车牌识别系统是如何实现的

合集下载

车牌识别原理

车牌识别原理

车牌识别原理
车牌识别是指通过图像处理和模式识别技术,对车辆的车牌进行自动识别和文字提取的过程。

其原理可以概括为以下几个步骤:
1. 图像预处理:从摄像头获取的图像需要进行预处理,包括去噪、灰度化、二值化等操作。

去噪主要是为了减少图像中的干扰信息,而灰度化和二值化则是将图像转换为黑白二值图,方便后续处理。

2. 车牌定位:在经过预处理后的图像中,需要找到车牌所在的位置。

常用的方法有基于边缘检测、颜色分析和形状匹配等。

边缘检测可以提取图像中的边缘信息,颜色分析可以根据车牌的颜色特性进行筛选,形状匹配可以通过匹配车牌的形状特征来定位。

3. 字符分割:在定位到车牌后,需要将车牌上的字符进行分割。

常见的方法有基于边缘投影和垂直投影的字符分割算法。

边缘投影是通过检测字符边缘的变化情况来实现分割,垂直投影则是通过统计字符列中像素的数量来实现分割。

4. 字符识别:分割后得到的单个字符需要进行识别。

字符识别主要是通过模式识别技术,例如用神经网络、SVM等算法进
行训练和匹配。

训练集中包含了各种不同字符的样本,识别时将样本与待识别字符进行比对,找到最匹配的字符。

5. 结果输出:识别出的字符需要进行校验和整理,确保识别准
确无误。

最后将识别结果输出为文字或数字,用于后续的车辆管理和系统应用。

综上所述,车牌识别主要通过图像预处理、车牌定位、字符分割、字符识别和结果输出等步骤实现对车牌的自动识别和文字提取。

通过不同的算法和技术优化,可以提高识别的准确率和实时性,提升车牌识别系统的性能和可靠性。

车牌识别系统方案

车牌识别系统方案

车牌识别系统方案摘要:车牌识别系统是一种利用计算机视觉和模式识别技术,对车辆车牌进行自动识别的系统。

本文将介绍车牌识别系统的相关原理、应用场景、系统方案以及未来发展趋势。

一、引言车牌识别系统是现代交通管理系统中重要的一环。

它通过识别车辆的车牌号码,实现对车辆的自动识别和管理。

车牌识别系统广泛应用于交通监控、车辆管理、停车场管理等领域,提高了交通管理的效率和精度,减少了人为因素的干扰。

二、车牌识别系统的原理1. 图像获取:车牌识别系统通过摄像头获取车辆的图像。

可以采用固定安装的摄像头,也可以使用移动式摄像头。

2. 车牌定位:通过图像处理技术对车辆图像进行分析,确定车牌在图像中的位置,并对车牌进行定位。

3. 字符分割:将车牌图像中的字符进行分割,得到单个字符图像。

4. 字符识别:对字符图像进行特征提取和模式匹配,识别字符的具体信息。

常用的字符识别方法包括模板匹配法、神经网络方法和支持向量机方法等。

5. 结果输出:将识别后的车牌号码以文本或者数据库形式进行输出,实现与其他系统的数据交互。

三、车牌识别系统的应用场景1. 交通监控:车牌识别系统可以应用于交通监控系统中,实时监测道路上的车辆情况。

2. 车辆管理:通过车牌识别系统可以对车辆进行自动识别和管理,提高车辆管理的效率。

3. 停车场管理:车牌识别系统可以用于停车场的车辆进出管理,实现自动化的收费和管理。

四、车牌识别系统的方案1. 硬件方案:车牌识别系统的硬件包括摄像头、图像处理设备、计算机和外部设备等。

2. 软件方案:车牌识别系统的软件包括图像处理算法、字符识别算法和数据处理算法等。

3. 网络方案:车牌识别系统可以通过网络与其他系统进行数据交互和通信。

4. 系统集成方案:将硬件、软件和网络进行集成,构建完整的车牌识别系统。

五、车牌识别系统的未来发展趋势1. 深度学习技术的应用:随着深度学习技术的不断进步,车牌识别系统将更加准确和高效。

2. 多场景适应能力:车牌识别系统将能够适应不同的场景,包括复杂环境下的车牌识别。

请简述车牌识别的工作过程。

请简述车牌识别的工作过程。

请简述车牌识别的工作过程。

车牌识别是人工智能领域中重要的一部分,也是促进智慧停车技术发展的主要动力。

车牌识别通过触发设备、摄像设备、照明设备、图像采集设备、号码识别处理机、缴费终端等硬件设备以及车牌定位、字符分割、字符识别等软件算法来运作车牌识别过程,具体包含以下七个流程:1.图像采集:车牌识别根据车辆检测方式的不同,图像采集一般分为两种,一种是静态模式下的图像采集,通过车辆触发地感线圈、红外或雷达等装置,给相机一个触发信号,相机在接收到触发信号后会抓拍一张图像,该方法的优点是触发率高,性能稳定,缺点是需要切割地面铺设线圈,施工量大;另一种是视频模式下的图像采集,外部不需要任何触发信号,相机会实时地记录视频流图像,该方法的优点是施工方便,不需要切割地面铺设线圈,也不需要安装车检器等零部件,但其缺点也十分显著,由于算法的极限,该方案的触发率与识别率较之外设触发都要低一些。

2.预处理:车牌识别由于图像质量容易受光照、天气、相机位置等因素的影响,所以在识别车牌之前需要先对相机和图像做一些预处理,以保证得到车牌最清晰的图像。

一般会根据对现场环境和已经拍摄到的图像的分析得出结论,实现相机的自动曝光处理、自动白平衡处理、自动逆光处理、自动过爆处理等,并对图像进行噪声过滤、对比度增强、图像缩放等处理。

去噪方法有均值滤波、中值滤波和高斯滤波等;增强对比度的方法有对比度线性拉伸、直方图均衡和同态滤波器等;图像缩放的主要方法有最近邻插值法、双线性插值法和立方卷积插值法等。

3.车牌定位:车牌识别从整个图像中准确地检测出车牌区域,是车牌识别过程的一个重要步骤,如果定位失败或定位不完整,会直接导致最终识别失败。

由于复杂的图像背景,且要考虑不清晰车牌的定位,所以很容易把栅栏,广告牌等噪声当成车牌,所以如何排除这些伪车牌也是车牌定位的一个难点。

为了提高定位的准确率和提高识别速度,一般的车牌识别系统都会设计一个外部接口,让用户自己根据现场环境设置不同的识别区域。

车牌识别系统工作原理流程

车牌识别系统工作原理流程

识别流程车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识 别的模式识别技术。

其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图 像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌 字符分割算法和光学字符识别算法等。

某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。

一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。

当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。

车牌识别单元对图像进行处理, 定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。

车辆检测车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。

采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省 开支,而且更适合移动式、便携式应用的要求。

系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧 的情况下实现图像采集、处理。

若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。

因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。

武汉车牌识别号码识别为了进行车牌识别,需要以下几个基本的步骤:1、牌照定位,定位图片中的牌照位置;2、牌照字符分割,把牌照中的字符分割出来;3 、牌照字符识别,把分割好的字符进行识别,*终组成牌照号码。

车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

一、牌照定位自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。

首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,*选定一个*的区域作为牌照区域,并将其从图像中分离出来。

停车场系统识别车牌识别原理

停车场系统识别车牌识别原理

停车场系统识别车牌识别原理
停车场系统的车牌识别原理主要包括以下几个步骤:
1. 图像采集:通过安装在停车场入口或出口处的摄像头,对车辆进出的图像进行实时采集。

2. 图像预处理:对采集到的图像进行处理,包括图像的旋转、裁剪、去噪等操作,以便提高后续车牌字符的识别准确率。

3. 车牌定位:通过图像处理技术,识别图像中的车牌位置,并将车牌区域进行标记或框出。

4. 字符分割:对车牌区域进行字符分割,将每个字符分隔开来,便于后续的字符识别。

5. 字符识别:将分割好的字符送入字符识别引擎中,进行字符识别。

常用的识别方法有基于模板匹配、神经网络、支持向量机等。

6. 车牌识别:将识别出的字符组合起来,得到完整的车牌号码。

需要注意的是,车牌识别的准确率受到诸多因素的影响,如光照条件、天气情况、车牌遮挡等。

为提高准确率,还可以采用一些增强技术,如多通道图像融合、自适应阈值等。

基于机器视觉的智能车牌识别系统设计

基于机器视觉的智能车牌识别系统设计

基于机器视觉的智能车牌识别系统设计引言随着人工智能技术的快速发展,基于机器视觉的智能车牌识别系统已经成为了现实。

这种系统利用计算机视觉技术,将车辆图片中的车牌信息自动识别出来,为交通安全、停车管理以及智能交通系统的发展提供了重要的支持。

本文将详细介绍一个基于机器视觉的智能车牌识别系统的设计。

一、系统原理智能车牌识别系统的核心原理是利用计算机视觉技术对车辆图片进行处理和分析,提取出车牌上的字符信息。

整个系统的流程可以分为以下几个步骤:1. 图像采集与预处理:首先,系统需要获取车辆图片,可以通过摄像头或者视频设备进行采集。

采集后,需要对图片进行预处理,包括图像增强、去噪等操作,以提高后续字符识别的准确性。

2. 车牌定位:车牌定位是整个系统的关键步骤,它的目标是将车牌从整个图片中分割出来。

这一步主要依靠图像处理算法实现,包括颜色梯度、边缘检测、形态学处理等,以提取出车牌的位置信息。

3. 字符分割:在车牌定位的基础上,需要将车牌上的字符分割开来。

字符分割也是利用图像处理算法完成的,可以使用边缘信息、区域划分等方法,将字符分割成单个的图像块。

4. 字符识别:字符识别是整个系统的核心任务,它的目标是将字符图像识别出来,转化成对应的文本信息。

基于机器学习和深度学习的方法被广泛应用于字符识别任务,可以使用卷积神经网络(CNN)或者循环神经网络(RNN)等方法进行训练和识别。

5. 结果输出与存储:最后,系统将识别结果输出并存储,可以通过显示在屏幕上或者保存到数据库中的方式呈现给用户或者其他系统。

二、关键技术1. 图像处理算法:图像处理是智能车牌识别系统中的重要环节,其中车牌定位和字符分割是关键步骤。

常用的图像处理算法包括Sobel算子、Canny算子、形态学操作等,它们能够通过对图像进行边缘检测、形态学操作等操作,实现对车牌的定位和字符的分割。

2. 字符识别算法:字符识别是智能车牌识别系统的核心任务,采用机器学习和深度学习算法可以提高识别准确率。

车牌识别系统的工作原理

车牌识别系统的工作原理

车牌识别系统的工作原理车牌识别系统是一种基于计算机视觉技术的系统,通过对车辆车牌图像进行处理和分析,实现对车牌信息的自动识别和提取。

在实际应用中,车牌识别系统可以用于交通监控、智能停车场管理、电子收费系统等领域。

车牌识别系统的工作原理主要包括图像获取、图像预处理、特征提取与车牌定位、字符分割和字符识别等步骤。

下面将详细介绍这些步骤的原理和方法。

首先,车牌识别系统需要获取车辆的车牌图像。

图像获取方式可以有多种,如使用摄像机对车辆进行拍摄,或者使用网络爬虫从网络上获取车辆图片。

获取到的车牌图像需要经过预处理才能进行后续的处理和分析。

图像预处理是车牌识别系统的第一步,其目的是对车牌图像进行去噪、增强和提取关键信息等操作,以便更好地进行后续的特征提取和定位。

常用的图像预处理方法包括灰度化、图像平滑和边缘检测等。

灰度化操作将彩色车牌图像转化为灰度图像,使得车牌中的文字和背景之间的对比更加明显。

图像平滑操作通过模糊图像来减少噪声的影响,常用的方法包括中值滤波和高斯滤波。

边缘检测是指通过检测车牌图像中的边缘信息,以提取车牌的边界信息。

常用的边缘检测算法有Sobel算子、Canny算子和Roberts算子等。

特征提取与车牌定位是车牌识别系统的核心步骤之一,其目的是通过识别车牌图像中的特征信息,准确定位车牌区域。

车牌图像中有很多不同的特征,如颜色、形状、纹理等。

常用的特征提取方法有基于颜色特征的方法、基于形状特征的方法和基于纹理特征的方法等。

基于颜色特征的方法是指通过分析车牌图像中的颜色信息,来判断前景文字和背景之间的对比度,从而确定车牌的位置。

通常,车牌的背景颜色是单一且比较鲜艳的,而文字的颜色通常是白色或黑色。

因此,我们可以通过阈值分割和颜色模型的比较来提取车牌的颜色特征。

基于形状特征的方法是指通过分析车牌图像中的形状信息,如车牌的长宽比、倾斜程度等,来判断车牌的位置。

通常,车牌的长宽比在一定范围内,且边缘线平行于图像的边缘。

高速识别车牌的原理

高速识别车牌的原理

高速识别车牌的原理高速识别车牌是通过车牌识别系统实现的,该系统利用计算机视觉技术和图像处理算法对车牌图像进行分析和识别。

其原理可以分为以下几个步骤:1. 图像采集:车牌识别系统首先通过摄像头或其他图像采集设备获取车辆的图像。

采集设备通常安装在高速公路或收费站等交通枢纽的入口或出口处,并能够自动拍摄行驶过程中的车辆图像。

2. 图像预处理:采集到的车辆图像通常包含大量的噪声和干扰,为了提高后续的识别准确率,需要对图像进行预处理。

预处理的方法包括图像去噪、灰度化、二值化、边缘检测等。

去噪可以通过滤波算法去除图像中的噪声,灰度化将彩色图像转化为灰度图像,二值化将灰度图像转化为黑白图像,边缘检测可以找到图像中的车牌边缘。

3. 车牌定位:在预处理之后,需要利用图像处理算法定位出图像中的车牌。

车牌的定位通常通过颜色特征、形状特征、尺寸特征等进行判断。

车牌的颜色一般为蓝色或黄色,因此可以通过颜色分割的方法将车牌从背景中分离出来。

同时,车牌一般具有固定的形状和尺寸,可以通过形状匹配和尺寸过滤的方法定位出车牌的位置。

4. 字符分割:车牌定位之后,需要对车牌上的字符进行分割。

字符分割的方法一般包括基于垂直投影法和基于连通区域法两种。

基于垂直投影法可以将车牌上的字符通过字符之间的空白区域进行分割,基于连通区域法则通过字符之间的连通性进行分割。

5. 字符识别:分割出来的字符需要经过字符识别算法进行识别。

字符识别通常采用模式识别的方法,即将字符的图像与预先训练好的字符模型进行匹配。

常用的字符识别方法包括模板匹配、神经网络、支持向量机等。

6. 车牌识别:最后一步是将识别出来的字符进行组合,形成完整的车牌号码。

组合的过程一般根据车牌号码的结构和规则进行,可以通过字符间的相对位置和字符的排列顺序进行判断。

综上所述,高速识别车牌的原理是通过图像采集、图像预处理、车牌定位、字符分割、字符识别和车牌识别等步骤来实现车牌的识别。

其中,图像处理和模式识别算法是关键技术,通过对图像进行分析和处理,提取出车牌的关键信息,并利用已有的字符模型进行识别,从而实现车牌的高速识别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

车牌识别系统是如何实现的
智能交通中一个重要的技术就是车牌识别技术,对于拍到的车辆图像或录像,如果能够准确及时的返回车牌的号码,这样即方便了车辆管理,又可以及时对违章车辆进行处罚,同时由于识别的即时性和准确性,这一系统在军事上也有极其重要的意义。

车牌自动识别技术自提出以来,受到了人们的广泛关注,它可以应用于公路和桥梁收费站、公路流量观测站、城市监控系统、港口和机场、停车场、以及军事要塞的入口等车牌认证实际交通系统中,以提高交通系统的车辆监控和管理的自动化程度。

由于其在智能化交通控制管理中发挥着越来越重要的作用,目前西方发达国家的科研工作者对其进行广泛的研究,目前己有众多的算法,一般的车牌识别系统总体构架图恤口图所示,经过这些年的研究,有些已应用于交叉路口、车库管理、路口收费、高速公路等场合。

但是由于需适应各种复杂背景,加之要识别的车辆种类繁多,颜色变化多端,以及检测时要适应不同天气变化导致的不同光照条件。

因此,目前的系统都或多或少地存在着一些问题。

随着计算机性能的提高和理论技术的发展,这种技术必将日趋成熟。

以下对我们设计的车牌自动识别系统的构成作简单介绍。

一个完整的车牌自动识别系统通常由图像采集,车牌定位,车牌牌字符分割和车牌字符识别部分组成。

车牌自动识别系统是一个以微处理器为核心,基于图像处理、模式识别等技术的高度智能的电子系统,这个系统主要有摄像头、视频采集接口、辅助照明装置、计算机和识别软件组成。

在自然光较暗或夜间影响识别效果时,自动开启辅助照明装置提供摄像光源。

当车辆通过关卡,经过车体位置传感器的敏感区域时,传感器发送一个信号给图像采集控制部分。

采集控制部分控制摄像机采集一幅汽车图像送至图像预处理模块,由预处理模块对输入图像进行预处理后送入计算机内。

计算机内的软件模块从输入图像中找到牌照的位置,对牌照作字
符切分,得到各个字符的点阵数据。

字符识别模块从点阵数据中提取字符特征数据,与模板库进行匹配,给出识别结果。

识别结果和图像存入数据库中,留待以后车牌查询和交通流量统计。

现阶段,一个典型的车牌自动识别系统都是由车辆检测,车辆图像采集,图像预处理,车牌子图像定位,车牌字符分割,字符识别这几个过程组成,一般的工作流程,如图所示
车牌识别系统详细工作流程
其中,车辆检测装置一般使用红外感应线圈,它可以检测当前是否有车辆通过。

近年来,随着视频检测技术的发展,有的己经使用视频流检测系统,检测是否有车辆通过。

车辆图像采集部分一般是一个高质量的摄像头,当检测装置检测到有车辆通过时,图像采集部分开始工作,拍摄到包含有车辆牌照的车牌图像。

并把拍摄的图像传入计算机或者特定的处理器,以后的步骤由计算机完成。

计算机完成牌照图像定位,字符分割,最终完成对车牌的字符分割。

以上几个过程,前一步是后一步的基础,在整个系统工作时,只有处理好每一个过程,才能保证最后快速,准确的把字符识别出来。

过程简介
在这个系统中,车辆检测依赖于系统的硬件来完成,我们所关心的是从图像采集的以后的那部分,即图像采集,图像预处理,子图像定位,字符分割,识别部分,下面简单把这几个过程介绍一下:
一、图像采集
1、在采集的触发方式上,车辆图像的采集有外设触发和视频触发两种:
(1)外设触发采用线圈、红外等检测器检测车辆到达信号,触发采集设备抓拍。

(2)视频触发采用运动目标序列图像分析处理技术,实时监控车道上车辆的运动状况,当发现车辆通过时,触发抓拍。

我们研究的系统是采用外设触发的方式。

通过在路上埋设电感线圈传感器,当汽车到达时,线圈传感器给抓拍控制器一个信号,抓拍控制单元通知计算机通过摄像机和图像采集卡把图像采集回来,启动后面的车牌识别模块。

2、图像采集设备一般由光源、镜头、数字摄像机和图像采集卡构成。

采集过程可简单描述为在光源提供照明的条件下,数字摄像机拍摄目标物体并将其转化为图像信号,最后通过图
像采集卡传输给图像处理部分。

我们在设计图像采集部分时,要考虑到多方面的问题,主要是关于数字摄像机、图像采集卡和光源方面的技术。

二、图像预处理
图像的采集,一般主要是通过摄像头与计算机的视频捕捉卡直接相连来完成的,由于图像采集设备所采集到的图像可能受恶劣的天气、变化的光照以及摄像机拍摄角度等的影响,使得拍摄到的车牌图像存在污迹、光照不均、亮度太低、对比度太小、倾斜等情况。

这些都影响了车牌字符的分割进而降低了车牌识别率,图5即为拍摄到的一个车图。

因此,必须采取车牌图像预处理措施以提高识别率。

同时,由于车牌不可避免地存在噪声,而且由于车牌识别系统在室外小时工作,光照度大范围变化,也存在光照不均,亮度太低对比度太小等情况,这些都会降低系统的字符识别率,因此需采取滤噪、光照不均校正和对比度增强等图像增强措施。

预处理是整个车牌识别系统的第一步,它的有效与否直接关系到下一步定位的成功率高低。

预处理的主要目的是增强图像中的目标的信息,减少或者消除非目标信息,以有利于下一步的图像进一步处理。

对于含有车牌的图像来说,预处理主要是为了让目标字符的信息加强,并且消除干扰信息,从而便于系统进行下面的车牌区域的定位工作。

一般来说,预处理的方法主要分为空域法和频域法两大类四。

空域法主要是利用图像中各点之间的位置关系与颜色信息来进行处理,用于其中预处理的空域法主要有图像的点运算、图像增强等频域法则是将图像变换到频域然后再进行处理,一般采用的变换方式都是线性正交变换、傅立叶变换、离散余弦变换等,然后根据目标信息的特征进行相应的滤波处理。

一般来说,利用空域法比较直接方便,理解上直观利用频域法则有计算量小、易于消除噪声等特点。

图5:拍摄到的车图
三、车牌定位
车牌定位是车牌识别系统中的关键之一,如何在复杂的背景下克服干扰准确定位出含有车牌字符区域直接关系到车牌识别系统后续识别部分的正确率。

到目前为止,有关车牌定位的研究很多,其中主要的方法有下面几种:基于彩色信息的方法、数学形态学的方法、基于纹理的方法和人工神纤网络方法等。

对于背景特别复杂的车牌定位问题,现在很多都将以土几的两种或者两种以上的方法结合起来使用。

其中基于彩色信息的方法处理较为复杂,并且与采用的颜色模式有很大关系数学形态学的方法只能处理特定类型的背景情况基于边缘的方法计算量较大并且对车牌图像边缘清晰度的要求较高人工神经网络方法虽然容错性较强,一般收敛速度较慢基于纹理的方法是目前采用较多的一种方法,这一方法计算量有限,而且基本思路比较直观,易于理解,特别是针对本文中的识别系统所针对的图像的特点而言,用这种方法完全可以进行处理。

图6即为一张定位好的车牌图像。

图6定位后的车图
四、字符分割
在车牌识别系统中,字符分割完成的任务就是将单个车牌字符准确的一个个切分出来。

字符分割的方法有基于变换、基于聚类技术和直接投影方法等。

字符分割的准确性非常重要,直接关系到识别的正确率。

本文采用直接投影法并且采用对投影的峰谷分析以及字符的先验大小知识来对车牌字符进行分割,实验验证,这个方法取得了很好的效果。

首先来看一下标准车牌的分布特点,我们要识别的标准车牌字符分为三个部分,标准的车辆牌照上有个字符,首位为省名缩写汉字,次位为英文字母,再次位为英文字母或阿拉伯数字,末四位为数字,字符总长度为,其中单个字符统一宽度为,高度为,第二、三个字符间隔为,这个间隔又把车牌分成两个部分,充分利用这些先验知识有助于对字符边框的精确切分。

相关文档
最新文档