高中化学选修三《原子晶体》
人教版高中化学选修3讲义分子晶体与原子晶体

第二节分子晶体与原子晶体目标与素养:1.通过生活中常见物质了解分子晶体和原子晶体的晶体结构模型及其性质的一般特点。
(微观探析与模型认知)2.通过实验理解分子晶体和原子晶体的晶体类型与性质的关系。
(宏观辨识与科学探究)一、分子晶体1.分子晶体的概念及粒子间的相互作用力(1)概念:只含分子的晶体称为分子晶体。
(2)粒子间的相互作用力:分子晶体内相邻分子间以分子间作用力相互吸引,分子内原子之间以共价键结合。
2.分子晶体的物理性质(1)分子晶体熔、沸点较低,硬度很小,易升华。
(2)分子晶体不导电。
3.属于分子晶体的物质种类(1)所有非金属氢化物,如H2O、NH3、CH4等。
(2)部分非金属单质,如卤素(X2)、O2、N2、白磷(P4)、硫(S8)等。
(3)部分非金属氧化物,如CO2、P4O10、SO2等。
(4)几乎所有的酸,如HNO3、H2SO4、H3PO4、H2SiO3等。
(5)绝大多数有机物的晶体,如苯、乙醇、乙酸、乙酸乙酯等。
4.分子晶体的结构特征(1)分子密堆积大多数分子晶体的结构有如下特征:如果分子间作用力只是范德华力,若以一个分子为中心,其周围通常可以有12个紧邻的分子,分子晶体的这一特征称为分子密堆积。
如C60、干冰、I2、O2等。
(2)含有氢键的分子晶体,不属于分子密堆积。
如冰等。
5.两种典型的分子晶体的空间结构(1)冰①结构:冰晶体中,水分子间主要通过氢键形成晶体。
由于氢键具有一定的方向性,一个水分子与周围四个水分子结合,这四个水分子也按照同样的规律再与其他的水分子结合。
这样,每个O原子周围都有4个H原子,其中两个H原子与O原子以共价键结合,另外两个H原子与O原子以氢键结合,使水分子间构成四面体骨架结构。
②性质:由于氢键具有方向性,冰晶体中水分子未采取密堆积方式,这种堆积方式使冰晶体中水分子的空间利用率不高,留有相当大的空隙。
当冰刚刚融化成液态水时,水分子间空隙减小,密度反而增大,超过4 ℃时,分子间距离加大,密度渐渐减小。
新课标高中化学选修3第二节分子晶体与原子晶体共价晶体

第2课时 共价晶体学业要求素养对接1.借助共价晶体模型认识共价晶体的结构特点。
2.能够从化学键的特征,分析理解共价晶体的物理特性。
微观探析:共价晶体的结构特点。
模型认知:建立共价晶体模型,并利用共价晶体模型进行相关计算。
[知 识 梳 理]一、共价晶体的结构和性质 1.共价晶体的结构特点 (1)构成微粒及作用力共价晶体⎩⎨⎧构成微粒:原子微粒间作用力:共价键(2)空间构型:整块晶体是一个三维的共价键网状结构,不存在单个的小分子,是一个“巨分子”。
2.共价晶体与物质的类别物质种类 实例某些非金属单质 晶体硼、晶体硅、晶体锗、金刚石等 某些非金属化合物 碳化硅(SiC)、氮化硅(Si 3N 4)、氮化硼(BN)等 某些氧化物二氧化硅(SiO 2)等3.共价晶体的熔、沸点(1)共价晶体由于原子间以较强的共价键相结合,熔化时必需破坏共价键,而破坏它们需要很高的温度,所以共价晶体具有很高的熔点。
(2)结构相似的共价晶体,原子半径越小,键长越短,键能越大,晶体的熔点越高。
【自主思考】1.含有共价键的晶体都是共价晶体吗?提示 共价晶体中都有共价键,但含有共价键的不一定是共价晶体。
如CO 2、H 2O等分子晶体中也含有共价键。
二、典型的共价晶体1.金刚石(1)碳原子采取sp3杂化,C—C—C夹角为109°28′。
(2)每个碳原子与周围紧邻的4个碳原子以共价键结合成正四面体结构,向空间伸展形成空间网状结构。
(3)最小碳环由6个碳原子组成,且最小环上有4个碳原子在同一平面内;每个碳原子被12个六元环共用。
2.晶体硅把金刚石中的C原子换成Si原子,得到晶体硅的结构,不同的是Si—Si键长>C—C 键长。
3.二氧化硅晶体(1)Si原子采取sp3杂化,正四面体内O—Si—O键角为109°28′。
(2)每个Si原子与4个O原子形成4个共价键,Si原子位于正四面体的中心,O原子位于正四面体的顶点,同时每个O原子被2个硅氧正四面体共用;每个O原子和2个Si原子形成2个共价键,晶体中Si原子与O原子个数比为1∶2。
人教高中化学选修3第三章晶体结构与性质知识点填空

人教高中化学选修3第三章晶体结构与性质知识点填空晶体是指具有一定空间有序性的固体物质,是由经过长程有序排列的原子、离子或分子组成的。
晶体结构与性质是化学选修3第三章的内容,下面将对该章的主要知识点进行填空。
1.晶体的结构主要包括(1)晶格、(2)晶胞、(3)晶体结构。
(1)晶格是指由无限多几何平面上的点构成的集合,三维空间中的晶格是无穷多平行平面上点的无限点阵。
晶格可以分为能量、距离和方向三种类型。
(2)晶胞是晶格的最小单元,具有对称性。
晶胞由晶体中的原子、离子或分子排列成一定的几何形状,一般为立方体、四方体或其他形状。
(3)晶体结构是指晶体中原子、离子或分子组成的排列方式。
晶体结构可以分为离子晶体结构、原子晶体结构和分子晶体结构三类。
2.离子晶体结构是指晶体由离子形成的结构。
离子晶体的特点是离子之间的相互作用力强,有规则的排列方式。
离子晶体可以根据离子的大小和电荷进行分类,常见的有(1)正离子负离子型离子晶体、(2)阳离子阴离子型离子晶体、(3)阳离子周期表电子构型型离子晶体、(4)绝对化合物型离子晶体和(5)复式离子型离子晶体。
3.原子晶体结构是指晶体由原子形成的结构。
原子晶体的特点是原子之间的相互作用力弱,有规则的排列方式。
原子晶体可以根据原子的配位数和密堆度进行分类,常见的有(1)体心立方晶格、(2)面心立方晶格、(3)密堆充分立方晶格和(4)六方密堆晶格。
4.分子晶体结构是指晶体由分子形成的结构。
分子晶体的特点是分子之间通过分子间力进行相互作用,有较弱的相互作用力。
分子晶体可以根据分子的形状和相互作用类型进行分类,常见的有(1)极性分子晶体、(2)非极性分子晶体、(3)氢键分子晶体和(4)范德华力分子晶体。
5.晶体的性质与其结构密切相关。
根据晶体的导电性可将晶体分为导体、绝缘体和半导体三类。
导体的晶体具有较好的导电性,绝缘体的晶体导电性极差,而半导体的导电性介于导体和绝缘体之间。
晶体的导电性主要与其组成离子、原子或分子的性质以及晶体的结构有关。
高中化学选修3之知识讲解_晶体的常识 分子晶体与原子晶体_基础-

晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。
【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。
晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。
②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。
非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。
周期性是晶体结构最基本的特征。
许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。
晶体的熔点较固定,而非晶体则没有固定的熔点。
区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。
特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。
2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。
所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。
例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。
4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。
②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。
【人教版】高中化学选修3知识点总结:第三章晶体结构与性质

【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第一篇:【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第三章晶体结构与性质课标要求1.了解化学键和分子间作用力的区别。
2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。
3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。
5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。
要点精讲一.晶体常识 1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3.晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较2.晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
分子晶体原子晶体

)
B、能溶于CS2,熔点112.8 ℃ ,沸点444.6 ℃ C、熔点1400 ℃ ,可做半导体材料,难溶于水
D、熔点97.81 ℃ ,质软,导电,密度0.97g/cm3
2、下列属于分子晶体的一组物质是(B )
A、CaO、NO、CO B、CCl4、H2 O2、He C、CO2、SO2、NaCl
《拓展》干冰兴趣实验
第二块“冰”,既熟悉又神秘的冰 思考与交流:
同一物质,一般 固态时比液态时 密度大。
那冰的密度为何 比水小呢?
阅读教材66页第一段的文字和观 pm
冰晶体中 位于中心 的一个水 分子周围 有4个水 分子。
思考与交流:
冰的密度为什么比水小?
冰晶体中水分子间存在大量氢键,氢键具有 方向性,使位于中心的一个水分子与周围4个位 于四面体顶角方向的水分子形成氢键,使得冰晶 体的结构中留有相当大的空隙,而水中尽管也有 氢键,但氢键数目比冰少得多,所以反而堆积紧 密些,密度比冰大。冰这种堆积不属于分子密堆 积。
金刚石的结构特征 在金刚石晶体里 ①每个碳原子都采取sp3杂化,被相邻的4个碳原子 包围,以共价键跟4个碳原子结合,形成正四面体, 被包围的碳原子处于正四面体的中心。 ②这些正四面体向空间发展,构成一个坚实的,彼 此联结的空间网状晶体。 ③金刚石晶体中所有的C—C键长相等,键角相等( 109°28’); ④晶体中最小的碳环由6个碳组成,且不在同一平面 内; ⑤晶体中每个C参与了4条C—C键的形成,而在每条 键中的贡献只有一半,故C原子与C—C键数之比为 1 :(4 x ½)= 1:2
• 碳元素和硅元素处于元素周期表中同一主族, 为什么CO2晶体的熔、沸点很低,而SiO2晶体 的熔沸点很高?
3.2.2《原子晶体》课件(新人教版选修3)(共28张PPT)
109º28´
共价键
109º28´ 共价键
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
7、典型的原子晶体
(1) 金刚石
①每个C周围有 4 个C,围成空间 正四面体 图形
C的杂化轨道类型是 SP3杂化 。 这些正四面体向空间 发展,构成一个坚实的,彼此联结的空间网状晶体。
观察·思考
• 对比分子晶体和原子晶体的数据,原子晶体 有何物理特性?
5. 原子晶体的物理特性
①熔点和沸点高; ②硬度大; ③一般不导电; ④难溶于一些常见的溶剂。
【归纳晶】体熔沸点的高低比较
①对于分子晶体,一般来说,对于组成和结 构相似的物质,相对分子质量越大,分子间 作用力越大,物质的熔沸点也越高。
②对于原子晶体,一般来说,原子间键长越 短,键能越大,共价键越稳定,物质的熔沸 点越高,硬度越大。
6. 常见的原子晶体
(1)某些非金属单质:
金刚石(C)、晶体硅(Si)、晶体硼(B)、晶体 锗(Ge)等
(2)某些非金属化合物:
碳化硅(SiC)晶体、氮化硼(BN)晶体
(3)某些氧化物:
二氧化硅( SiO2)晶体、Al2O3
②C原子与碳碳键之比为( 1:2 ) ③最小碳环为( 六元环 )且不共面
Si
o
180º
109º28´
共价键
(2)SiO2原子晶体 ①每个Si周围有 4 个O,每个O周围有 2 个Si ②Si周围的Si围成空间 正四面体 图形
③ 1mol SiO2中共价键为( 4 )mol ④最小环上有(12 )个原子
第二节 分子晶体与原子晶体(2)
原子晶体
人教版高中化学选修3课件第一节晶体的常识
3.有规则的几何外形的固体一定是晶体吗? 提示 有规则几何外形或美观、对称外形的固体不一定是晶体。例如,玻璃制品 可以塑造出规则的几何外形,也可以具有美观对称的外观。
4.有固定组成的物质一定是晶体吗? 提示 具有固定组成的物质也不一定是晶体,如某些无定形体也有固定的组成, 如无定形SiO2。
完成课前学 习
探究核心任 务
(8)同一物质可能是晶体,也可能是无定形体。( ) (9)区分晶体和非晶体最可靠的科学方法是确定有没有固定熔点。( ) (10)雪花是水蒸气凝华得到的晶体。( ) (11)溶质从溶液中析出可以得到晶体。( ) 答案 (1)× (2)√ (3)× (4)√ (5)× (6)× (7)× (8)√ (9)× (11)√
第一节 晶体的常识
完成课前学 习
探究核心任 务
学业要求
素养对接
1.能说出晶体与非晶体的区别。
2.能结合实例描述晶体中微粒排列的 微观探析:晶体与非晶体的区别。
周期性规律。
模型认知:晶胞的判断与相关计算。
3.认识简单的晶胞。
完成课前学 习
探究核心任 务
一、晶体 1.晶体与非晶体的本质差异
晶体 非晶体
提示 不表示,只表示每个晶胞中各类原子的最简整数比。
完成课前学 习
探究核心任 务
[自 我 检 测]
1.判断正误,正确的打“√”;错误的打“×”。 (1)有规则几何外形的固体就是晶体。( ) (2)熔融态的晶体冷却凝固,得到的固体不一定呈规则的几何外形。( ) (3)晶胞都是平行六面体。( ) (4)晶胞是晶体的最小重复单元。( ) (5)不同的晶体中晶胞的大小和形状都相同。( ) (6)晶胞中的任何一个粒子都只属于该晶胞。( ) (7)已知晶胞的组成也无法推知晶体的组成。( )
人教版高中化学选修三课件:第三章 第一节 晶体的常识(26张PPT)
You made my day!
我们,还在路上……
解析:甲中X位于立方体体心,有1个,Y位于立方体的
顶点,实际有
1 8
×4=
1 2
个,N(X)∶N(Y)=1∶
1 2
=2∶1,
故甲的化学式为X2Y;乙中A有
1 8
×8=1个,B有
1 2
×6
=3个,C在体心,有1个,故N(A)∶N(B)∶N(C)=
1∶3∶1;丙中D点被8个同样的晶胞共用,故结合E的个
解析
解析:晶胞中的粒子分为4种:①体心上的粒
子完全属于该晶胞;②面心上的粒子
1 2
属于该
晶胞;③棱上的粒子
1 4
属于该晶胞;④顶点上
的粒子
1 8
属于该晶胞。本题粒子Y位于体心,粒子X位于顶
点,所以该晶体的化学式为Y2X(或XY2)。观察图,4个X和1
个Y构成了一个正四面体,故∠XYX=109°28′。
D.粉末状固体一定不是晶体 解析:晶体的特点有:内部粒子排列得高度有序性、
有自范性和各向异性。当晶体的晶粒较小时,即为粉
末状,故D不正确。
答案:D
3.某物质的晶体内部一截面上原子的排布情况
如右图所示,则该晶体的化学式可表示为
()
A.A2B
B.AB
C.AB2
D.A3B
解析:由该晶体一截面上原子的排布情况可知,每一个A
数是8个。
返回
“课时跟踪检测”见“课时跟踪检测(九)” (单击进入电子文档)
•不习惯读书进修的人,常会自满于现状,觉得没有什么事情需要学习,于是他们不进则退2022年4月13日星期三2022/4/132022/4/132022/4/13 •读书,永远不恨其晚。晚比永远不读强。2022年4月2022/4/132022/4/132022/4/134/13/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/132022/4/13April 13, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
高中化学选修三:专题三微粒间作用力与物质性质教案_2
教学课题专题专题3微粒间作用力与物质性质单元第四单元共价键原子晶体节题第三课时原子晶体教学目标知识与技能1.了解原子晶体的涵义、特征2.能描述金刚石、二氧化硅等原子晶体的结构与性质的关系过程与方法进一步学习微观的知识,提高分析问题和解决问题的能力和联想比较思维能力。
情感态度与价值观通过学习晶体的形成,体会化学在生活中的应用,增强学习化学的兴趣;教学重点金刚石、二氧化硅等原子晶体的结构教学难点原子晶体的涵义、特征教学方法探究讲练结合教学准备教学过程教师主导活动学生主体活动【基础知识】1、相邻以相结合而形成结构的晶体叫原子晶体2、常见的原子晶体有、、、,由于大,所以它们一般具有较高的、和很大的。
【知识要点】一、原子晶体1.常见的原子晶体(1)金刚石(C)(2)石英(SiO2)2.原子晶体的主要性质熔点和沸点高、硬度大、不导电、难溶于一些常见的溶剂3.影响原子晶体熔沸点、硬度的主要因素二.过度型晶体----石墨简介①石墨为层状结构,各层之间是范德华力结合,容易滑动,所以石墨很软。
②石墨各层均为平面网状结构,碳原子之间存在很强的共价键(大π键),故熔沸点很高。
③石墨为混合键型晶体P46讨论后口答导电原因:自由价电子教学过程三、几种化学键的比较化学键成键本质键的方向性、饱和性影响键强弱的因素金属键离子键共价键例1、下列有关晶体的叙述中,错误的是()A、离子晶体在熔化时,离子键被破坏,而分子晶体熔化时化学键不被破坏B、白磷晶体中,结构粒子之间通过共价键结合C、石英晶体是直接由硅原子和氧原子通过共价键所形成的空间网状结构的晶体D、构成分子晶体的结构粒子中一定存在共价键[解析]离子晶体是通过离子键将阴、阳离子结合在一起的,所以熔化时,离子键遭破坏;而分子晶体是通过范德华力将分子结合在一起的,所以熔化时,分子内部的化学键未发生变化,破坏的只是范德华力,则A正确;白磷晶体是分子晶体,在分子内部存在共价键,而分子之间是通过范德华力结合的,则B错误;石英晶体是原子晶体,则C正确;稀有气体在固态时也属于分子晶体,而稀有气体是单原子分子,在分子内部不存在共价键,则D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 构成微粒:
原子
3. 作用力:
共价键
共价晶体
原子晶体熔化破坏的是共价键。
一般的,原子间键长越短,键能越大,共价 键越稳定,物质的熔沸点越高,硬度越大。
4.原子晶体的物理特性
在原子晶体中,原子间以较强的共价键相结合而且形成空间立体网状结构
熔、沸点:很高 硬 度: 很大 导电性:一般不导电 溶解性:难溶于一些常见的溶剂
因为CO2是分子晶体,SiO2是原子晶体,所以熔化时CO2是破坏范德华力而 SiO2是破坏化学键,所以SiO2熔沸点高。
而破坏CO2分子,都是破坏共价键,而C—O键能>Si-O键能,所以CO2分子 更稳定。
原子晶体、分子晶体判断方法
(1)依据组成晶体的粒子和粒子 间的作用判断
(2)记忆常见的、典型的原子晶体。
原子晶体
复习提问: 1.典型的分子晶体有哪些? 2.分子晶体的物理性质? 3.分子晶体中粒子的堆积方式如何?
[讨论]
CO2和SiO2的某些物理性质如下:
熔点℃
状态(室温)
CO2
-56.2
气态
SiO2
1723
固态
干冰
分子密堆积、范德华力
SiO2晶体
空间网状、共价键
原子晶体
1.概念:
原子间以共价键相结合而形成的空间立体网状结构的晶体。
(3)依据晶体的熔点判断:
(4)依据硬度和机械性能判断:
知识拓展-石墨
一种结晶形碳,有天然出产的矿物。铁黑色至深钢灰色。质软具滑腻感,可 沾污手指成灰黑色。有金属光泽。六方晶系,成叶片状、鳞片状和致密块状。密度 2.25g/cm3,化学性质不活泼。具有耐腐蚀性,在空气或氧气中强热可以燃烧生成二 氧化碳。石墨可用作润滑剂,并用于制造坩锅、电极、铅笔芯等。
NA
④每个C—C键被 ( 6 )个六元环共 有。
金刚石晶胞
⑤每个C原子被 12
个六元环共有?
C42 ×2 =12
晶体Si
晶体 SiO2
SiO2晶胞
【讨论】
①在SiO2晶体中,每个Si原子与 4 个O原子 结合,构成空间正四面体结构,Si位于四面 体中心,O 位于四面体顶点;
晶体
SiO2
②在SiO2晶体中,Si原子与O原子
(A)SO2 和 SiO2 和 KCl
(B) CO2B和 H2O (C)NaCl 和 HCl
) (DБайду номын сангаасCCl4
2.下列各组物质气化或熔化时,所克服的微粒间的作用(力),属同种类型的是
(
)
(A)碘和干冰的升华
AD
(B)
二氧化硅和生石灰的熔化
(C)氯化钠和铁的熔化
(D)水和四氯化碳的蒸发
5.根据下表给出的几种物质的熔点、沸点数据判断说法中错误的是 [
]
BD
A.SiCl4是分子晶体 B.MgCl2中键的强度比NaCl中键的强度小 C.单质R是原子晶体
D.AlCl3为离子晶体
3.下列各组物质中,按熔点由低到高排列正确的是 (
)
(A)O2、H2B、Hg (B)CO2、KCl、SiO2 (C)Na、K、Rb
(D)SiC 、NaCl、SO2
4.下列晶体熔化时化学键没有被破坏的是( )
5.常见的原子晶体
(1)某些非金属单质: 金刚石(C)、晶体硅(Si)、晶体硼(B)、 晶体锗(Ge)等
(2)某些非金属化合物: 碳化硅(SiC)晶体、氮化硼(BN)晶体
(3)某些氧化物: 二氧化硅( SiO2)晶体、Al2O3(天然)
对比分子晶体和原子晶体的物理参数
6.原子晶体的结构模型:
①碳原子采取SP3杂化,每5 个碳原子形成正四面体
例、如右图所示,在石墨晶 体的层状结构中,每一个最 小的碳环完全拥有碳原子数 为___,每个C完全拥有C-C 数为___
2
3∕2
石墨中C-C夹 角为120☉, C-C键长为 1.42×10-10 m 层间距
3.35× 10-10 m
1.下列各组物质的晶体中,化学键类型相同,晶体类型也相同的是 (
石墨
过渡(混合)晶体
易导电?
(1)石墨分层,层间为范德华力,层内C原 子通过共价键结合。
石墨属于混合型晶体
各层之间是范德华力结合,容易滑动,所以石墨很软。
(2)石墨晶体中最小环为六元环,键角120°平均每个环中含有2个C原子,3个C-C 键;
石墨中r(C-C)比金刚石中 r(C-C)短(大π键)
熔点 (℃)
沸点 (℃)
石墨 金刚石
3652 3550
4827 4827
石墨
1、石墨为什么很软? 石墨为层状结构,各层之间是范德华力结合,容易滑动,所以石墨很软。 2、石墨的熔沸点为什么很高(高于金刚石)?
石墨各层均为平面网状结构,碳原子之间存在很强的共价键(大π键),故 熔沸点很高。
3、石墨属于哪类晶体?为什么? 石墨为混合键型晶体。
键角: 109 º 28´ 键长: 0.155nm
金刚石
金刚石晶胞
[讨论]
①在金刚石晶体中,
每个C与( 4 )个C
成键 ,形成正四面体
(
)
结6构;最小碳环由
(
)不个在 C原子组
成且六原子
②与在C—金C刚键石数晶之(平体比面中为内,( .C1原:2 子个)同数一)
[讨论]
③12克金刚石中,含
C—C键数为( 2 )
个数比为(
1:2
)
③在SiO2晶体中,最小的环为( ( )个O组成的(
6
)个Si和 )环。
6
十二元
晶体 SiO2
④晶体中的最小环为十二元环1,2 含有
个Si-O键;每个Si-O键被 个十二元环共有.
6
⑤每个O原子被 共有.
个十二元环6共有,每个Si原子被 12
个十二元环
为何CO2熔沸点低?而破坏 CO2分子却比SiO2更难?
BC
(A)NaCl (B)冰 (C)白磷 (D)SiO2
Thanks!
感谢下 载