第三个数为1,第4行第三个数为3=1+2,第5行第三个数为6=1+2+3,…第11行第三个数为:1+2+3+ (9)故选:B.27.(2019秋•崇川区校级期中)数形结合是初中数学重要的思想方法,下图就是用几何图形描述了一个重要的数学公式,这个公式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.a(a﹣b)=a2﹣ab D.(a﹣b)2=a2﹣b2【分析】分别表示出图1和图2中的阴影面积,二者相等,比较各选项,即可得答案.【解析】图1中阴影部分面积等于大正方形的面积a2,减去小正方形的面积b2,即a2﹣b2;图2中阴影部分为长等于(a+b),宽等于(a﹣b)的长方形,其面积等于(a+b)(a﹣b),二者面积相等,则有a2﹣b2=(a+b)(a﹣b).比较各选项,可知只有A符合题意.故选:A.28.(2019秋•岳麓区校级期中)从边长为a的大正方形纸板挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)(a﹣b)=a2﹣b2【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【解析】图甲中阴影部分的面积为:a2﹣b2,图乙中阴影部分的面积为:(a+b)(a﹣b)∵甲乙两图中阴影部分的面积相等∴a2﹣b2=(a+b)(a﹣b)∴可以验证成立的公式为(a+b)(a﹣b)=a2﹣b2故选:D.29.(2019春•金坛区期中)已知x﹣y=3,y﹣z=2,x+z=4,则代数式x2﹣z2的值是()A.9 B.18 C.20 D.24【分析】直接利用平方差公式将原式变形得出答案.【解析】∵x﹣y=3,y﹣z=2,x+z=4,∴x﹣y+y﹣z=5,∴x﹣z=5,∴x2﹣z2=(x﹣z)(x+z)=20.故选:C.30.(2019春•东台市期中)已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值()A.3 B.2 C.1 D.0【分析】根据a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,可以求得a﹣b、b ﹣c、a﹣c的值,然后将所求式子变形再因式分解即可解答本题.【解析】∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca=3,故选:A.21。
【期中卷】浙教版最新七年级下册数学期中模拟测试卷(二)含答案与解析
浙教版七年级下册期中模拟测试卷(二) 数学 (时间:100分钟 满分:120分) 班级___________ 姓名___________ 学号____________ 分数____________ 注意事项: 本试卷满分120分,试题共20题,选择10道、填空6道、解答7道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.下列各式中计算结果为x7的是( )
A.x3+x4 B.x3•x4 C.(x3)4 D.x7+x7
2.若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为( ) A.a=5,b=6 B.a=1,b=﹣6 C.a=1,b=6 D.a=5,b=﹣6 3.用加减法解方程组{3𝑥−2𝑦=3①4𝑥+𝑦=15②时,如果消去y,最简捷的方法是( )
A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣① D.②×2+① 4.若x2﹣2(m﹣3)x+16是关于x的完全平方式,则m是( )
A.7或﹣1 B.﹣1 C.7 D.5或1 5.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A.第一次向左拐40°,第二次向右拐40° B.第一次向右拐140°,第二次向左拐40° C.第一次向右拐140°,第二次向右拐40° D.第一次向左拐140°,第二次向左拐40° 6.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=( )
A.110° B.115° C.120° D.130° 7.由方程组{𝑥−𝑚=5𝑦+3=𝑚,可得到x与y的关系式是( ) A.x﹣y=8 B.x﹣y=2 C.x﹣y=﹣2 D.x﹣y=﹣8 8.狗年来临,小兰要做玩偶小狗和小鱼作为新年礼物,她去市场买了36米布,每米布可以做小狗25个,或者小鱼40个,小兰将1只小狗和2只小鱼配成一套礼物,结果发现布没有剩余,恰好配套做成了礼物.若设用x米布做小狗,用y米布做小鱼,则可列( ) A.{𝑥+𝑦=36𝑦=2𝑥 B.{𝑥+𝑦=3625𝑥=2×40𝑦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年七年级下册数学期中考试模拟试题 一、选择题 1.若关于x的分式方程2344mxx有增根,则m的值为( ) A. -2 B. 2 C.2 D.4 答案:A 2.下列现象中,属于平移变换的是( ) A.前进中的汽车轮子 B.沿直线飞行的飞机 C.翻动的书 D.正在走动中的钟表指针 答案:B 3.三角形的一个外角小于与它相邻的内角,这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D.属于哪一类不能确定 答案:C 4.用 9根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( ) A. 1个 B. 2个 C.3个 D.4个 答案:C 5.下列各图中,正确画出△ABC的AC边上的高的是( )
A. B. C. D. 答案:C 6.如图,从图(1)到图(2)的变换是( ) A.轴对称变换 B.平移变换 C.旋转变换 D.相似变换 答案:D 7.不改变分式1.3120.7xxy的值,把它的分子、分母的系数化为整数,其结果正确的是( )
A. 13127xxy B.131027xxy C.1310207xxy D.131207xxy
答案:C 8.下列图案中是轴对称图形的是( )
A. B. C. D. 答案:D
9. 若方程组21(1)(1)2xykxky的解x与y相等,则k 的值为( ) A.3 B.2 C.1 D.不能确定 答案:A 10.小华和小明到同一早餐店买馒头和豆浆. 已知小华买了 5 个馒头和 6 杯豆浆;小明买 了 7个馒头和 3杯豆浆,且小华花的钱比小明少1元.关于馒头与豆浆的价钱,下列叙述正确的是( ) A.4个馒头比6杯豆浆少2元 B.4个馒头比 6 杯豆浆多 2元 C.12个馒头比 9 杯豆浆少 1 元 D.12个馊头比 9杯豆浆多 1 元 答案:B 11.下列各组数中不可能是一个三角形的边长的是( ) A. 5,12,13 B.5,7,7 C.5,7,12 D. 101,102, 103 答案:C 12.下列长度的三条线段,能组成三角形的是( ) A.1cm,2 cm,3cm B.2cm,3 cm,6 cm C.4cm,6 cm,8cm D.5cm,6 cm,12cm 答案:C 13.下列计算中,正确的是( ) A.1025mmm B.(a2)3=a5 C.(2ab2)3=6ab6 D.(-m2)3= -m6 答案:D
14.是方程3x+ay=1的一个解,则a的值是( ) A. B.-1 C.2 D.-2 答案:C 15.下图中,正确画出△ABC的 AC边上的高的是 ( ) A. B. C. D. 答案:C 二、填空题 16. 如图是由 8块相同的等腰直角三角形黑白瓷砖拼成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留某块瓷砖上,则停留在黑色瓷砖上的概率为 .
解析:12 17.工人师傅在做完门框后.为防止变形常常像图中所示的那样上 两条斜拉的木条(即图中的AB,CD两根木条),这样做根据的数学 道理是 . 解析:三角形的稳定性 18.一个汽车牌照在镜子中的像为 ,则该汽牌照号码为 . 解析:SM17963
19.当x=__________时,分式x2-9x-3的值为零. 解析:3x 20.如图,大圆半径为2cm,小圆的半径为1cm,则图中阴影部分的面积是__________cm2. 解析:2 21.如图,∠BAC=800,∠ACE=1400,则∠ABD= 度. 解析:120 22.下列图形中,轴对称图形有 个.
解析:3 23.如图,在△ABC中,∠BAC=45°,现将△ABC绕点A 逆时针旋转30°至△ADE的位置.则∠DAC= . 解析:15 24.箱子中有6个红球和4个白球,它们除颜色外都相同,摇匀后,若随意摸出一球,摸到红球的概率是________.
解析:53 25.在如图方格纸中,△ABC向右平移_______格后得到△A1B1C1. 解析:4 26. 如图,一块等腰直角的三角板ABC,在水平桌面上绕点 C按顺时针方向旋转到A′B′C 的位置,使A,C,B′三点共线,那么旋转角度的大小为 .
解析:135° 27.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第 n个图案中有白色地面砖 块.
解析:(1)18;(2)42n
28. 如图,从左图到右图的变换是 .
解析:轴对称变换 29.如图,是由四个形状大小完全相同的长方形拼成的图形,利用面积的不同表示法,写出一个代数恒等式: . 解析:22()()4ababab,或22()4()ababab或22()()4ababab
30.如图,△ABC经过旋转变换得到△AB′C′,若∠CAC′=32°,则∠BAB′= .
解析:32° 31. 在如图所示的方格纸中,已知△DEF是由△ABC经相似变换所得的像,则△DEF的每条边都扩大到原来的 倍.
解析:2 32. 如图,在△ABC中,DE垂直平分线,分别交AB,BC于E,D,若BE=3 cm,△ADC的周长为 12 cm,则△ABC的周长为 cm.
解析:18 33. 一副扑克共有54张牌,现拿掉大王、小王后,从中任取一张牌刚好是梅花的概率是 . 解析:14 34.若代数式29xm是完全平方式,那么m . 解析:6 35.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x米,则根据题意,可列出方程为 . 解析:312312126xx 36.一个盒子中有 10个完全相同的球,分别标以号码1,2,…,10,从中任意摸出一个球,则P(摸到球的标号为偶数)= . 解析:12 37.在横线上填上图中各图从甲到乙的变换关系:
解析:轴对称,旋转,平移 38.从-2,-1,0中任意取两个数分别作为一个幂的指数和底数,那么其中计算结果最小的幂是 . 解析:12 39.如图,在△ABC 中,∠A=40°,∠B=72°, CE平分∠ACB,CD⊥AB于点D, DF⊥CE于点F,则∠CDF= .
解析:74° 40.一副三角板如图所示叠放在一起,则图中α的度数是 .
解析:75° 三、解答题 41.已知某电脑公司有 A.B、C三种型号的电脑,其价格分别为 A型每台 6 000元,B 型每台4000元,C 型每台2500元. 育才学校计划将100500元钱全部都用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案,供学校选择.
解析:假设学校购买A型和B型的电脑,设A型x台,则B型y台,列方程组,得3660004000100500xyxy
,解得21.75x,不合题意,舍去,
假设学校购A型和C型的电脑,设A型x台,则C型y台,列方程组,得3660002500100500xyxy
,解得3x,则购买A型3台,C型33 台,
假设学校购买B型和C型的电脑,设B型x台,则C型y台,列方程组,得3640002500100500xyxy
,解得7x,则购买B型7台,C型29台,所以可以购买A 型3
台、C型33 台或B型7台、C型29 42.有两个可以自由转动的均匀转盘A、B,分别被分成 4等份、3等份,并在每份内均标有数字,如图所示. 小颖和小刚同学用这两个转盘做游戏,游戏规则如下: ①分别转动转盘A与B; ②两个转盘停止后,将两个指针所指扇形内的数字相加; ③如和为0,小颖获胜;否则小刚获胜. (1)用列表(或树状图)法求小颖获胜的概率; (2)你认为这个游戏对双方公平吗?请说明理由.
解析:(1)列表略,求得小颖获胜概率为 P=14; (2)这个游戏不公平,因为小颖获胜的概率为 P=14,而小刚获胜的概率为P=34,二者不相等,所以不公平 43.(1)计算:2(2)()()(32)xyxyxyyyx
(2)因式分解2231212mpmpqmq
解析:(1)222xyy (2)23(2)mpq
44. (1)计算:22(105)5xyxyxy; (2)因式分解:3228mmn
解析:(1)2xy (2)2(2)(2)mmnnmn 45. 如图,已知 AC=CE,∠1=∠2=∠3. (1)说明∠B=∠D的理由; (2)说明AB=DE的理由.
解析:略 46.如图,E是BC的中点,∠1=∠2,AE=DE. 求证:AB=DC.
解析:证明:∵ E是BC的中点 ,∴ BE=CE 在△ABE和△DCE中,∵ BE=CE,∠1=∠2,AE=DE ∴ △ABE≌△DCE ,∴AB=DC. 证明:∵ E是BC的中点 ,∴ BE=CE 在△ABE和△DCE中,∵ BE=CE,∠1=∠2,AE=DE 47.计算:
(1)(10x2y-5xy2)÷5xy (2)xx-1·x2-1x2
解析:(1)yx2;(2)xx1. 48.(1)观察下列各式:544622 ,10491122 ,164151722…… 试用你发现的规律填空:___4495122,___4646622; (2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所