提高变压器抗短路能力措施

合集下载

浅谈变压器抗短路措施

浅谈变压器抗短路措施

浅谈变压器抗短路措施变压器是电力系统中常用的电气设备,它主要用于将高电压变换为低电压或低电压变换为高电压。

在变压器运行中,由于各种原因,可能会发生短路故障,如果不及时采取措施,短路故障可能会导致严重的损坏甚至爆炸。

因此,保护变压器免受短路故障的影响是非常重要的。

变压器抗短路措施主要包括:选择合适的变压器类型、绕组的绝缘设计、合理配置保护装置以及正确的操作和维护等。

首先,选择合适的变压器类型是防止短路故障的首要措施之一、根据电力系统的需求和用途,可以选择不同种类的变压器,如干式变压器或油浸式变压器。

干式变压器由于不需要使用绝缘油,因此具有较高的抗短路能力。

油浸式变压器则通过绝缘油来提高其抗短路能力,同时还具有更好的散热性能。

其次,绕组的绝缘设计也是防止短路故障的重要措施之一、绕组是变压器的核心部件,其绝缘设计直接影响着变压器的抗短路能力。

在设计绕组时,应尽量减小绕组的电阻和电感,同时合理选择导线的材料和截面积,以提高绕组的短路容量。

此外,合理配置保护装置也是防止短路故障的重要举措之一、保护装置能够根据变压器发生短路故障时的电流和电压变化来自动判断故障类型,并采取相应的保护措施。

常见的保护装置包括熔断器、断路器和差动保护装置等。

熔断器可以在短路电流通过时迅速熔断,切断故障电路;断路器可以通过控制开断器件的切换来切断故障电路;差动保护装置则通过监测绕组两侧的电流差异来判断是否发生短路故障。

最后,正确的操作和维护也是防止短路故障的重要手段。

操作人员应该严格按照操作规程操作变压器,不得超过其额定功率和电流,避免引起过载和短路。

同时,定期对变压器进行检查和维护,确保其正常运行和可靠性。

如定期检查绕组的绝缘状态,检测接地电阻和继电器的工作情况等。

综上所述,变压器抗短路措施是保护变压器免受短路故障的重要措施。

通过选择合适的变压器类型、合理设计绕组绝缘、配置保护装置以及正确的操作和维护等,可以提高变压器的抗短路能力,确保电力系统的安全稳定运行。

电力系统中变压器抗短路能力分析及措施

电力系统中变压器抗短路能力分析及措施

电力系统中变压器抗短路能力分析及措施【摘要】电力变压器是电力系统中的重要组成部分,是负责传输电能、分配电能的关键环节,其可靠性能如何,将会对用户的电能质量及整个系统的安全程度造成严重的影响。

因此,必须努力提高变压器的抗短路能力,以保证电力系统的正常运行。

本文主要探讨了提高电力系统变压器抗短路能力的措施。

【关键词】电力系统;变压器;抗短路能力;措施1、关于电力系统中变压器的相关分析电力变压器的技术基础是电力电子技术,工作原理是原方通过电力电子电路将工频信号转变成高频信号(升频),再利用中间高频将变压器隔离、耦合至副方,最后将其还原为工频信号(降频)[1]。

采取合适的控制方案能够实现对电力电子装置的控制,进而把一种频率、波形、电压的电能转化为另一种频率、波形及电压的电能。

然而,铁芯材质的饱和磁通密度、铁芯与绕组间的最大允许温差将直接决定着中间隔离变压器的体积,工作频率又与饱和磁通密度成反比例关系,如此便能使铁芯的利用率得到提高,进而实现减小变压器体积、提高整体工作效率的目的。

2、增强电力变压器抗短路能力的方法变压器能否发挥其最大效力与其自身的质量、运行环境及检修程度有着紧密的联系。

在电力系统的运行中,由于继电保护误动、雷击等原因极易造成短路,而短路电流的强大冲击,则会损坏变压器,故必须努力提高变压器的抗短路能力。

据相关资料统计,变压器短路冲击事故的发生,超过80%的原因是变压器本身的制造质量,有10%是运行与维护方面的原因。

所以,在电力系统的运行中,应加强对电网的维护,以减少短路次数,从而减少变压器的受冲击次数。

2.1重视设计,认真做好线圈制造的轴向压紧工作在设计变压器时,不但要把变压器的损耗降低,以提高绝缘水平,还要注重对变压器机械强度及抗短路能力的提高。

在制造工艺上,大多变压器均是采用绝缘压板的方式,高低压线圈使用的是同一个压板。

采取这种设计结构,对制造工艺水平的要求较高,先是密化处理垫块,完成线圈加工后,还要对单个线圈予以恒压干燥处理,然后把线圈压缩后的高度测量出来;同一个压板的线圈,在经过处理之后,还要将其调整至相同的高度,然后在总装时采用油压装置对线圈施加相应的压力,使其满足设计要求的高度。

基于变压器突发短路试验探讨提高抗短路能力 李刚

基于变压器突发短路试验探讨提高抗短路能力 李刚

基于变压器突发短路试验探讨提高抗短路能力李刚摘要:本文首先阐述了突发短路故障,接着分析了变压器短路试验的目的,最后对提高变压器抗短路能力的措施进行了探讨。

希望能够为相关人员提供有益的参考和借鉴。

关键词:变压器;突发短路;试验;提高抗短路能力引言变压器使用范围非常广泛,修复期比较长,损坏后停电造成的损失巨大,变压器短路试验前应完成全部的例行试验,短路试验是检测变压器好坏的一项重要的试验项目,对短路后的变压器检测具有重要意义。

1突发短路故障变压器接入电源后,在绕组及其周围空间产生漏磁,不仅有轴向漏磁,而且有径向漏磁场分布。

在这个漏磁场中,变压器的高压和低压绕组将受到相应的感应力作用,即产生绕组的电动力。

当变压器额定运行时,绕组短路电动力在合理的数值区间内;当变压器发生突发短路故障时,绕组内产生的瞬时最大短路电流将达到额定运行时的数十倍,过电流将产生巨大的短路电动力。

这些电动力作用于变压器绕组,并传递到其他结构部件上,极易使绕组发生形变,甚至崩坏。

同时,巨大的短路电流将对导线产生热效应,使得绕组中导线急剧升温发热,损伤绝缘,破坏绝缘电气性能,影响变压器的正常使用寿命。

变压器的绕组所能承受的短路电动力是有一定的限度的,短路电动力与短路故障下的短路电流大小密切相关。

当绕组处于突发短路故障状态时,绕组的电磁力远大于正常运行状态下的电磁力,极易损坏变压器。

在变压器的电磁计算及机械结构设计时,必须保证变压器具备足够的抗短路强度来应对突发短路故障。

因此,非常有必要针对变压器抗突发短路能力加以分析研究。

2变压器短路试验的目的短路阻抗变压器的短路试验就是将变压器的一组线圈短路,在另一线圈加上额定频率的交流电压使变压器线圈内的电流为额定值,此时所测得的损耗为短路损耗,所加的电压为短路电压,短路电压是以被加电压线圈的额定电压百分数表示的:此时求得的阻抗为短路阻抗,同样以被加压线圈的额定阻抗百分数表示:变压器的短路电压百分数和短路阻抗百分数是相等的,并且其有功分量和无功分量也对应相等。

电力变压器短路冲击损坏分析及防治措施

电力变压器短路冲击损坏分析及防治措施

的进展水准。在突发短路问题作用下,电压相位突变和整体结构阻抗效率决定了变压器短 路电流的大小,尤其是在电动力作用较强的出口位置,单纯凭借现下的保护手段是无法及 时将故障问题切除的,所以必须想尽一切办法提升电力机械的强度,并以此维持出口绕组 在抵抗短路电流方面的动力稳定性能。
1.2.变压器短路状态下整体电动力效果研究 不同绕组之间在短路电流的冲击下会产生一定规模的漏磁空间,不同因素相互作用将引起 电动力效果的进一步扩散。这种漏磁现象主要包括两种类型的分量内容,即绕组轴向和辐 向的分量。绕组内部的短路电流一旦与漏磁现场相互影响时,绕组装置的辐向电动力就会 扩散,对内部结构产生一定的压力控制,而轴向作用力则按照绕组实际高度对下部结构施 加压力效果。 同时,带分接线位置存在漏磁附加形式的分量,其中的轴向作用力将围绕接线绕组不断蔓 延,令分接位置空档范围扩张。若要在此种条件下完成变压装置抵抗短路性能的提升工作, 应注意配合同相位空间内不同绕组之间的安匝平衡条件,并注意绕组的具体高度要保持一 致;分接段由于辐向安匝结构不平衡漏磁数量的增加,造成整体结构的稳定性降低,因此 必须对这部分的漏磁问题实施改造。
电力变压器短路冲击损坏问题的论述 按照过往观察、实践工作分析,有关此类结构的损坏形式的特征如下: 机械整体运行期限较短,加上出口处是造成短路危机的高频区,即便是持续作用的短路电 流没有越过标定值的最高限制,同时能维持正常的保护动作,将故障部位及时切断。但较 为关键的是低压绕组匝间位置短路,经常造成绝缘材质烧毁和导线烧断现象,单凭更换绕 组工作来说,整体结构修复时间就很长,在这个环节中也会受到绕组抗辐向压力的抵制。为了保证辐向绕紧 能力的持久,在方案设计活动中要根据立式绕线机和拉紧测量设备实现逐层调节。而变压 装置机身经过烘干处理后,内部撑条容易发生位移,从而影响装置稳定性能,所以要全面 增加撑条的数量,令线段位置部件间距减小,以此来增加内部绕组的强度效应。

三裂解整流变压器改造提高抗短路能力

三裂解整流变压器改造提高抗短路能力
[ ] 王 梦 云 . 02—20 3 20 0 3年 国家 电 网 公 司 系统 变 压 器
类设备事 故统计 与分析 ( ) [ ] 一 J .电力设 备 ,
20 , (0 :2 2 . 0 4 5 1 ) 0— 6
器身压板作为连接器身与夹件 的部件 ,必须
有 足够 的强 度 和 刚 度 ,保 证 变 压 器 受 到 冲击 时 , 由于绕 组作 用在 压板上 的轴 向力 不损 坏 ;可 以考
最好取 正偏 差 ,虽 然 会 增加 变 压 器 的制 造成 本 ,
改 造后 ,变压 器抗 短路 能力有 很大 提 高 ,降
低 减小 因绕组 受 冲击而 引起 的事故 率 ,延 长 变压 器 的使 用寿命 。
3 2 引线夹 持 .
却能有 效 的提高 变压 器抗 短路能 力 。 三裂解 传动 整流 变压器 作为 交流变 频 调速 系
[ ] 陈曾田.电力变压器保护 [ .北京 :中国电力 4 M]出 版社 ,18 . 99 2 1 . 0 2NO5
重 型 机 械
・9 1・
增 大引线 与垫 块 的接 触 面积 ,使 绕组 抗短 路 能力
提高。 对改 造后 的变压 器进 行受力 分 析 ,短 路力 计 算结 果见 表 2 。
表 2 短 路 力 计 算 结 果
T b 2 C lu ae e u t o t s a s d b h r i u t a . a c ltd r s l fsr s c u e y s o t r i s e cc
变压器 进行 改造 时 ,对 引线 部位 进行 了可靠 的夹 持 ,避 免 由于引线 问题 而 引起 的事故 。
3 3 器 身用 压板 .
扩大 化 ,降低事 故率 。

试论电力系统中变压器抗短路能力提高的办法

试论电力系统中变压器抗短路能力提高的办法
因此 , 极 开展 变 压 器绕 组 变 形的 诊 断工 作 , 时发 现 有 问题 积 及
全可靠 运行 是 分不开 开的 。 电力变压 器 的健康 状况 决定 其可靠 性 , 与 变 压器 的设 计构 造 、 材料 结 构 , 及检 修维 护密 切 相关 。 以 本文 从电力 系统 中变压 器抗短 路能 力的提 高方 法进行 探讨。 电 力变压 器概 述 电子 电 力变 压 器主 要 是 采用 电力 电子 技 术 实现 的 , 其基 本原 理 是 在 原 方将 工频 信号 通 过 电力电子 电 路转 化 为 高频 信号 , 即升 频 , 然 后通 过 中间高频 隔离 变 压器 耦合 到副 方, 还原 成工频 信号 , 降 再 即 频 。 过采 用适 当的控 制方案 来 控制 电力 电子装 置 的工作 , 通 从而 将一 种频率、 电压 、 波形 的 电能 变 换为 另一种 频率 、 电压 、 形 的电能 。 波 由 于 中 间隔离 变压 器的 体积 取 决于 铁 芯材 质的 饱和 磁 通密度 以及 铁芯 和 绕 组 的最 大允许 温升 , 而饱 和 磁通 密度与工作 频率成 反 比, 样通 这
器 的安 全 、 经济 与可 靠运 行 。 文 主要 论 述 在变 压 器运 行 维 护 过 程 试 回路( ) 杂散 电容也会 对测 试结 果造成 明显影 响 。 本 引线 的 中, 预防 变 压 器突 发性故 障 的 有效 方 法 。 电网经常会 由于雷 击 、 电 继 由于变 压器绕 组变形 测试 仪价格 昂贵, 对人 员的素 质要求高 , 且 保护 误 动 或 拒动 等 造 成短 路 , 路 电流 的 强力 冲击可 能会 使 变压 器 在 生 产 运行 中不 易普遍 开展 。因此 , 短 在实 际工作 中, 据变 压器 绕 组 依 受损 , 所以应 从 各方 面努力提 高 变压 器的耐 受短 路能 力 。 从变 压器 短 电容 变化 量 来 判断 绕 组是 否 变形 的 方法 , 以作为 频率 响 应法 的 有 可 路 冲击 事 故 的统计 结 果表 明 , 制造 原 因引起 的 占8 % 0 左右 , 运行 、 而 益补 充。 其在 频 率响应 法 不具 备 条件 的情 况下, 尤 可以 通 过横 向、 纵 维 护原 因 引起 的 仅 占1% 右。 0左 有关 设 计、 造方面 的措 施 在 其他 地 向对 比积 累的实测 电容量 , 时掌 握 变压器 绕组 的工作 状态 , 制 及 以便 降 方 已经 有所 论述 , 本文 着 重就 运 行 维护 过 程 中应 采 取 的措 施 加 以说 低事 故发 生的 概率 , 确保 电网安全 稳定 的运行 。 明。 运行 维 护过 程 中, 一方面 应尽量 减 少短 路 故障 , 从而 减 少变 压器 ( ) 强现 场施 工 和运 行 维护 中 的检 查 , 用可 靠的 短路 保 护 五 加 使 所 受冲 击的次 数 ; 另一方面 应及 时 测试 变压 器绕 组 的形变 , 防患干 未 系统 。 现场 进行 变压 器的安 装时 , 必须 严格按 照厂家 说明和 规范 要求 然。 进行施 工 , 严把 质量关 , 对发 现 的隐患 必须 采取 相应 措施 加 以消 除 。 ( ) 一 规范 设 计。 视 线 圈制造 的轴 向压 紧工 艺。 重 制造 厂家 在设 运 行维 护人 员应加 强变 压 器的 检 查 和维 护 保修 管 理 工作 , 以保证 变 计 时 , 要考虑 变 压器 损耗 的 降低 , 高 绝缘 水平 外 , 除 提 还要 考虑 到提 压 器处于 良好 的运行 状况 , 并采 取 相应措 施 , 低 出口和近 区短 路故 降 高变 压器的 机械 强度 以及抗 短 路故 障 的能 力。 制造 工艺方 面, 在 由于 障 的几率 。 为尽 量避 免 系统 的短 路故 障 , 于 己投 运 的变压 器 , 对 首先 很多 变压 器都采 用 了绝缘 压板 , 且高低 压 线 圈共 用一 个压板 , 种结 配 备可靠 的供 保护 系统使 用的 直流 系统 , 这 以保证 保护 动 作的正 确性 ; 构要 求要有 很高 的制造 工艺 水平 , 应对 垫块 进行 密化 处理 , 线 圈加 其 次 , 在 应尽量 对 因短 路 跳闸 的变 器进 行试 验检 查 , 可用 频率 响应法 工好 后还 要 对单个 线 圈进行 恒 压 干燥 , 测 量 出线 圈 缩 后 的 高度 ; 测 试 技 术测 量变 压 器受 到短 路跳 闸冲击 后的 状况 , 并 根据 测 试结 果 有 同一 压板 的各 个线 圈经过 上 述工 艺处 理 后, 再调 整到 同一 高度 , 在 目的地进 行 吊罩检 查 , 样就可 有效 地避 免 重大事 故 的发 生 。 并 这 总 装 时用油 压 装 置对 线 圈施加 规 定 的 压力 , 终达 到 设计 和 工艺 要 最 求 的 高度 。 总 装 配中 , 在 除了要 注意 高压 线 圈的 压紧情 况 外, 还要 特 别注意 低压 线圈压 紧情况 的控制 。 参考 文献 ( ) 压器进 行 短路 试验 , 二 对变 以防患于 未然 。 大型 变压器 的运 行 … 曾国扬 . 浅谈 变压 器抗 短路 措施 . 东建材 .0 第7 . 广 2 1年 O 期 可靠性 , 首先 取决 于其结 构 和制 造 工艺水平 , 次是 任运 行过 程 中对 其 【 张伟. 2 】 电力 系统 中 变压 器抗 短路 能 力提 高的措 施 分析 . 科技 设备 进行 各种 试 验 , 及时 掌握 设 备 的 工况 。 以 通过 短 路 的 承受 试 信 息 .0 1 第5 . 可 2 1年 期 验, 了解 变 压器 的机 械 稳 定性 , 针对 其 薄 弱环 节加 以 改善 , 以确 保 对 【】 李新 磊 ,l 振 . 5 -毓 I , 、 浅谈 大型 变压 器抗 短 路 能 力 的监造 . 技 科 变 压器结 构强 度进行 设计 时, 做到 心 中有 数 , 胸有成竹 。 致 富向 导 .0 9 O . 2 0 第2 期 [】 李 红春 . 高 变压 器抗短 路 能 力的方 法 . 4 提 机械 机 电 . 4 g g ,  ̄- ( 使 用 叮靠 的继 电 保护 与自动重 合 闸 系统 。 三) 系统 �

提高大型电力变压器抗短路能力的几点建议

提高大型电力变压器抗短路能力的几点建议

作 近 年 来 , 着 电 力 系 统 电 压 等 级 的 不 感 应 强 度 呈 三 角 形 分 布 , 用 在 绕 组 导 随 断提高 , 系统 容 量 和 变 压 器 单 台容 量 也 在 线 上 的 力 与 导 线 所 在 处 的 磁 场 感 应 强 度 不 断 增 大 。 变 压 器 短 路 阻 抗 一 定 的 条 件 成 正 比 , 以 挨 近 漏 磁 场 主 空 道 的 导 线 在 所 下 , 路 电磁 力 对 变 压 器 的威 胁更 加 严 重 。 所 承 受 的 作 用 力 最 大 , 线 段 各 线 匝 承 短 即 因此 , 了确 保 变压 器安 全 可靠 的 运 行 , 为 就 受 的 辐 向 应 力 不 同 。 必 须设 法提 高 变 压 器 绕 组 承 受 短 路 事 故 的 辐 向 力 向 内 作 用 在 内 绕 组 上 , 图 使 力 能 力 。 压 器 抗 短路 能 力 与变 压器 的 设 计 、 导 线 长 度 缩 短 , 绕组 导 线 中出 现 压 应 力 。 变 在 选 材 、 艺 、 验 、 输 、 装 及 用 户 的验 收 辐 向 力 向 外 作 用 在 外绕 组 上 , 图 使 导 线 工 试 运 安 力 在 以 把 关 、 行 维 护 和 管 理 等诸 多 方 面 的 因 素 伸 长 , 绕组 导 线 中 出现 拉 应 力 。 同 心 式 运 有 关 。 文 将 从 变 压 器 短 路 电 动 力 作 用 情 双 绕 组 为 例 , 图 l 线 圈 中 电流 在 轴 向 产 下 如 , 况 出发 , 谈 提 高 大 型 电 力 变 压 器 抗 短 路 生 轴 向 漏磁 场 B 。 a 浅 a B 与线 圈 中 电流 相 互 作 用 产 生 辐 向 力 Fr 它作 用 于 高 压 线 圈上 , , 因 能力的措施 。 沿 整 个 圆 周 都 受 到 这 个 力 的 作 用 , 辐 向 故 力企图使高压 线圈沿径 向向四周胀大 。 此 1 短路时 电动力分析 变 压 器 绕 组 的 载 流 导 体 处 在 漏 磁 场 中 外 , r 作用 在 低 压 线 圈上 , 图将 低 压 线 F又 企 而承 受 电动 力 的 作用 。 额 定 电流 下 , 动 圈沿 径 向 向 内 压 缩 , 以 辐 向 力最 后 将 使 在 电 所 力 并 不 大 , 短 路 时 , 动 力 将 剧 增 , 组 = 空 道 的 绝 缘 距 离 扩 大 。 在 电 绕 E 承 受短 路 辐 向 力和 轴 向 力 的 作 用 , 至 可 甚 同时 , 由于 绕 组 内 外 撑 条 的 存 在 而 出 能 造 成 变压 器的 损坏 。 双 绕 组 变 压 器 中 , 现 局 部 弯 曲 , 出现 了弯 曲应 力 。 向 合应 在 还 辐 沿 绕 组 的 轴 向 力 使绕 组承 受 压 力或 拉 力 的 力 为压 ( ) 力与 弯 曲应 力之 和 。 拉 应 合应 力 的 作用。 沿绕 组 径 向的 辐 向力 , 内 绕 组 受压 大 小 与 撑 条 材 料 的 弹 性 有 关 , 且 随 着 材 使 并 力 , 绕组 受拉 力作 用 。 面 简 要地 定性 叙 料 弹 性 的 增 大 而 增 大 。 时 辐 向合 应 力 也 外 下 同 述短路 电动力在变压器绕组 及其部 件的作 与撑 条 数 有 关 。 用情 况 。 1 3周 向电动 力 . 1 1轴 向 电动力 . 流 经 变 压 器 绕 组 中 的 电流 从 首 端 到 末 轴 向电 动 力 由两 部分 组 成 , 一部 分是 由 端 可 视 为 一 个 等 效 的 轴 向 电 流 矢 量 。 组 绕 漏磁 场的 端部 弯曲 而呈现 出的 横 向分量 与短 除 承 受 短 路 轴 向 力 和 辐 向 力 外 , 要 承 受 还 路 电流 相互 作 用产 生 的 轴 向力 , 为 轴 向 内 此 等效 轴 向 电流 与横 向漏 磁 场 相 互 作 用 产 称 力 。 作用 方 向对内外 绕组 均是 压缩 绕组 , 其 力 生 的使 绕 组 中的 线 段 产 生 圆 周 运 动 的 周 向 图 使绕组 高 度 降低 。 向内 力 使绕 组 的线 匝 电 动力 作 用 。 过 分析 可以 知 道 , 向电 动 轴 通 周 向竖 直 方 向弯 曲并 压缩 线 段 间 的垫 块 。 向 力 在 绕 组 端 部 的 作 用 方 向 使 绕 组 出 头 回 轴 电动 力 的 另一部 分 是 由于 一 对 内 、 外绕 组 磁 弹 。 向 电动 力 的 作 用 在 大 电 流 的 螺 旋 式 周 势 不 均匀 ( 匝不 平衡 ) 出现 的横 向漏 磁场 低 压 绕 组 和 多 个 电流 并 行通 过 的螺 旋 式 高 安 而 与短 路 电流 作 用而 产生 的 轴 向 力 , 般 称 为 压 调 压 绕组 上 更 为 显 著 。 一 轴 向外 力。 向外 力的 作 用 方 向与横 向漏磁 轴 通 的方 向有关 , ~对 内 、 绕组 上产 生的作 2 提高大型变压器抗短路能力 的措 施 在 外 用力 大 小相 同 、 向相 反 。 方 为 保 证 变 压 器 的 使 用 寿 命 和 电 力 系 统 绕 组 上 承 受 的 轴 向 力为 轴 向 内 力 与 轴 可 靠 供 电 , 力 变 压 器 应 该 具 备 一 定 的 抗 电 向外力的矢量和 。 短 路 能 力 。 面 将 讨 论 在 设 计 和 制 造 工 艺 下 1 2辐 向 电动力 方面提高变 压器抗短路能力的措 施。 漏 磁 场 的 轴 向 分 量 与 短 路 电 流 相 互 2 1设计方 面 . 作 用 , 对 绕 组 产 生 辐 向 力 。 于 漏 磁 场 而 由 变压 器绕 组短 路 强 度 的 计 算 是 按 最 不 利 的 三 相 对 称 出 口短 路 情 况 考 虑 的 , 认 并 为短 路 发 生 在 端 电 压 经过 零 值 的 瞬 间 。 理 论计算结果表明 , 在这 个 瞬 间发 生 短 路 , 非 对称短 路电流的第一个峰 值最大 。 设 计 时 减 小 安 匝 不 平 衡 度 , 向 力 是 轴 由轴 向 漏 磁 B 起 的 , 向 漏 磁 大 小 取 决 于 I 轴 安 匝不 平 衡 度 , 以设 计 时 应 尽 量减 小 安 所 匝 不 平 衡 度 。 、 、 压绕 组 要 保 证 电抗 高 中 低 高 度 一 致 或接 近 。 应 于 高 、 压 分接 区减 对 中 匝或调 整油道以保 证该区域安 匝平衡 , 双 螺 旋 或 四 螺 旋 首 末 头 最 好 压 平 , 减 少 端 以

如何有效提高变压器抗短路能力

如何有效提高变压器抗短路能力

如何有效提高变压器抗短路能力变压器是电力系统中重要的电力设备之一,在电力系统中发挥着功率变换和电力传输的作用。

但是,在变压器实际应用中,由于各种因素,会出现变压器短路的情况,特别是在高压侧短路容易发生。

这时,如何提高变压器的抗短路能力,是保障电力系统安全运行的重要环节。

本文主要介绍了如何有效提高变压器抗短路能力。

一、提高绕组电气强度绕组的电气强度一般指变压器中的绝缘强度、空气间隙和介质损耗等电气性能,现场运行经验表明,提高绕组的电气强度可以显著提高变压器的抗短路能力。

在制造变压器时,增加变压器绕组的电气强度是提高变压器短路能力的有效方法。

一般来说,绕组电气强度与线与线之间的最小间距有关,提高线与线之间的最小间距,可增加绕组的电气强度,提高变压器的抗短路能力。

二、提高冷却系统的冷却能力变压器的短路能力与变压器的冷却系统密切相关,过热会导致绝缘层老化,降低绝缘强度,从而降低变压器的抗短路能力。

因此,提高变压器的冷却能力可以显著提高变压器的抗短路能力。

目前,变压器的冷却方式主要包括自然冷却和强制油循环冷却两种形式,采用强制油循环冷却可以显著提高变压器的冷却能力。

三、提高变压器的机械强度变压器的机械强度一般是指变压器沿变压器装载方向的承受能力。

随着用电设备数量的不断增长,变压器的装载电流也越来越大,变压器的机械强度需要不断提高,才能满足电力系统的需要。

在变压器制造的过程中,增加变压器机械强度的方法可以采用增加变压器铁芯的厚度、增加变压器绕组的宽度等方法,从而增加变压器的机械强度,提高变压器的抗短路能力。

四、采用低电阻高导电性的材料高导电材料对电流有更好的传导性质,低电阻的物质也有助于电流的流动,在工程实践中可以通过采取低电阻、高导电性的专用材料来提高变压器的短路能力。

铜线塑封成型、铜条穿孔装配和银质接触片是能够有效提高变压器抗短路能力的材料。

五、提高绝缘质量变压器的绝缘系统将绕组和绝缘物质置于同一电源中,依靠绝缘物质隔离两者防止漏电,因此提高变压器的绝缘质量也能提高变压器的抗短路能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥景喜电气设备有限公司关于提高变压器抗短
路能力的措施
可靠性的不断提高,变压器抗短路能力成为一个突出问题。

一些不太能承受短路的变压器,很容易导致各种短路。

据统计,近几年由于电力系统短路变压器变压器意外事故造成,占总事故的40%,为事故的总容量的27.4%左右。

下面对变压器短路的措施谈谈我公司的一些看法。

关键词:电力变压器;短路;措施
一、电力变压器概述
变压器是电力系统的重要设备,因此它稳定可靠运行将对电力系统的安全将发挥非常重要的作用。

但是,由于设计和制造技术不完善的限制,不时有发生各类变压器故障跳闸,近年来,短路故障更是层出不穷,严重影响了电力系统的正常运行。

二、提高变压器抗短路能力的重要性
变压器的安全,经济,可靠运行,取决于变压器制造质量和经营环境和更优质的维修。

通过运作和变压器短路故障维修的各种分析的过程中,对变压器突发故障的有效预防措施。

电网通常被雷击,或拒绝中继故障,如短路,短路电流的强大冲击的原因可能会导致变压器损坏,应努力提高变压器短路承受能力的所有方面。

变压器短路事故的统计数据显示,制造占80%的原因,而运营和维护的原因只有约10%。

运行维护过程中,应尽量减少短路故障,从而减少变压器所受冲击的次数。

三、提高变压器抗短路能力的具体措施
(一)规范设计,重视线圈制造的轴向压紧工艺
从变压器发生短路故障和绕组受力情况来看,内绕组比外绕组受力的条件更严重。

内绕组辐向受力向内压缩,轴向受压力,均存在稳定性的问题;外绕组辐向受拉伸力,无稳定性问题,只有受轴向压力存在稳定性问题。

变压器在实际运行中发生短路故障后多数为内绕组损坏,也证实了这一点。

因此,设计中我公司充分注意内绕组结构,以提高内绕组辐向强度,生产中在低压绕组内衬高强度硬纸筒,纸筒与铁芯间应填实撑好;加密内径侧圆周方向的撑条根数,增加外径侧撑条;工艺上确保绕组辐向充分套紧等。

在制造过程中,我公司采取提高绕组轴向强度的措施:严格控制绕组间的高度差,以减小绕组的轴向力;不仅对垫块进行密化处理,在线圈加工好后还对单个线圈进行恒压干燥,并测量出线圈压缩后的高度。

同一压板的各个线圈经过上述工艺处理后,再调整到同一高度,并在总装时用油压装置对线圈施加规定的压力,最终达到设计和工艺要求的高度;改进铁轭夹件结构,采用加强的整圆压板取代半圆形压板,必要时采用钢压板以提高压板的强度和刚度;在总装配中,除了要注意高压线圈的压紧情况外,还要特别注意低压线圈压紧情况的控制,严格做到铁轭下的木楔受力均匀,确保绕组充分压紧;改进低压绕组的结构形式,提高低压绕组端部机械强度。

(二)使用可靠的继电保护与自动重合闸系统
系统中的短路事故是人们竭力避免而又不能绝对避免的事故,特
别是10kv线路因误操作、小动物进入、外力以及用户责任等原因导致短路事故的可能性极大。

因此我公司配备可靠的供保护系统使用的直流电源,并保证保护动作的正确性。

目前己有些运行部门根据短路故障是否能瞬时自动消除的概率,对近区架空线或电缆线路取消使用重合闸,或者适当延长合闸间隔时间以减少因重合闸不成而带来的危害,并且应尽量对短路跳闸的变压器进行试验检查。

在运行中应对遭受短路电流冲击的变压器进行记录,并计算短路电流的倍数。

(三)积极开展变压器绕组的变形测试诊断
通常变压器在遭受短路故障电流冲击后,绕组将发生局部变形,即使没有立即损坏,也有可能留下严重的故障隐患。

首先,绝缘距离将发生改变,固体绝缘受到损伤,导致局部放电发生。

当遇到雷电过电压作用时便有可能发生匝间击穿,导致突发性绝缘事故,甚至在正常运行电压下,因局部放电的长期作用也可能引发绝缘击穿事故。

其次,绕组机械性能下降,当再次遭受短路事故时,将承受不住巨大的电动力作用而发生损坏事故。

因此,我公司积极开展变压器绕组变形的诊断工作,及时发现有问题的变压器,并有计划地进行吊罩验证和检修。

响应法频率响应分析法任(fra法)是一种先进的绕组变形诊断方法,能够检测到微弱的绕组变形,并且具有较强的抗干扰能力,适合现场使用的要求。

大量试验研究结果表明,变压器绕组通常在10khz-1mhz的频率范
围内具有较多的谐振点。

当频率低于10khz时,绕组的电感起主要作用,谐振点通常较少.对分布电容的变化较不敏感;当频率超过1mhz时,绕组的电感又被分布电容所旁路,谐振点也会相应减少,对电感的变化较不敏感,而且随着频率的提高,测试回路(引线)的杂散电容也会对测试结果造成明显影响。

因此,我公司经长期研究实践决定选用10khz-1mhz的扫频测量范围和1000个左右的线性分布扫描频点通常会获得较好的测试效果。

此时,绕组内部的分布电感和电容均可发挥作用,其频率响应特性具有较多的谐振点,能够灵敏地反映出绕组电感、电容的变化情况。

由于变压器绕组变形测试仪价格昂贵,且对人员的素质要求高,在生产运行中不易普遍开展。

因此,在实际工作中,我公司依据变压器绕组电容变化量来判断绕组是否变形的方法作为频率响应法
的有益补充。

尤其在频率响应法不具备条件的情况下,可以通过横向、纵向对比积累的实测电容量,及时掌握变压器绕组的工作状态,以便降低事故发生的概率,确保电网安全稳定的运行。

相关文档
最新文档