参数方程

合集下载

参数方程

参数方程
解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1, 用参数方程表示为
x 3 cos y 2 sin
由于点P在圆上,所以可设P(3+cosθ,2+sinθ), (1) x2+y2 = (3+cosθ)2+(2+sinθ)2 =14+4 sinθ +6cosθ=14+2 sin(θ +ψ). 13 (其中tan ψ =3/2)
∴ x2+y2 的最大值为14+2 13 ,最小值为14- 2 (2) x+y= 3+cosθ+ 2+sinθ=5+ sin( θ + 2
13 。

) 4
∴ x+y的最大值为5+ 2 ,最小值为5 - 2 。
(3)
4 2 sin( ) 3 cos 2 sin 1 4 d 2 2
解:设M的坐标为(x,y), 圆x2+y2=16 的参数方程为 x =4cosθ y =4sinθ ∴可设点P坐标为(4cosθ,4sinθ)
y
P
M
O
A x
x =6+2cosθ 由中点公式得:点M的轨迹方程为 y =2sinθ ∴点M的轨迹是以(6,0)为圆心、2为半径的圆。
例2. 如图,已知点P是圆x2+y2=16上的一个动点, 点A是x轴上的定点,坐标为(12,0).当点P在圆 上运动时,线段PA中点M的轨迹是什么?
(3)参数方程与普通方程的互化
x2+y2=r2
( x a) ( y b) r
2 2 2

参数方程

参数方程

点(0,0)到直线 x-y+1=0 的距离为
1|20+-(0+-11|)2=
1= 2
22,
所以点
P
到直线
l
距离的最大值为
2+
2 2.
知识网络
要点归纳
题型研修
题型三 圆锥曲线的参数方程及其应用
对于椭圆的参数方程,要明确a,b的几何意义以及离心角φ 的意义,要分清椭圆上一点的离心角φ和这点与坐标原点连 线倾斜角θ的关系,双曲线和抛物线的参数方程中,要注意 参数的取值范围,且它们的参数方程都有多种形式.

23t2+12t2=7,
整理得 t2-4 3t+9=0.
(1)设 A 和 B 两点对应的参数分别为 t1 和 t2,由根与系数的关系得 t1+t2=4 3,t1·t2=9.
故|AB|=|t2-t1|= (t1+t2)2-4t1t2=2 3.
(2)设圆过 P0 的切线为 P0T,T 在圆上,则|P0T|2=|P0A|·|P0B|=|t1t2| =9,∴切线长|P0T|=3.
x=4cos y=4sin
θ θ
, (θ 为参数,且 0≤θ<2π
),点 M 是曲线 C1 上的
动点.
(1)求线段OM的中点P的轨迹的直角坐标方程;
(2)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标
系,若直线l的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),
求点P到直线l距离的最大值.
另有一点xy= =- 0,4.∴所求的参数方程为xy= =- -44+ k482+k-k2k, 126, (k 为参数)和xy= =- 0,4.
知识网络
要点归纳
题型研修
跟 踪 演 练 1 已 知 椭 圆 C 的 极 坐 标 方 程 为 ρ2 =

参数方程及其应用

参数方程及其应用

参数方程及其应用参数方程是数学中一种常用的描述曲线的方法,通过引入参数来表示曲线上的点的坐标。

参数方程的优势在于它可以描述一些复杂的曲线,例如椭圆、双曲线和螺旋线等。

本文将介绍参数方程的基本概念以及其在不同领域中的应用。

一、参数方程的基本概念参数方程由一组函数构成,这些函数分别表示曲线上的点的x坐标和y坐标。

通常用t作为参数,通过给定t的取值范围,我们可以确定曲线上的点。

例如,对于平面上的一条曲线,它的参数方程可以表示为:x = f(t)y = g(t)其中f(t)和g(t)是关于t的函数。

通过选择不同的函数形式,我们可以得到各种不同的曲线。

二、参数方程的应用1. 几何学中的参数方程参数方程在几何学中有广泛的应用。

例如,椭圆可以用参数方程表示为:x = a*cos(t)y = b*sin(t)其中a和b分别表示椭圆的长半轴和短半轴。

通过改变参数t的取值范围,我们可以获得椭圆上的所有点。

另一个例子是螺旋线,它可以通过以下参数方程描述:x = a*cos(t)y = a*sin(t)z = b*t通过改变参数t的取值范围,我们可以得到一条在三维空间中逐渐升高的螺旋线。

2. 物理学中的参数方程参数方程在物理学中也有广泛的应用。

例如,质点在自由落体过程中的运动可以用参数方程描述:x = v0*cos(θ)*ty = v0*sin(θ)*t - (1/2)*g*t^2其中v0表示起始速度,θ表示抛射角度,g表示重力加速度。

通过给定不同的初始条件,我们可以得到不同情况下的自由落体轨迹。

3. 工程学中的参数方程参数方程在工程学中也有一些应用。

例如,在航空领域中,飞机的航迹可以用参数方程表示:x = v*cos(α)*ty = v*s in(α)*tz = h其中v表示飞机的速度,α表示飞机的航向角,t表示时间,h表示飞机的高度。

通过改变参数的取值,我们可以获得飞机在空中飞行的轨迹。

4. 计算机图形学中的参数方程参数方程在计算机图形学中也有广泛的应用。

参数方程_精品文档

参数方程_精品文档

参数方程参数方程是一种数学中常用的表示曲线的方法,它是通过一组参数来描述曲线上的点的位置。

与直角坐标系中的函数表示方式不同,参数方程给出的是曲线上每一个点在某个参数下的坐标值。

参数方程的一般形式为:x = f(t) y = g(t)其中,x 和 y 是曲线上某一点的坐标,t 是参数。

通过改变参数 t 的取值,可以得到曲线上的不同点坐标,从而描绘出整个曲线。

参数方程的表示形式参数方程的表示形式可以有多种,常见的包括:•二维参数方程:x = f(t), y = g(t)•三维参数方程:x = f(t), y = g(t), z = h(t)以二维参数方程为例,可以通过给定不同的参数 t 的取值范围,来绘制出对应的曲线。

参数 t 通常是一个连续的变化的数值,可以是时间、角度或其他物理量。

通过改变参数t,我们可以得到曲线上的点的坐标变化情况,从而得到曲线的形状。

参数方程的应用参数方程在数学和物理中有广泛的应用,特别是在几何学、物理学和计算机图形学中。

在几何学中,参数方程可以用来表示各种曲线,例如抛物线、椭圆、双曲线等,通过调整参数的取值范围,可以绘制出不同形状的曲线。

参数方程还可以用来表示曲线的长度、曲率等几何性质。

在物理学中,参数方程可以用来描述物体的运动轨迹。

例如,一个抛出的物体在空中的运动可以用参数方程来表示。

通过改变参数 t 的取值,可以得到物体在不同时刻的位置坐标,从而得到物体的运动轨迹。

在计算机图形学中,参数方程可以用来生成各种图形。

通过给定不同的参数t,可以计算出曲线上的点的坐标,然后将这些点连接起来,就可以生成各种精美的图形,如曲线、曲面等。

参数方程的优缺点参数方程相较于直角坐标系的表示方法,有一些明显的优点和缺点。

优点:•对于复杂的曲线,参数方程可以更加简洁地描述其形状。

•参数方程可以处理直角坐标系中无法表示的曲线,如极坐标系下的曲线。

缺点:•参数方程需要额外的参数 t,增加了计算的复杂度。

参数方程

参数方程

x 2 cos 2.选择题:参数方程 ( 为参数)表示的曲线是 A y 2sin A.圆心在原点, 半径为2的圆 B.圆心不在原点, 但半径为2的圆 C.不是圆 D.以上都有可能
3、填空题 : x 2 cos (2,-2) (1)参数方程 表示圆心为 y 2 sin 2 半径为 1 的圆,化为标准方程为 x 2
x2+y2=r2
x r cos y r sin
2、若以(a,b)为圆心,r为半径的圆:
( x a) ( y b) r
2 2
2
x a rபைடு நூலகம்cos y b r sin
• 如图所示,已知点 P 是圆 x y 16 上的一个动 点,点A是x轴上的定点,坐标为(12,0).点P在圆 上运动时,求线段PA的中点M的轨迹的参数方程?
并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y) 那么方程(2)就叫做这条曲线的参数方程, 都在这条曲线上, 联系变数x,y的变数t叫做参变数,简称参数。
参数是联系变数x,y的桥梁,可以是一个有物理意义或几何 意义的变数,也可以是没有明显实际意义的变数。
x t 3 (1) y 3t
【练习1】把下列普通方程化为参数方程.
2 x y y 2 1 x 1 (2) (1) 4 9 16 x 2 cos x cos (1) (2) y 3sin y 4sin
2
2


把下列参数方程化为普通方程 x 3cos x 8cos (3) (4) y 10sin y 5sin
解:物资出舱后,设在时刻t,水平位移为x,

高三数学参数方程知识点

高三数学参数方程知识点

高三数学参数方程知识点数学是一门抽象而又具有普适性的学科,它的应用广泛,对于高三学生来说,数学的学习变得更加重要和密集。

本文将着重介绍高三数学中的参数方程知识点,帮助学生全面理解并有效记忆这一概念。

一、参数方程的定义与特点参数方程是指用一个参数表示所有的自变量和因变量之间的函数关系。

通常用t作为参数,表示自变量的取值范围。

在参数方程中,将自变量和因变量用参数表示,使得函数的自变量和因变量之间的关系更为灵活。

二、参数方程的表示方法参数方程的表示方法有多种形式,常见的有向量表示法和分量表示法。

1. 向量表示法在向量表示法中,自变量和因变量都用向量表示。

例如,对于平面上的一个点P,其参数方程可表示为:P(t) = (x(t), y(t))其中,x(t)和y(t)分别表示点P的x坐标和y坐标,t为参数。

2. 分量表示法在分量表示法中,将自变量和因变量都分别表示为关于参数t的函数。

例如,对于平面上的一个点P,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)分别表示x和y的函数,t为参数。

三、参数方程应用领域参数方程在数学中有广泛的应用,特别是在曲线的研究中起到重要作用。

下面分别介绍参数方程在平面曲线和空间曲线中的应用。

1. 平面曲线参数方程在平面曲线中的应用非常广泛,常见的曲线方程如圆、椭圆、抛物线、双曲线等都可以用参数方程表示。

通过参数方程,可以对曲线的形状和性质进行更深入的研究。

例如,对于圆的参数方程为:x = a*cos(t)y = a*sin(t)其中,a为半径,t为参数。

通过改变参数t的取值范围,可以绘制出一条圆的完整轨迹。

2. 空间曲线参数方程在空间曲线的研究中也起到重要作用,例如,直线、曲线、螺旋线等都可以通过参数方程来表示。

通过参数方程,可以描述物体在空间中的运动轨迹,从而研究物体的运动方式和变化规律。

四、参数方程的解法当给定一个参数方程时,我们需要求解参数方程对应的曲线方程或图形。

参数方程的概念

曲线的参数方程1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t )y =g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y 两个变量;参数方程⎩⎪⎨⎪⎧x =f (t )y =g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.1.下列方程中可以看作参数方程的是( )A .x -y -t =0B .x 2+y 2-2ax -9=0C.⎩⎪⎨⎪⎧x 2=t 2y =2t -1 D .⎩⎪⎨⎪⎧x =sin θy =cos θ解析:选D.对于A :虽然含有参数t ,但它表示的是直线系方程,直接给出了x ,y 之间的关系,是普通方程;对于B :虽然含有参数a ,但它表示的图象方程也是普通方程;对于C :x 2=t 2不能把x 表示成参数t 的函数,也不是参数方程,只有D 选项满足参数方程的定义.2.点M (2,y 0)在曲线C :⎩⎪⎨⎪⎧x =2t y =t 2-1,(t 为参数)上,则y 0=________.解析:将M (2,y 0)代入参数方程得⎩⎪⎨⎪⎧2=2t y 0=t 2-1, 解得⎩⎪⎨⎪⎧t =1y 0=0.答案:03.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ,(θ为参数,0≤θ<2π),判断点A (2,0),B ⎝ ⎛⎭⎪⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值.解:将点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧cos θ=1,sin θ=0.由于0≤θ<2π,解得θ=0,所以点A (2,0)在曲线C 上,对应θ=0.将点B ⎝ ⎛⎭⎪⎫-3,32的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ,即⎩⎪⎨⎪⎧cos θ=-32,sin θ=12.由于0≤θ<2π, 解得θ=5π6,所以点B ⎝⎛⎭⎪⎫-3,32在曲线C 上,对应θ=5π6.参数方程的概念已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t y =2t 2+1,(t 为参数).(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.[解] (1)把点M 1的坐标(0,1)代入方程组,得⎩⎪⎨⎪⎧0=3t ,1=2t 2+1. 解得:t =0.所以点M 1在曲线C 上. 同理:可知点M 2不在曲线C 上.(2)因为点M 3(6,a )在曲线C 上,所以⎩⎪⎨⎪⎧6=3t ,a =2t 2+1. 解得:t =2,a =9.所以a =9.(1)满足某种约束条件的动点的轨迹形成曲线,点与曲线的位置关系有两种:点在曲线上和点不在曲线上.(2)对于曲线C 的参数方程⎩⎪⎨⎪⎧x =f (t )y =g (t ),(t 为参数),若点M (x 1,y 1)在曲线上,则⎩⎪⎨⎪⎧x 1=f (t )y 1=g (t )对应的参数t 有解,否则参数t 不存在.1.曲线C :⎩⎪⎨⎪⎧x =ty =t -2,(t 为参数)与y 轴的交点坐标是____________.解析:令x =0,即t =0得y =-2,所以曲线C 与y 轴的交点坐标是(0,-2). 答案:(0,-2)2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t 2+1y =2t ,(t 为参数).(1)判断点A (1,0),B (5,4),E (3,2)与曲线C 的位置关系; (2)若点F (10,a )在曲线C 上,求实数a 的值. 解:(1)把点A (1,0)的坐标代入方程组,解得t =0, 所以点A (1,0)在曲线上.把点B (5,4)的坐标代入方程组,解得t =2, 所以点B (5,4)也在曲线上. 把点E (3,2)的坐标代入方程组,得到⎩⎪⎨⎪⎧3=t 2+1,2=2t ,即⎩⎨⎧t =±2,t =1.故t 不存在,所以点E 不在曲线上.(2)令10=t 2+1,解得t =±3,故a =2t =±6.求曲线的参数方程如图,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、y 轴上滑动,求点P 在第一象限的轨迹的参数方程.[解] 法一:设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于Q .如图所示,则Rt △OAB ≌Rt △QBP . 取OB =t ,t 为参数,(0<t <a ). 因为|OA |=a 2-t 2, 所以|BQ |=a 2-t 2.所以点P 在第一象限的轨迹的参数方程为⎩⎨⎧x =t +a 2-t 2y =t,(t 为参数,0<t <a ). 法二:设点P 的坐标为(x ,y ),过点P 作x 轴的垂线交x 轴于点Q ,如图所示.取∠QBP =θ,θ为参数(0<θ<π2),则∠ABO =π2-θ. 在Rt △OAB 中,|OB |=a cos ⎝ ⎛⎭⎪⎫π2-θ=a sin θ. 在Rt △QBP 中,|BQ |=a cos θ,|PQ |=a sin θ. 所以点P 在第一象限的轨迹的参数方程为⎩⎪⎨⎪⎧x =a (sin θ+cos θ),y =a sin θ.(θ为参数,0<θ<π2).求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60rad/s ,试以时间t 为参数,建立质点运动轨迹的参数方程.解:如图,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,又θ=π60·t ,故参数方程为⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t .(t 为参数).1.对参数方程概念的理解(1)曲线的参数方程中含有三个变量,并且以方程组的形式出现,其中x ,y 表示点的坐标,参数t 为中间变量,起着间接联系x ,y 桥梁的作用.(2)参数方程中,x ,y 都是关于参数t 的函数.反之,如果x ,y 虽然都能用t 表示,但不都能表示成t 的函数,它就不是参数方程.(3)曲线上任一点与满足参数方程的有序数对(x ,y )是一一对应关系.从数学的角度看,曲线上的任一点M 的坐标(x ,y )由t 唯一确定.当t 在允许值范围内连续变化时,x ,y 的值也随之连续地变化,于是就可以连续地描绘出点的轨迹.(4)在表达参数方程时,必须指明参数的取值范围,参数的取值范围不同,所表示的曲线可能不同.2.求曲线的参数方程(1)曲线的参数方程不是唯一的.同一条曲线由于所选取的参数不同,其参数方程的形式往往也不同.反之,形式不同的参数方程它们表示的曲线可以是相同的.(2)求曲线的参数方程,关键是选取参数.通常要结合实际问题和曲线形状选取时间、线段长度、方位角、旋转角等具有明确的物理意义或几何意义的量为参数,这样做有利于应用参数方程解决问题,当然也可以任意选取一个没有明确的实际意义的量为参数.(3)引入参数的同时,必须明确参数的取值范围.1.下列方程可以作为x 轴的参数方程的是( )A.⎩⎪⎨⎪⎧x =t 2+1y =0 B .⎩⎪⎨⎪⎧x =0y =3t +1 C.⎩⎪⎨⎪⎧x =1+sin θy =0 D .⎩⎪⎨⎪⎧x =4t +1y =0 解析:选D.选项A 表示x 轴上以(1,0)为端点向右的射线;选项B 表示的是y 轴;选项C 表示x 轴上以(0,0)和(2,0)为端点的线段;只有选项D 可以作为x 轴的参数方程.2.方程⎩⎪⎨⎪⎧x =1+sin θy =sin 2θ,(θ为参数)所表示曲线经过下列点中的( )A .(1,1)B .⎝ ⎛⎭⎪⎫32,12C.⎝ ⎛⎭⎪⎫32,32 D .⎝ ⎛⎭⎪⎫2+32,-12解析:选C.当θ=π6时,x =32,y =32,所以点⎝ ⎛⎭⎪⎫32,32在方程⎩⎪⎨⎪⎧x =1+sin θy =sin 2θ,(θ为参数)所表示的曲线上.3.已知点M (2,-2)在曲线C :⎩⎪⎨⎪⎧x =t +1t y =-2,(t 为参数)上,则其对应的参数t 的值为________.解析:由t +1t=2解得t =1.答案:14.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2ty =3t 2-1(t 为参数). (1)判断点M 1(0,-1),M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值.解:(1)把点M 1(0,-1)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧0=2t-1=3t 2-1,所以t =0. 即点M 1(0,-1)在曲线C 上.把点M 2(4,10)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧4=2t10=3t 2-1,方程组无解. 即点M 2(4,10)不在曲线C 上. (2)因为点M (2,a )在曲线C 上,所以⎩⎪⎨⎪⎧2=2t ,a =3t 2-1. 所以t =1,a =3×12-1=2. 即a 的值为2.[A 基础达标]1.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =5cos θy =5sin θ(0≤θ<2π),则参数θ=5π3所对应的点P 的坐标为( )A.⎝ ⎛⎭⎪⎫52,-532B .⎝ ⎛⎭⎪⎫52,532C.⎝ ⎛⎭⎪⎫-532,52D .⎝ ⎛⎭⎪⎫532,52解析:选A.θ=5π3时,x =5×cos 5π3=52,y =5×sin 5π3=-532,得点P ⎝ ⎛⎭⎪⎫52,-532,故选A.2.参数方程⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数)表示的曲线是( )A .直线B .线段C .圆D .半圆解析:选C.因为sin 2θ+cos 2θ=1,所以普通方程为x 2+y 2=1.故选C.3.若点P (4,a )在曲线⎩⎪⎨⎪⎧x =t 2,y =2t(t 为参数)上,则a 等于( )A .4B .4 2C .8D .1解析:选B.根据题意,将点P 的坐标代入曲线方程中得⎩⎪⎨⎪⎧4=t 2,a =2t⇒⎩⎨⎧t =8,a =4 2.故选B.4.已知⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ(θ为参数),则(x -5)2+(y +4)2的最小值是( )A .4B .25C .36D .6解析:选A.因为(x -5)2+(y +4)2=(cos θ-3)2+(sin θ+4)2=26+10sin(θ-φ)(且tan φ=34).所以当sin(θ-φ)=-1时,有最小值4,故选A.5.由方程x 2+y 2-4tx -2ty +3t 2-4=0(t 为参数)所表示的一族圆的圆心的轨迹方程为( )A.⎩⎪⎨⎪⎧x =2t y =t B .⎩⎪⎨⎪⎧x =-2ty =tC.⎩⎪⎨⎪⎧x =2t y =-tD .⎩⎪⎨⎪⎧x =-2t y =-t解析:选A.设(x ,y )为所求轨迹上任一点.由x 2+y 2-4tx -2ty +3t 2-4=0得:(x -2t )2+(y -t )2=4+2t 2.所以⎩⎪⎨⎪⎧x =2t y =t.6.若x =t -1(t 为参数),则直线x +y -1=0的参数方程是____________. 解析:将x =t -1代入x +y -1=0得y =2-t ,所以直线x +y -1=0的参数方程为⎩⎪⎨⎪⎧x =t -1y =2-t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =t -1y =2-t ,(t 为参数)7.已知曲线⎩⎪⎨⎪⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.解析:将A 点坐标代入方程得:θ=0或π,将B 、C 点坐标代入方程,方程无解,故A 点在曲线上.答案:A (1,3)8.下列各参数方程与方程xy =1表示相同曲线的序号是________.①⎩⎪⎨⎪⎧x =t2y =-t 2;②⎩⎪⎨⎪⎧x =sin ty =1sin t ;③⎩⎪⎨⎪⎧x =cos t y =1cos t ;④⎩⎪⎨⎪⎧x =tan t y =1tan t.解析:普通方程中,x ,y 均为不等于0的实数,而①②③中x 的取值依次为:[0,+∞),[-1,1],[-1,1],故①②③均不正确;而④中,x ∈R ,y ∈R ,且xy =1,故④正确.答案:④9.已知动圆x 2+y 2-2ax cos θ-2by sin θ=0(a ,b 是正常数,且a ≠b ,θ为参数),求圆心的轨迹方程.解:设P (x ,y )为所求轨迹上任一点. 由x 2+y 2-2ax cos θ-2by sin θ=0得:(x -a cos θ)2+(y -b sin θ)2=a 2cos 2θ+b 2sin 2θ,所以⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ.这就是所求的轨迹方程.10.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA 交OA 于D ,PB ∥OA ,试求点P 的轨迹的参数方程.解:设P (x ,y )是轨迹上任意一点,取∠DOQ =θ, 由PQ ⊥OA ,PB ∥OA ,得x =OD =OQ cos θ=OA cos 2θ=2a cos 2θ, y =AB =OA tan θ=2a tan θ.所以点P 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2a cos 2θy =2a tan θ,θ∈⎝ ⎛⎭⎪⎫-π2,π2.[B 能力提升]11.已知圆的普通方程x 2+y 2+2x -6y +9=0,则它的参数方程为____________. 解析:由x 2+y 2+2x -6y +9=0,得(x +1)2+(y -3)2=1.令x +1=cos θ,y -3=sin θ,所以参数方程为⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数)(注答案不唯一)12.动点M 作匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,运动开始时,点M 位于A (1,1),则点M 的参数方程为____________.解析:设M (x ,y ),则在x 轴上的位移为x =1+9t ,在y 轴上的位移为y =1+12t .所以参数方程为:⎩⎪⎨⎪⎧x =1+9t ,y =1+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =1+9t y =1+12t(t 为参数)13.在参数方程⎩⎪⎨⎪⎧x =f (t )y =g (t )(t 为参数,且t ∈R)中,若f (t )和g (t )都是奇函数,请判断该曲线所对应函数的奇偶性.解:设(x ,y )是参数方程曲线上的任意一点,则存在参数t 使得⎩⎪⎨⎪⎧x =f (t )y =g (t ),所以-x =-f (t ),-y =-g (t ). 又f (t )、g (t )均为奇函数, 所以-x =f (-t ),-y =g (-t ),所以⎩⎪⎨⎪⎧-x =f (-t )-y =g (-t ),即点(-x ,-y )也在曲线上,所以该曲线的图象关于原点对称. 所以该曲线对应的函数为奇函数.14.(选做题)试确定过M (0,1)作椭圆x 2+y 24=1的弦的中点的轨迹的参数方程.解:设过M (0,1)的弦所在的直线方程为y =kx +1,其与椭圆的交点为(x 1,y 1)和(x 2,y 2).设中点P (x ,y ),则有x =x 1+x 22,y =y 1+y 22.由⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1得:(k 2+4)y 2-8y +4-4k 2=0.所以y 1+y 2=8k 2+4,x 1+x 2=-2kk 2+4. 所以⎩⎪⎨⎪⎧x =-k k 2+4,y =4k 2+4.这就是以动弦斜率k 为参数的动弦中点的轨迹的参数方程.。

参数方程完全解析

参数方程完全解析一、参数方程定义参数方程(parametric equations)是指在其中一种变换下,函数的值可以表示为既定参数的函数的形式,它有一个或多个自变量,它们可以使用一组参数的方程表示。

参数方程可以使用一个或多个参数来表示一个或多个变量,它们的关系可以用一组方程来描述,例如曲线、曲面和向量场等,方程中可以包含基本函数,如指数函数、三角函数和对数函数,也可以包含特殊函数,如高斯函数和椭圆积分等。

二、参数方程的解析1、一元参数方程(1)直线方程以参数t为自变量的一元参数方程为:x = at + by = ct + d其中a,b,c,d为常数。

(2)椭圆方程以参数t为自变量的一元参数椭圆方程为:x = a·cos(t)y = b·sin(t)其中a为椭圆的长轴,b为椭圆的短轴。

2、二元参数方程(3)椭圆锥方程以参数t和s为自变量的二元参数椭圆锥方程为:x = c·cos(t)y = c·sin(t)z=s其中c为椭圆的半径,t为椭圆的中心,s为z轴的参数。

(4)双曲线方程以参数t和s为自变量的二元参数双曲线方程为:x = a·cosh(t)y = b·sinh(t)z=s其中a,b,s为常数。

3、三元参数方程(5)球面方程以参数t、s和r为自变量的三元参数球面方程为:x = a·cos(t)·sin(s)y = a·sin(t)·sin(s)z = a·cos(s)。

参数方程


设M(x,y),由上面两直线方程可求得: 18a x 2 , 2 2 x y a 9 (a为参数), 消去参数a, 得 1( x 0). 2 9 4 y 2a 18 a2 9
点M的轨迹是长轴长为6,短轴长为4的椭圆(除去B,B).
23
参数方程及其应用 例 (2015· 内蒙古包头市模拟)已知直线 x=1+1t, 2 l: 3 y= t 2 参数). (1)设 l 与 C1 相交于 A、B 两点,求|AB|;
A
12
x 5cos (5).二次曲线 ( 是参数) y 3sin 的左焦点的坐标为() (-4,0)
t t
x e e (6).参数方程 ( t 为参数 ) 表示的曲线( t t y e e A.双曲线B.双曲线的下支C.双曲线的上支D.圆
若x y a恒成立,求实数 a的取值范围
x2 y 2 x= 3 cos , (1)由椭圆 + =1的参数方程为 ( 为参数), 3 4 y 2sin 可设点P的坐标为( 3 cos , 2sin ) 3 1 则2x+y=2 3 cos 2sin 4 cos sin 2 2
P ( x, y ) t 的几何意义:表示有向线段 P0 P 的数量,
直线上两点P1,P2对应的参数分别是t1,t2,则 | P1P2|=| t1-t2 |
4
●两个要点 x=x0+tcosα, (1)在直线的参数方程 (t 为参数)中 t 的几何 y=y0+tsinα 意义是表示在直线上从定点 P0(x0,y0)到直线上的任一点 P(x,y) 构成的有向线段 P0P 的数量且在直线上任意两点 P1、P2 的距离为 |P1P2|=|t1-t2|= t1+t22-4t1t2.

参数方程总结知识点

参数方程总结知识点一、参数方程的概念参数方程是指用参数表示平面曲线、空间曲面上各点的坐标的方程,一个平面曲线或者空间曲面可以由一对参数方程来表示。

通常情况下,参数方程是形如x=f(t),y=g(t),z=h(t)的方程,其中x、y、z分别是曲线上某一点的坐标,t是参数。

参数t可以是实数也可以是整数。

二、参数方程的性质1. 参数方程的表示形式:参数方程有两种常用的表示形式,一种是向量形式,另一种是分量形式。

向量形式的参数方程可以表示为:r(t)=<x(t), y(t), z(t)>其中r(t)是位置向量,t是参数,x(t)、y(t)、z(t)分别是位置向量在x轴、y轴、z轴上的分量。

分量形式的参数方程可以表示为:x=f(t),y=g(t),z=h(t)其中x、y、z分别是曲线上某一点的坐标,t是参数,f(t)、g(t)、h(t)分别是曲线上某一点的坐标在x轴、y轴、z轴上的分量。

2. 参数方程的图形:参数方程描述的曲线或者曲面通常是比较复杂的几何图形,参数方程的图形特点不容易直接观察出来。

但是我们可以利用参数方程来绘制曲线或者曲面的图形,可以通过不同的参数值来确定曲线或者曲面上的一系列点,然后将这些点用线段或者曲线段连接起来,就可以得到参数曲线的图形。

3. 参数方程的应用:参数方程在物理、工程等领域有着广泛的应用,比如用来描述物体在空间中的运动轨迹、描述流体在空间中的运动状态等。

参数方程还可以用来求解一些复杂的几何问题,比如求参数曲线的长、面积等。

三、参数方程的运算参数方程的运算包括参数曲线的求导、求积分等。

参数方程的求导和求积分与普通的函数求导和求积分类似,只是要注意求导和求积分的对象是参数t,而不是变量x、y、z。

四、参数方程的方程组一条平面曲线或者空间曲面通常可以由多个参数方程组成,这些参数方程之间存在一定的关系,我们可以利用参数方程的方程组来求解曲线或者曲面上的一些特殊点。

五、参数曲线的方程与直角坐标系之间的转换参数曲线的方程与直角坐标系之间可以相互转换,通过参数曲线的方程,我们可以求解其在直角坐标系中的方程,通过直角坐标系中的方程,我们也可以求解其在参数方程中的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数方程[考纲传真] 1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.【知识通关】1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t )并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.常见曲线的参数方程和普通方程根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. (1)弦长l =|t 1-t 2|;(2)弦M 1M 2的中点⇒t 1+t 2=0; (3)|M 0M 1||M 0M 2|=|t 1t 2|.【基础自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为3.( ) [答案] (1)√ (2)√ (3)√ (4)×2.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上B3.直线l 的参数方程为⎩⎨⎧x =1+t ,y =2-3t (t 为参数),则直线l 的斜率为________.-34.曲线C 的参数方程为⎩⎨⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为________.y =2-2x 2(-1≤x ≤1)5.在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则a =________. 3【题型突破】参数方程与普通方程的互化(题组呈现)1.将下列参数方程化为普通方程.(1)⎩⎪⎨⎪⎧x =1t ,y =1t t 2-1(t 为参数);(2)⎩⎨⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数).[解] (1)∵⎝ ⎛⎭⎪⎫1t 2+⎝ ⎛⎭⎪⎫1t t 2-12=1,∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1. 又x =1t ,∴x ≠0.当t ≥1时,0<x ≤1;当t ≤-1时,-1≤x <0, ∴所求普通方程为x 2+y 2=1,其中⎩⎨⎧0<x ≤1,0≤y ≤1或⎩⎨⎧-1≤x <0,-1<y ≤0. (2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3).2.如图所示,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.[解] 圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP , 则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为 ⎩⎨⎧x =cos 2θ,y =sin θcos θ(θ为参数). [方法总结] 消去参数的方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数. 易错警示:将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.参数方程的应用(例题对讲)【例1】 (2019·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值. [解] (1)由⎩⎨⎧x =4cos θ,y =4sin θ,消去θ,得圆C 的普通方程为x 2+y 2=16. 又直线l 过点P (1,2)且倾斜角α=π6,所以l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =2+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =2+12t (t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+32t ,y =2+12t代入x 2+y 2=16,得⎝⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫2+12t 2=16,t 2+(3+2)t -11=0,所以t 1t 2=-11,由参数方程的几何意义,|PA |·|PB |=|t 1t 2|=11.[方法总结] 1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.2.对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.已知△ABC 中,C =45°,边AB ,BC 的垂直平分线的交点为O ,且△ABC 外接圆的半径是1.(1)建立适当的坐标系,求△ABC 外接圆的参数方程; (2)若存在实数p ,q 使OC →=pOA →+qOB →,求p +q 的取值范围.[解] (1)因为线段AB ,BC 的垂直平分线的交点为O ,则O 为△ABC 的外心,且点C 在优弧AB 上,建立如图所示的平面直角坐标系. 则易得△ABC 外接圆的参数方程是⎩⎨⎧x =cos θ,y =sin θ(θ为参数).(2)由(1)知点C 的坐标可以表示为(cos θ,sin θ)⎝ ⎛⎭⎪⎫θ∈⎝ ⎛⎭⎪⎫π2,2π. 由A (0,1),B (1,0),C (cos θ,sin θ)及OC →=pOA →+qOB →,得p =sin θ,q =cos θ. 于是p +q =2sin ⎝ ⎛⎭⎪⎫θ+π4,又θ+π4∈⎝ ⎛⎭⎪⎫3π4,9π4,所以p +q ∈[-2,1).故p +q 的取值范围是[-2,1).极坐标、参数方程的综合应用(例题对讲)【例2】 在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.[解] (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)法一:由直线l 的参数方程⎩⎨⎧x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k ,则直线l 的方程为kx -y =0.由圆C 的方程(x +6)2+y 2=25知,圆心坐标为(-6,0),半径为5. 又|AB |=10,由垂径定理及点到直线的距离公式得|-6k |1+k2=25-⎝⎛⎭⎪⎫1022,即36k 21+k 2=904, 整理得k 2=53,解得k =±153,即l 的斜率为±153.法二:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. [方法总结] 处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程. (2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的. (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎨⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径. [解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 消去参数m 得l 2的普通方程l 2:y =1k (x +2). 设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2),消去k 得x 2-y 2=4(y ≠0),所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π), 联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为5.【真题链接】1.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. [解] (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为 y =tan α·x +2-tan α,当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k=tan α=-2.2.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎨⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. [解] (1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx -2.l 与⊙O 交于两点当且仅当⎪⎪⎪⎪⎪⎪21+k 2<1,解得k <-1或k >1,即α∈⎝ ⎛⎭⎪⎫π4,π2或α∈⎝ ⎛⎭⎪⎫π2,3π4. 综上,α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t 为参数,π4<α<3π4).设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是 ⎩⎪⎨⎪⎧x =22sin 2α,y =-22-22cos 2α⎝ ⎛⎭⎪⎫α为参数,π4<α<3π4.。

相关文档
最新文档