九年级上册(人教版)数学章末测试卷:第21章 二元一次方程-word文档资料

合集下载

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。

人教版 九年级上册 第21章 一元二次方程 章末综合训练(含答案)

人教版 九年级上册 第21章 一元二次方程 章末综合训练(含答案)

人教版九年级上册第21章一元二次方程章末综合训练一、选择题1. 若关于x的方程x2-2x+c=0有一根为-1,则方程的另一根为()A. -1B. -3C. 1D. 32. 如图,某小区有一块长为18 m,宽为6 m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60 m2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m,则可列出关于x的方程是()A. x2+9x-8=0B. x2-9x-8=0C. x2-9x+8=0D. 2x2-9x+8=03. 下列一元二次方程中,没有实数根的是()A.x2-2x=0 B.x2+4x-1=0C.2x2-4x+3=0 D.3x2=5x-24. 2019·达州某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5,6两月的营业额的月平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=91005. 关于x的一元二次方程x2+kx-2=0(k为实数)根的情况是()A.有两个不相等的实数根C.没有实数根B.有两个相等的实数根D.不能确定6. 若方程(x+3)2=m的解是有理数,则实数m不能..取下列四个数中的()A.1 B.4 C.14 D.127. 如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6 cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1 cm/s,点Q的速度为2 cm/s,点Q移动到点C后停止运动,点P也随之停止运动.运动下列时间后,能使△PBQ的面积为15 cm2的是()A.2 s B.3 sC.4 s D.5 s8. 下列关于多项式-2x2+8x+5的说法正确的是()A.有最大值13 B.有最小值-3C.有最大值37 D.有最小值19. 已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是()A.34 B.30C.30或34 D.30或3610. 若M=2x2-12x+15,N=x2-8x+11,则M与N的大小关系为() A.M≥N B.M>N C.M≤N D.M<N二、填空题11. 方程3x2-1=2x化为一般形式后,二次项系数是3,一次项系数是________,常数项是________.12. 一元二次方程3x2=4-2x的解是__________________.13. 已知等腰三角形的一边长为9,另一边长为方程x2-8x+15=0的根,则该等腰三角形的周长为________.14. 在△ABC中,BC=2,AB=2 3,AC=b,且关于x的方程x2-4x+b=0有两个相等的实数根,则AC边上的中线长为________.15. 一个两位数,它的十位数字比个位数字大1,个位数字与十位数字的平方和比这个两位数小19,则这个两位数是________.16. 已知关于x 的方程ax 2-bx +c =0(a ≠0)的一个根是12,且b 2-4ac =0,则此方程的另一个根是________.三、解答题17. 解方程组:222,230.x y x xy y -=⎧⎨--=⎩18. 如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1 m 的正方形后,剩下的部分刚好能围成一个容积为15 m 3的无盖长方体箱子,且此长方体箱子的底面长比宽多 2 m ,求该长方体箱子的底面宽.设该长方体箱子的底面宽为x m.(1)用含x 的代数式分别表示出该长方体箱子的底面长和容积;(2)请列出关于x 的方程,并化为一般形式.19. 红旗连锁超市花2000元购进一批糖果,按80%的利润定价无人购买,决定降价出售,但仍无人购买,结果又一次降价后才售完,但仍盈利45.8%,两次降价的百分率相同,问每次降价的百分率是多少?20. 用配方法解下列方程:(1) x 2+6x =-7;(2)4y 2+4y +3=0;(3)(2x -1)2=x (3x +2)-7.21. 2019·长沙近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上、线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批、第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次.答案一、选择题1. 【答案】D2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】A6. 【答案】D7. 【答案】B则BP=(8-t)cm,BQ=2t cm,由三角形的面积公式列方程,得1 2·(8-t)·2t=15,解得t1=3,t2=5(当t=5时,BQ=10 cm,不合题意,舍去).∴动点P ,Q 运动3 s 后,能使△PBQ 的面积为15 cm 2.8. 【答案】A9. 【答案】A10. 【答案】A =x 2-4x +4=(x -2)2.∵(x -2)2≥0,∴M≥N.二、填空题11. 【答案】-2 -112. 【答案】x 1=-1+133,x 2=-1-13313. 【答案】19或21或2314. 【答案】2 所以Δ=(-4)2-4b =16-4b =0,得AC =b =4. 因为BC =2,AB =2 3,所以BC 2+AB 2=AC 2,所以△ABC 为直角三角形,AC 为斜边,则AC 边上的中线长为斜边的一半,为2.15. 【答案】32 x 2+(x -1)2=10x +(x -1)-19,解得x 1=3,x 2=3.5(舍去),∴10x +(x -1)=32.16. 【答案】12三、解答题17. 【答案】解:⎩⎨⎧x -y =2, ①x 2-2xy -3y 2=0, ② 方程①变形为y =x -2. ③把③代入②,得x 2-2x (x -2)-3(x -2)2=0.整理,得x 2-4x +3=0.解这个方程,得x 1=1,x 2=3.将x 1=1,x 2=3代入③,分别求得y 1=-1,y 2=1.所以原方程组的解为⎩⎨⎧ x 1=1,y 1=-1或⎩⎨⎧x 2=3,y 2=1.18. 【答案】 12解:(1)该长方体箱子的底面宽为x m ,则长为(x +2)m ,所以它的容积为x(x +2)×1=(x 2+2x)m 3.(2)根据题意,得x 2+2x =15.化为一般形式为x 2+2x -15=0.19. 【答案】80%)=3600(元),(1分)∴3600(1-x)2=2000×(1+45.8%),(3分)∴(1-x)2=0.81,∴1-x =±0.9,∴x =0.1=10%或x =1.9(舍去).(4分)答:每次降价的百分率是10%.(5分)20. 【答案】 解:(1)配方,得x 2+6x +9=-7+9.即(x +3)2=2.方程两边开方,得x +3=±2.所以x 1=-3+2,x 2=-3- 2.(2)移项,得4y 2+4y =-3.配方,得(2y +1)2=-2.因为无论y 为何实数,总有(2y +1)2≥0,所以此方程无解.(3)去括号,得4x 2-4x +1=3x 2+2x -7.整理,得x 2-6x =-8.配方,得(x-3)2=1.所以x-3=±1,所以x1=2,x2=4.21. 【答案】解:(1)设这个增长率为x,根据题意,得2(1+x)2=2.42,解得x1=-2.1(舍去),x2=0.1=10%.答:这个增长率为10%.(2)2.42×(1+0.1)=2.662(万人次).答:预计第四批公益课受益学生将达到2.662万人次.。

(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)

(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)

go 18.设 x1,x2 是方程 x2-4x+m=0 的两个根,且 x1+x2-x1x2=1,
re 则 x1+x2= ,m=

a 19.关于 x 的一元二次方程 x2-2x+m-1=0 有两个相等的实数根,
ing 则 m 的值为

e 20.设 m,n 分别为一元二次方程 x2+2x-2 018=0 的两个实数根,
解得 x1=3,x2=9. 10.解:∵2☆a 的值小于 0,∴22a+a=5a<0,解得 a<0.在方程 2x2-bx+a=0 中,b2-4ac=(-b)2-8a≥-8a>0,∴方程 2x2-bx+a=0 有两个不相等的实数根. 11.A 12.B
3 13. C【解析】根据题意,将 x=-2 代入方程 x2+2ax-a2= 0, 得 4-3a-a2=0,即 a2+3a-4=0, 左边因式分解,得(a-1)(a+4) =0, ∴a=1 或-4.故选 C. 14.B 15. B【解析】∵(a-c)2=a2+c2-2ac>a2+c2, ∴ac<0.在方程 ax2+bx+c=0 中,b2-4ac≥-4ac>0, ∴方程 ax2+bx+c=0 有两个不相等的实数根.故选B.
ll th 的取值范围是( )
A 3 d A.m≥-4
B.m≥0
t a time an C.m≥1
D.m≥2
3 13.若 x=-2 是关于 x 的一元二次方程x2+2ax-a2=0 的一个根,则
a 的值为( )
A.-1 或 4 B.-1 或-4
C.1 或-4
D.1 或 4
14.若关于 x 的一元二次方程的两根为 x1=1,x2=2,则这个方程是( )
ome 18. 3【解析】∵x1,x2 是方程 x2-4x+m=0 的两个根, r s ∴x1+x2=4,x1x2=m.代入 x1+x2-x1x2=1,得 4-m=1,∴m=3.

人教版九年级数学上第21章一元二次方程章末专题训练(含答案).docx

人教版九年级数学上第21章一元二次方程章末专题训练(含答案).docx

第二十一章章末专题训练利用方程及根的概念求字母的取值专题解读:⑴根据一元二次方程的概念求字母的取值关键是分析两点:①未知数的最高次数为厶②二次项系数不为o;⑵根据根的概念求字母的取值的方法是将根直接代入方程,解方程即可.【例1】如果2是一元二次方程的根,那么常数c等于______________ .分析:因为2是一元二次方程x2=c的一个根,由根的定义,把2代入中,得c=4.答案:4.1.关于兀的一元二次方程(a—l),+_r+/—i= 0的一个根是0,则Q的值为( )B1A. 1B. 一1C. 1 或一1D. 一2【分析】一元二次方程cuc+bx+c=0有一个根为0,则其常数项c=0.由题设知d—1工0,且a2-1=0, 解得a=-\.故选B.【点拨】在二次方程a^+bx+c=0的定义中,要特别注意殍0的条件,在含有字母的一元二次方程的试题中,往往在0定0设下陷阱.2.方程(m2-l)x2+(w+l)x-l=0,当__________________ 时,方稈为关于x的一元二次方程;当___________ 时,方程为关于x的一元一次方程.加#fcl,加=1【分析】方程ax2+bx+c=0中,d工0时一元二次方程;当。

=()且伤旳时是一元一次方程.由加2—1工0, 得加徉1,所以当加丰1时,方程为一元二次方程.当m2— 1 = 0且加+1=0,得加=1,所以当加=1时,方程为一元一次方程.3.判断关于兀的方程jC-nvc(2x~m+\)=x是不是一元二次方稈,如果是,指出二次项系数、一次项系数及常数项.【分析】把方程化为一般形式ax2+bx+c=0,当°工0是一元二次方程.【解】原方程可化为(1—2/77)x2+(/772—1) x=0»当1— 2加=0,即m=时,原方程为一■|•x=0,是—元一次方程;当1 —2加工0,即唏丄时,原方程是一元二次方程.2此吋,二次项系数为1—2加,一次项系数为〃,一加_i,常数项为0.【点拨】此题中常数项为0,不能说不存在;同理像方程2/—3=0, —次项系数b=0.4.已知方程5x2+H—6=0的一个根是2,求它的另一个根及R的值.【分析】己知方程的一个根是2,把兀=2代入原方程,得5x22+2jt-6=0,则可求的值,然后再代入£的值,从而可求出方程的另一根.【解】把x=2代入方程5/+&—6=0得5X 22+2Z :-6=0,解得k=~l.3 3把k=~l 代入方程5x 2+kx~6=0得5,—7乳一6=0,解得七=2,疋=一一・所以另一个根为一一,鸟的 5 5值为一7.解-元二次方程专题解读:在解一元二次方程时,要观察方程的结构特点,在没给出解法要求时,可选取最简单的解法, 耍先看是否能用直接开平方法或因式分解法,否则就用公式法,一般不用配方法.【例2】方程血+1) = 3(兀+1)的解是( ).A.兀=—1B.兀=3C.兀i = —1,兀2=3D.以上答案都不对分析:方程变形为Xx+1)-3(%+1)=0,因式分解,得(x-3)(x+l)=0,所以x —3=0或x+l=0,得兀=3, x= — \.答案:C.5. 请用适当的方法解下列方程:(1) (3兀一4)2=(3—4 x)2; (2)/=x ; (3)5(兀+6)(兀一l)+4x(x —1)=3兀(兀+6);(4)(2014-甘肃兰州中考・21 (2)题・5分)/一3兀一 1=0; (5)<+5<—6=0・【解】⑴3x —4=±(3—4x) » 即 3兀一4 = 3—4x 或 3兀一4=—(3—4x), .*.X]= 1,兀2= — 1 • (2) 兀2—兀=(),即 x(x —1) , /.Xi=0, %2=1.⑶原方程化为 2x 2+x —10=0, Z?2—4f7C= l 2—4x2x(—10) = 81 >0,・•」=〔±=〔 ±9 ,即 Xj = ——,4 4 2无2 = 2・⑸设则x 4=/,原方程为『+5),—6 = 0,解这个方程,得刃=一6,力=1・当y=~6吋,X 2=-6,此方程无解;当y=l 时,x 2=l,解得X] = l,疋=一1・・・・原方程的解为兀1 = 1,兀2= — 1・列方程解应用题专题解读:列一元二次方程解决实际问题中常见的等量关系有:①增长率问题:增长量=原有量x 增长率; ②商品利润:利润=售价一成本(或进价),利润率=利润+成本X100%;③打折销售:售价=标价x(折扣三10); ④行程问题:路程=速度X 时问.【例3】在一块正方形的钢板上截去一块丸加宽的长方形钢板,剩下部分的而积是54cnz 2,则原钢板的而 积是 ____________ cnr.(4) V«=l, b=—3C=-1, Ab 2-4ac=(-3)2-4xlx(-l)=13>0, 3 + V13分析:设原来正方形钢板的边长为牝加,根据题意,得X2-3X=54,解得兀尸一6(舍去),疋=9,所以原正方形钢板的面积是81 cm2.答案:81.6.某商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.【解】设这两个月的平均增长率为兀,依题意,得200x(1-20%)(1+X)2=193.6.即(1 +x)2= 1.21,解得兀=—1±1.1・即Xi=0.1, x2=—2.1(不合题意,舍去).答:这两个月的平均增长率为10% .7.(2013-山东泰安屮考・27题分)某商店购进600个旅游纪念品,进价为6元/个,第一周以10元/个的价格售出200个;但商店为了适当增加销售,决定降价销售(根据市场调查,单价每降1元,可多销售处50 个,但售价不得低于进价),单价降低兀元销售一周后,商店对剩余旅游纪念品清仓处理,以4元/个的价格全部售出,如果这批旅游纪念品共获利1 250元,问:第二周每个旅游纪念品的销售价格为多少元?【分析】根据纪念品的进价和售价以及销量分别表示出纪念品的总利润,进而得出等式求解即可.【解】由题意,得200x(10-6)+(10—兀—6)(200+50兀)+(4—6) [600-200-(200+50x)1 =1 250.即800+(4—朗(200+50x)-2(200-50%)= 1 250.整理,得2兀+1=0,解得无]=兀2=1.A 10-1=9.答:第二周旅游纪念品的销售价格为9元/个.8.随着人们生活水平的不断提高,某市私家车拥有量逐年增加,据统计,某小区2011年底拥有家庭轿车64辆,2013年底家庭轿车的拥有量达到100辆.⑴若该小车2011年底家庭轿车拥有量的年平均增长率相同,按照这个增长速度,求该小区到2014年底家庭轿车拥有量将达到多少辆.⑵为了缓解停车矛盾,该小车决定投资15万元再建若干个停车位.据测算,建造费用分别为室内车位5 000 元/个,露天车位1 000元/个,考虑到实际因素,计划建造露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.【解】⑴设家庭轿车拥有量的年平均增长率为兀,则64(1+x)2= 100, 解得尤=25%或x=—225%(不合题意,舍去).・•・ 100x(1+25%)= 125(辆).答:该小区到2014年底家庭轿车拥有暈将达到125辆.⑵设该小区建室内车位d个,建鋁天车位b个,]0.5d + 0・lb = 15① 则有{—由①得b= 150—5/代入②得20<a< —.7Va 正整数,.*.a=20或a=2\.当a=20时,方=50;当°=21 时,6=45.・••方案一:建室内车位20个,建露天车位50个;方案二:建室内车位21个,建露天车位45个.根的判别式、根与系数之间的关系专题解读:若一元二次方程a^+bx+c=0的两个根分别为兀】,疋,则根与系数之间的关系为x x+x2=-~, aX\-X2=—•a【例4】已知兀I,兀2是一元二次方程X2-6X-5 =0的两个根,求⑴兀|2+疋2;⑵丄+丄的值.解:由题意知七+兀2 = 6, 兀2=—5.⑴兀]2+尤2?=(占+兀2)2 —2七兀2 = 36+ 10 = 46.⑵ 1 + 1 = 丙兀2x +x9 6 6 x t x2-559.(2013-山东威海中考・6题・3分)已知关于兀的一元二次方程(兀+1) 2—"—0有两个实数根,则m的取值范围是()B3A. tri>——B. /77>OC. m>\D. nt>24- - -【分析】(x+l)2—加=0, (x+l)2=w, V —元二次方程(x+ I)2—m=0有两个实数根,・••陀0.故选B.10.(2013-山东滨州中考10题・3分)对于任意实数匕关于兀的方程x2-2(k+ \)x-^+2k-1 =0的根的情况为()CA.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定【分析】Va=l, 2伙+1), c=-^+2k-l,:.b2-4ac= [一2伙+1)] —4xlx(—F+2£—l) = 8 + 8F>0,・•・此方程有两个不相等的实数根.故选C.11.已知也,几是方程X2+2>/2X+1= 0的两根,则代数式+ 3/72/2的值为( )CA. 9B. ±3C. 3D. 5【分析1 V/n,"是方程x2+2y/2 x+l= 0 的两根,/.m+n=—2>/2 , mn = 1,•I+料2 +3"祝=J(m + 刃)2 + nrn = J(一2逅$ +1 =蔚=3.故选C.12.关于兀的一元二次方程kx2+(2k+\)x+伙一1)=0有实数根,则R的取值范围是____________ .空一丄且8 舜0【分析】*:a=k , b=~ (2£+1), C=k-1, :. A = (2)t+ l)2-4xjtx(jt- l)=8il+1>0,解得空一一,'・•原8方程是且一元二次方程,:・蚌0,:・k的取值范围是k>~—且舜0.13.已知关于x的方程X2—2 (m+1)兀+加2=0 .⑴当加取什么值时,原方程没有实数根;⑵对加的值选取一个合适的非零整数,使原方程有两个实数根,并求出这两个实数根的平方和.【解】⑴若方程没有实数根,则4伽+1)2—4加2<(),解得m<-~.即当m<-丄时原方程没有实数根.2 2⑵由⑴知只要选取陀一丄的非零整数即可,不妨取m=l,原方稈变为X2-4X+1=0,解得%,=2+73,2x2=2-y/3 , /.Xi2+x22=(2+ >/3)2+(2->/3)2= 14.。

人教版(2024)九年级上册第二十一章 一元二次方程 单元试卷(含答案)

人教版(2024)九年级上册第二十一章 一元二次方程 单元试卷(含答案)

第二十一章一元二次方程一、选择题1. 下列方程为一元二次方程的是( )A.x2−3=x(x+4)B.x2−1=3xC.x2−10x=5D.4x+6xy=332. 一元二次方程2x2+3x−4=0的二次项系数、一次项系数、常数项分别是( )A.2,−3,−4B.2,3,4C.2,−3,4D.2,3,−43. 方程x2+5x=0的适当解法是( )A.直接开平方法B.配方法C.因式分解法D.公式法4. 用因式分解法解方程x2+px−6=0,若将左边分解后有一个因式是x+3,则p的值是( )A.−1B.1C.−5D.55. 方程(x+1)(x−3)=5的解是( )A.x1=1,x2=−3B.x1=4,x2=−2C.x1=−1,x2=3D.x1=−4,x2=26. 下列方程中,没有实数根的方程是( )A.(x−1)2=2B.(x+1)(2x−3)=0C.x2+2x+4=0D.3x2−2x−1=07. 一个三角形的两边长分别为3和6,第三边的长是方程x2−6x+8=0的一个根,则此三角形的周长为( )A.9B.11C.13D.11或138. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地.设原正方形空地的边长为x m,则下面所列方程正确的是( )A.(x−3)(x−2)=20B.(x+3)(x+2)=20C.x2−3x−2x=20D.x2−3×2=20二、填空题9. 请你写出其中一个解为x=2的一个一元二次方程.10. 如果m是方程x2−2x−6=0的一个根,那么代数式2m−m2+7的值为.11. 关于x的方程(m+1)x2+2mx+1=0是一元二次方程,则m的取值范围是.12. 已知关于x的一元二次方程(m−2)x2+x−1=0有两个不相等的实数根,则m的取值范围是.13. 已知一元二次方程x2−3x−10=0的两个实数根为x1,x2,则(x1−1)(x2−1)的值是.14. 已知矩形的长比宽长2米,要使矩形面积为55.25米2,则宽应为多少米?设宽为x米,可列方程为.15. 已知x=2是关于x的一元二次方程x2+bx−c=0的一个根,则b与c的关系是.(请用含b的代数式表示c)16. 已知3是关于x的方程x2−(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为.三、解答题17. 解方程:(1) (x−3)2=2x(3−x).(2) x2−2x−4=0.18. 已知关于x的一元二次方程x2+(k+1)x+1k2=0有两个不相等的实数根.4(1) 求k的取值范围.(2) 当k取最小整数时,求此时方程的解.19. 关于x的一元二次方程mx2−3(m−1)x+2m−3=0(m>3)的两个实数根分别为x1,x2,且x1<x2.(1) 求证:方程有一根为定值.(2) 若9x1−3x2≥4,求m的取值范围.条(n≥3的整数).20. 已知n边形的对角线共有n(n−3)2(1) 五边形的对角线共有条;(2) 若n边形的对角线共有35条,求边数n;(3) A同学说,我求的一个多边形共有10条对角线,你认为A同学说法正确吗?为什么?21. 如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25 m,另外三边木栏围着,木栏长40 m.(1)若养鸡场面积为200 m2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250 m2吗?如果能,请给出设计方案,如果不能,请说明理由.22. 利客来超市销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.(1) 若降价6元,则平均每天销售数量为件;(2) 当每件商品降价多少元时,该商店每天销售利润为1200元?答案一、选择题1. C2. D3. C4. B5. B6. C7. C8. A二、填空题9. x2+x−6=010. 111. m≠−112. m>74且m≠2.13. −1214. x(x+2)=55.2515. c=4+2b16. 10或11三、解答题17.(1)(x−3)2=2x(3−x), (x−3)2−2x(3−x)=0,(x−3)2+2x(x−3)=0,(x−3)(x−3+2x)=0,(x−3)=0或x−3+2x=0,∴x1=3,x2=1.(2)x2−2x−4=0,x2−2x=4,x2−2x+1=4+1,(x−1)2=5,x−1=±5,∴x1=1+5,x2=1−5.18.(1) ∵关于x的一元二次方程x2+(k+1)x+14k2=0有两个不相等的实数根,∴Δ=b2−4ac=(k+1)2−4×14k2>0,∴2k+1>0,∴k>−12.(2) ∵k取最小整数,∴k=0,∴原方程整理为:x2+x=0,∴方程的解为:x1=0,x2=−1.19.(1) Δ=[−3(m−1)]2−4m(2m−3) =m2−6m+9=(m−3)2,∵m>3,∴(m−3)2>0,即Δ>0,∴方程有两个不相等的实数根,∵x=3(m−1)±(m−3)2m,∴方程有一个根为1,∴方程有一根为定值.(2) ∵x=3(m−1)±(m−3)2m,∴x1=1,x2=2−3m,∵9x1−3x2≥4,∴9−3(2−3m)≥4,解得m≤9,故m的取值范围是3<m≤9.20.(1) 5(2) 由题意得:n(n−3)2=35.整理得:n2−3n−70=0.解得:n=10或n=−7(舍去).∴边数n为10.(3) A同学说法是不正确的.理由:当12n(n−3)=10,整理得:n2−3n−20=0.解得:n=3±892.∴符合方程n2−3n−20=0的正整数n不存在.∴多边形的对角线不可能有10条.21. (1)设鸡场垂直于墙的一边长为x m,则鸡场平行于墙的一边长为(40−2x)m.根据题意得:x(40−2x)=200,解得:x1=x2=10,所以40−2x=20.答:鸡场平行于墙的一边长为20 m.(2)假设能,设鸡场垂直于墙的一边长为y m,则鸡场平行于墙的一边长为(40−2y)m,根据题意得:y(40−2y)=250,整理得:y2−20y+125=0.因为Δ=(−20)2−4×1×125=−100<0,所以该方程无解,所以假设不成立,即养鸡场面积不能达到250 m2.22.(1) 32(2) 设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40−x)(20+2x)=1200.整理,得x2−30x+200=0.解得:x1=10,x2=20.∵要求每件盈利不少于25元,40−20=20<25∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元。

初中数学 人教版九年级上册 第21章 一元二次方程 单元练习卷

初中数学 人教版九年级上册 第21章 一元二次方程 单元练习卷

第21章一元二次方程一.选择题1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x﹣1,一元二次方程的个数是()A.1B.2C.3D.42.用配方法解方程2x2﹣x﹣1=0,变形结果正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=3.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21B.﹣4,11C.4,21D.﹣8,694.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k5.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④6.已知(a2+b2+2)(a2+b2)=8,那么a2+b2的值是()A.2B.﹣4C.2或﹣4D.不确定7.若多项式M=a2+2b2﹣2a+4b+2023,则M的最小值是()A.2019B.2020C.2021D.20238.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为()A.(1+n)2=931B.n(n﹣1)=931C.1+n+n2=931D.n+n2=9319.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1056B.x(x﹣1)=1056×2C.x(x﹣1)=1056D.2x(x+1)=105610.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A.B.C.D.(1+)2二.填空题11.方程(x﹣1)(2x+1)=2化成一般形式是,它的二次项系数是.12.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则a=.13.已知x满足方程x2﹣3x+1=0,则x2+的值为.14.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.当y=﹣1时,n =.15.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.三.解答题16.用适当的方法解下列方程:(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=017.已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+3x1x2=1,求m的值.18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.20.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?21.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出8套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到了50000元,求m的值.参考答案一.选择题1.B.2.D.3.A.4.C.5.C.6.A.7.B.8.C.9.C.10.A.二.填空题11.2x2﹣x﹣3=0;2.12.﹣1.13.7.14.﹣1.15.1.三.解答题16.解:(1)∵a=1,b=﹣6,c=﹣6,∴△=(﹣6)2﹣4×1×(﹣6)=60>0,则x==3±;(2)∵2x2﹣x﹣15=0,∴(x﹣3)(2x+5)=0,则x﹣3=0或2x+5=0,解得x=3或x=﹣2.5.17.(1)证明:∵△=(2m+1)2﹣4×1×(m﹣2)=4m2+4m+1﹣4m+8=4m2+9>0,∴无论m取何值,此方程总有两个不相等的实数根;(2)解:由根与系数的关系得出,由x1+x2+3x1x2=1得﹣(2m+1)+3(m﹣2)=1,解得m=8.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.解:(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:×1+8=14,则此时,平均每周的销售利润是:(22﹣15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25﹣x﹣15)(8+2x)=90,解得x1=1,x2=5,当x=1时,销售数量为8+2×1=10(辆);当x=5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x=5,此时每辆汽车的售价为25﹣5=20(万元),答:每辆汽车的售价为20万元.20.解:设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.可得方程[1000﹣20(x﹣25)]x=27000.整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x1=45时,1000﹣20(x﹣25)=600<700,故舍去x1;当x2=30时,1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.21.解:(1)设降价x元,依题意,得:8000×0.9﹣x﹣5000≥5000×20%,解得:x≤1200.答:最多降价1200元,才能使利润率不低于20%.(2)依题意,得:[8000(1+m%)﹣40m﹣5000]×8(1+m%)=50000,整理,得:m2+275m﹣16250=0,解得:m1=50,m2=﹣325(不合题意,舍去).答:m的值为50元.。

第二十一章 一元二次方程 单元测试(含答案) 2024-2025学年人教版九年级数学上册

第二十一章一元二次方程一、选择题(每题3分,共24分)1.在一元二次方程x2−2x−3=0中,一次项系数是( )A.1B.0C.−2D.−3 2.若x=−1是关于x的方程x2+ax=0的一个根,则a的值为( )A.1B.2C.3D.43.用配方法解方程x2-6x-1=0时,配方结果正确的是( )A.(x-3)2=10B.(x-3)2=8C.(x-6)2=10D.(x-3)2=1 4.一元二次方程x2−2x=0的解是( )A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=−2D.x1=−2,x2=−15.一元二次方程x(x−1)=2(x−1)的解完全正确的是( )A.x=2B.x1=2,x2=1C.x1=−2,x2=1D.x1=3,x2=−1 6.若关于x的一元二次方程(k−1)x2−4x−1=0有实数根,则k的取值范围( )A.k>−3B.k≥−3且k≠1C.k>−3且k≠0D.k≤−37.若一元二次方程2x2+3x﹣6=0的两个根分别为x1,x2,则x1•x2的值等于( )A.﹣6B.6C.﹣3D.38.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x人,经过两轮传染后共有256人感染了“甲流”.则关于x的方程为( )A.x+x(x+1)=256B.x2+x=256C.1+x+x(x+1)=256D.(x+1)+(x+1)2=256二、填空题(每题4分,共20分)9.若方程(m−1)x2+6x−1=0是关于x的一元二次方程,则m的取值范围是 .10.用配方法解一元二次方程x2+6x+3=0时,将它化为(x+m)2=n的形式,则m−n的值为 .11.已知关于x的一元二次方程2m x2−4x+1−5n=0有两个相等的实数根,则2m+5n的值为 .12.已知三角形两边的长分别是2和5,第三边的长是方程x2-7x+10=0的根,则这个三角形的周长是 .13.已知m,n是方程x2+4x−3=0的两个实数根,则m2+5m+n+2024的值是 .三、计算题(共10分)14.解方程:(1)x2−4x−12=0;(2)x(x−9)=8(9−x).四、解答题(共46分)15.关于x的一元二次方程2x2−4x+(2m−1)=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程有一个根为x=3+1,求m的值和另一根.16.已知关于x的一元二次方程x2−(m+2)x+m−1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且x21+x22−x1x2=9,求m的值.17.为了提升居民生活质量,完善社区公共区域配套设施,今年夏天长春市在多个城区实施了旧城改造工程.已知某工程队在开始施工的7月份为某小区翻新道路12000m2,为了在入冬前完成道路翻新工程,之后加快了工程进度,结果9月份为该小区翻新道路14520 m2.(1)求这两个月该工程队工作效率的月平均增长率.(2)若10月份该工程队的工作效率按此增长率增长,估计到10月末该工程队能否完成该小区共55000m2的道路翻新任务?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.C2.A3.A4.B5.B6.B7.C8.C9.m≠110.−311.112.1213.202314.(1)解:x2−4x−12=0 x2−4x=12x2−4x+4=12+4(x−2)2=16x−2=±4即:x−2=4或x−2=−4∴x1=6,x2=−2(2)解:x(x−9)=8(9−x)解:x(x−9)−8(9−x)=0x(x−9)+8(x−9)=0(x−9)(x+8)=0即:x−9=0或x+8=0∴x1=9,x2=−815.(1)解:∵方程2x2−4x+(2m−1)=0有两个不相等的实数根,∴Δ=16−8(2m−1)=24−16m>0解得m<32;∵方程有一个根x=3+1,∴2×(3+1)2−4×(3+1)+(2m−1)=0解得m=−32,则2x2−4x−4=0,x2−2x−2=0∵x1+x2=2,∴x2=2−(1+3)=1−3,则x1=1+3,x2=1−3,即m的值是−32,另一根是1−3.16.(1)证明:Δ=[−(m+2)]2−4×1×(m−1)=m2+8,∵无论m取何值,m2+8>0,恒成立,∴无论m取何值,方程都有两个不相等的实数根;(2)解:∵x1,x2是方程x2−(m+2)x+m−1=0的两个实数根,∴x1+x2=m+2,x1⋅x2=m−1,∵x21+x22−x1x2=(x1+x2)2−3x1x2=9,∴(m+2)2−3(m−1)=9解得:m1=1或m2=−2.17.(1)解:设该工程队工作效率的月平均增长率为x,根据题意,得12000(1+x)2=14520.解这个方程,得x1=0.1,x2=−2.1(不合题意舍去).答:该工程队工作效率的月平均增长率为10%.(2)解:8月的工程量为:13200m2;10月的工程量为:15972m2;12000+13200+14520+15972=55692>55000.所以该工程队能完成该小区的道路翻新任务.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。

(完整版)人教版九年级上数学《第21章一元二次方程》单元测试题及答案,推荐文档

3《一元二次方程》单元测试题一、选择题 (共 8 题,每题有四个选项,其中只有一项符合题意。

每题 3 分,共 24 分):1.下列方程中不一定是一元二次方程的是( )2 2 3x 2 +3 x - 2 = 0A.(a-3)x =8 (a≠3)B.ax +bx+c=0C.(x+3)(x-2)=x+5D. 572 下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12;C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+23. 一元二次方程 2x 2-3x+1=0 化为(x+a)2=b 的形式,正确的是()⎛ 3 ⎫2 ⎛ 3 ⎫2 1 ⎛ 3 ⎫2 1A. x - ⎪ = 16 ;B. 2 x - ⎪ = ;C. x - ⎪ = ;D.以上都不对⎝ 2 ⎭ ⎝ 4 ⎭ 16 ⎝ 4 ⎭ 164. 关于 x 的一元二次方程(a -1)x 2 + x + a 2 -1 = 0 的一个根是 0,则a 值为()A 1B -1C 1或-1D1/25. 已知三角形两边长分别为 2 和 9,第三边的长为二次方程 x 2-14x+48=0 的一根, 则这个三角形的周长为( ) A.11 B.17 C.17 或 19 D.196. 已知一个直角三角形的两条直角边的长恰好是方程2x 2 - 8x + 7 = 0 的两个根,则这个直角三角形的斜边长是( )A 、 B 、3 C 、6 D 、9 x 2 - 5x - 6 7. 使分式 的值等于零的 x 是() A.6 B.-1 或 6 C.-1 D.-6x +18. 若关于 y 的一元二次方程 ky 2-4y-3=3y+4 有实根,则 k 的取值范围是( ) A.k>-7/4 B.k≥-7/4 且 k≠0 C.k≥-7/4D.k>7/4 且 k≠09. 已知方程 x 2 + x = 2 ,则下列说中,正确的是()A 方程两根和是 1B 方程两根积是 2C 方程两根和是- 1D 方程两根积比两根和大 210. 某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题 4 分,共 20 分)211.用法解方程3(x-2)2=2x-4 比较简便. 12.如果2x2+1 与4x2-2x-5 互为相反数,则x 的值为. 13. x2 - 3x += (x -)214.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a、b、c 的关系是.15.已知方程3ax2-bx-1=0 和ax2+2bx-5=0,有共同的根-1, 则a= , b= .16.一元二次方程x2-3x-1=0 与x2-x+3=0 的所有实数根的和等于.17.已知3- 是方程x2+mx+7=0 的一个根,则m= ,另一根为.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是.1+119.已知x1 ,x2 是方程x 2- 2x - 1 = 0 的两个根,则x1 x2 等于.20.关于x 的二次方程x2 +mx +n = 0 有两个相等实根,则符合条件的一组m, n 的实数值可以是m =,n =.三、用适当方法解方程:(每小题 5 分,共 10 分)21. (3 -x)2 +x2 = 5 22. x2 + 2 3x + 3 = 0四、列方程解应用题:(每小题 7 分,共 21 分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为 20m,长为 32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为 570m2,道路应为多宽?2325. 某商场销售一批名牌衬衫,平均每天可售出 20 件,每件赢利 40 元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1 元,商场平均每天可多售出 2 件。

人教版数学九年级上册 第21章 一元二次方程 单元练习卷

第21章一元二次方程一.选择题1.已知关于x的方程:(1)ax2+bx+c=0;(2)x2﹣4x=8+x2;(3)1+(x﹣1)(x+1)=0;(4)(k2+1)x2+kx+1=0中,一元二次方程的个数为()个.A.1B.2C.3D.42.一元二次方程ax2+bx=c的二次项系数为a,则常数项是()A.0B.b C.c D.﹣c3.如果关于x的一元二次方程ax2+x﹣1=0有两个不相等的实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0D.a>﹣且a≠0 4.一元二次方程x(x﹣2)=3x根的情况是()A.两个相等的实数根B.一个实数根C.两个不相等的实数根D.无实数根5.已知关于x的一元二次方程x2﹣3x+k+1=0,它的两根之积为﹣4.则k的值为()A.﹣1B.4C.﹣4D.﹣56.一元二次方程x2﹣6x+5=0的两根分别是x1、x2,则x1•x2的值是()A.5B.﹣5C.6D.﹣67.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3B.﹣3C.D.﹣8.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或49.在实数范围内定义运算“⊕”,其法则为:a⊕b=a2﹣b2,则方程(4⊕3)⊕x=24的解为()A.x=5B.x=﹣5C.x=5或x=﹣5D.x=3或x=7 10.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛.设参赛球队的支数为x,则根据题意所列的方程是()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28×2D.x(x﹣1)=28×2二.填空题11.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则a=.12.已知一元二次方程x2﹣2x+n=0的一个根为1+,则另一个根为.13.配方法解一元二次方程ax2+bx﹣c=0(a≠0,c>0)得到(x﹣c)2=4c2,从而解得方程一根为1,则a﹣3b=.14.已知关于x的一元二次方程ax2+bx+c=0(a、b、c是常数,且a≠0)的解是,,则方程a(x+2)2+b(x+2)+c=0(a≠0)的解是.15.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为m.三.解答题16.解下列方程:(1)x2﹣6x+9=0;(2)x2﹣4x=12;(3)3x(2x﹣5)=4x﹣10.17.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.18.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式:m2﹣4mn+3n2;(2)无论m取何值,代数式m2﹣3m+2015总有一个最小值,请你尝试用配方法求出它的最小值.19.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,问他降价多少元时,才能使每天所赚的利润最大?并求出最大利润.20.某药店购进一批消毒液,计划每瓶标价100元,由于疫情得到有效控制,药店决定对这批消毒液全部降价销售,设每次降价百分率相同,经过连续两次降价后,每瓶售价为81元.(1)求每次降价的百分率.(2)若按标价出售,每瓶能盈利100%,问第一次降价后销售消毒液100瓶,第二次降价后至少需要销售多少瓶,总利润才能超过5000元?21.随着新冠病毒在全世界蔓延,口罩成为紧缺物资,甲、乙两家工厂积极响应政府号召,准备跨界投资生产口罩.根据市场调查,甲、乙两家工厂计划每天各生产6万片口罩,但由于转型条件不同,其生产的成本不一样,甲工厂计划每生产1万片口罩的成本为0.6万元,乙工厂计划每生产1万片口罩的成本为0.8万元.(1)按照计划,甲、乙两家工厂共生产2000万片口罩,且甲工厂生产口罩的总成本不高于乙工厂生产口罩的总成本的,求甲工厂最多可生产多少万片的口罩?(2)实际生产时,甲工厂完全按计划执行,但乙工厂的生产情况发生了一些变化.乙工厂实际每天比计划少生产0.5m万片口罩,每生产1万片口罩的成本比计划多0.2m万元,最终乙工厂实际每天生产口罩的成本比计划多1.6万元,求m的值.参考答案一.选择题1.B.2.D.3.D.4.C.5.D.6.A.7.B.8.A.9.C.10.D.二.填空题11.﹣1.12.1﹣.13.3.14.x3=﹣3,x4=﹣1.15.20.三.解答题16.解:(1)x2﹣6x+9=0(x﹣3)2=0x﹣3=0∴x1=x2=3;(2)x2﹣4x=12x2﹣4x﹣12=0(x+2)(x﹣6)=0x+2=0或x﹣6=0∴x1=﹣2,x2=6;(3)3x(2x﹣5)=4x﹣103x(2x﹣5)﹣2(2x﹣5)=0(2x﹣5)(3x﹣2)=02x﹣5=0或3x﹣2=0∴x1=,x2=.17.解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴﹣2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.18.解:(1)m2﹣4mn+3n2=m2﹣4mn+4n2﹣n2=(m﹣2n)2﹣n2=(m﹣3n)(m﹣n);(2)m2﹣3m+2015===,∵,∴,即代数式m2﹣3m+2015的最小值为.19.解:设每件衬衫应降价x元,利润为w元,根据题意,商场降价后每天盈利=每件的利润×卖出的件数,则有w=(20+2x)(40﹣x)=﹣2x2+60x+800=﹣2(x﹣15)2+1250即当x=15时,w有最大值,为1250,答:每件衬衫应降价15元,可获得最大利润,最大利润为1250.20.解:(1)设每次降价的百分率为x,依题意得:100(1﹣x)2=81,解得:x1=10%,x2=1.9(舍去).答:每次降价的百分率为10%.(2)设第二次降价后需要销售y瓶,则100÷(1+100%)=50(元),100×(1﹣10%)=90(元),(90﹣50)×100+(81﹣50)y>5000,解得y>,∵y为整数,∴第二次降价后至少需要销售33瓶,总利润才能超过5000元.21.解:(1)设甲工厂生产x万片口罩,则乙工厂生产(2000﹣x)万片口罩,由题意得:0.6x≤0.8(2000﹣x)×,解得:x≤1000.答:甲工厂最多可生产1000万片的口罩.(2)由题意得:(6﹣0.5m)(0.8+0.2m)=6×0.8+1.6,整理得:m2﹣8m+16=0.解得:m1=m2=4.答:m的值为4.。

2021年最新人教版九年级数学上册 第21章 一元二次方程 单元测试题(有答案)

第21章一元二次方程单元测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 若x2+ax+2516=(x−54)2,则a的值是()A.54B.−54C.52D.−522. 已知(m+2)x|m|−1+3=0为一元二次方程式,则m的值为()A.2B.−2C.2或−2D.以上都不对3. 方程2x2−6x−5=0的二次项系数、一次项系数、常数项分别为()A.6、2、5B.2、−6、5C.2、−6、−5D.−2、6、54. 若x1,x2是一元二次方程3x2+x−1=0的两个根,则1x1+1x2的值是()A.−1B.0C.1D.25. 已知一元二次方程(a−1)x2+7ax+a2+3a−4=0有一个根为零,则a=()A.1B.−4C.1或−4D.−1或46. 为了绿化校园,某校计划经过两年时间,绿地面积增加21%.设平均每年绿地面积增长率为x,则方程可列为()A.(1+x)2=21%B.(1+x)+(1+x)2=21%C.(1+x)2=1+21%D.(1+x)+(1+x)2=1+21%7. 如果三个连续的奇数,两两相乘后,再求和得503,那么这三个连续的奇数分别是________.8. 关于x的一元二次方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是( )A.k>−1B.k>1C.k≠0D.k>−1且k≠09. 已知α为锐角,则关于x的方程x3−x2+(sinα−3)x+1=0的根的情况是()A.只有一个正根B.有三个正根C.有一个正根,两个负根D.有两个正根,一个负根10. 某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆),则该矩形茶园垂直于墙的一面长为( )A.15mB.20mC.30mD.20m或15m二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 写出方程x1+x2+x3+...+x2007+x2008=x1⋅x2⋅x3•…•x2007⋅x2008的一组正整数解________.12. 方程(x+1)(x+3)=3.37的近似解的范围为________.13. 某校准备组织一次排球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,共有多少个队参加?设有x个队参赛,则所列方程为________.14. 某商场第一季度的利润是82.75万,其中一月份的利润是25万,若利润的平均月增长率为x,可列出方程为:________.15. 平遥牛肉是我国美食文化的精华之一.已知某专卖店平遥牛肉的进价为每份10元,现在的售价是每份16元,每天可卖出120份.据市场调查,每涨价1元,每天要少卖出10份.如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价________元.16. 某企业成立三年以来,累计向国家上缴利税270万元,其中第一年上缴36万元,求后两年上缴利税的年平均增长的百分率,若设这个百分率为x,则可列方程为________.17. 中秋节当天,小明将收到的一条短信发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有111人,则小明给________人发了短信.18. 如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,则________后,△DPQ的面积等于28cm2.三、解答题(本题共计7 小题,共计66分,)19. 用适当的方法解下列方程:(1)x2+2x−1=0;(2)3x(x−1)=1−x.20. 试证明关于x的方程(m2−8m+17)x2+2mx+2=0,无论m取何值,该方程总是一元二次方程.21. 关于x的一元二次方程mx2−(2m−3)x+(m−1)=0有两个实数根.(1)求m的取值范围;(2)若m为最大负整数,求此时方程的根.22. 已知关于x的一元二次方程x2−3x+m−2=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足2x1=|x2|+1,求m的值.23. 已知关于x的一元二次方程(k−1)x2−2x+1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设x1、x2是方程的两根,是否存在实数k使得x12+x 2 =2成立?若存在,请求出k2的值;若不存在,请说明理由.24. 为了解决农民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?25. 某商品现在的售价为每件60元,每天可卖出300件.市场调查发现:如果调整价格,每降价1元,每天可多卖出20件.已知商品的进价为每件40元,如何定价既能使商品尽快卖出,又能使每天的利润达到6000元?参考答案一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】D【解答】解:x2+ax+2516=(x−54)2=x2−52x+2516,则a=−52,故选D.2.【答案】D【解答】解:∵(m+2)x|m|−1+3=0为一元二次方程式,∴|m|−1=2且m+2≠0,解得m=±3.故选:D.3.【答案】C【解答】解:方程2x 2−6x −5=0的二次项系数、一次项系数、常数项分别为2、−6、−5; 故选C .4.【答案】C【解答】解:∵ x 1、x 2是方程3x 2+x −1=0的两个实数根,∴ x 1+x 2=−13,x 1⋅x 2=−13.∴ 1x 1+1x 2=x 2+x 1x 1x 2=−13−13=1.故选C5.【答案】B【解答】解:把x =0代入一元二次方程(a −1)x 2+7ax +a 2+3a −4=0,可得a 2+3a −4=0,解得a =−4或a =1,∵二次项系数a−1≠0,∴a≠1,∴a=−4.故选:B.6.【答案】C【解答】解:设原来的绿地面积为单位1,平均每年绿地面积增长率为x,则第一年绿地面积增加了:1+x,第二年绿地面积增加了:(1+x)2,则(1+x)2=1+21%.故选C.7.【答案】11,13,15;或−11,−13,−15【解答】解:设三个连续奇数中第一个奇数为x−2,第二奇数为x,第三个奇数为x+2,则由题意得x(x−2)+x((x+2)+(x−2)(x+2)=503,解得x1=13,x2=−13.则三个连续奇数中第三个奇数为:11,13,15;或−11,−13,−15. 故答案为:11,13,15;或−11,−13,−15.8.【答案】D【解答】解:由已知得:{k≠0,Δ=22+4k>0,解得:k>−1且k≠0.故选D.9.【答案】D【解答】解:取α=30∘,原方程变为x3−x2−52x+1=0,即2x3−2x2−5x+2=0,2x3−4x2+(2x2−5x+2)=0,故(x−2)(2x2+2x−1)=0,∴方程有两个正根,一个负根.故选D.10.【答案】B【解答】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1−2x)m,根据题意,得x(69+1−2x)=600,整理,得x2−35x+300=0,解得x1=15,x2=20.当x=15时,70−2x=40>35,不符合题意舍去;当x=20时,70−2x=30,符合题意.即该矩形茶园垂直于墙的一面长为20m.故选B.二、填空题(本题共计8 小题,每题3 分,共计24分)11.【答案】(2008, 2, 1, 1,…,1)(答案不唯一)【解答】解:令x1=2008,x2=2,其余的未知数均等于1,即(2008, 2, 1, 1,…,1)(答案不唯一).故答案为:(2008, 2, 1, 1,…,1)(答案不唯一).12.【答案】0.09∼0.10或−4.10∼−4.09【解答】设x+2=y,则原方程化为(y−1)(y+1)=3.37,化简整理,得y2=4.37.∵ 2.092=4.3681,2.102=4.41,∴ 4.3681<y2<4.41,∴ 2.09<y<2.10或−2.10<y<−2.09,即2.09<x+2<2.10或−2.10<x+2<−2.09,∴0.09<x<0.10或−4.10<x<−4.09.即方程的解在0.09∼0.10或−4.10∼−4.09之间.13.【答案】x(x−1)=282【解答】解:∵赛程计划安排7天,每天安排4场比赛,∴共7×4=28场比赛.设比赛组织者应邀请x队参赛,则由题意可列方程为:x(x−1)=28.2故答案为:x(x−1)=28.214.【答案】25+25(1+x)+25(1+x)2=82.75【解答】解:由题意得:二月份的利润为:25(1+x)万,三月份的利润为;25(1+x)2万,第一季度的利润是82.75万,可列方程为:25+25(1+x)+25(1+x)2=82.75.故答案为:25+25(1+x)+25(1+x)2=82.75.15.【答案】1【解答】解:设涨价x元,(16+x−10)(120−10x)=770,解得x1=1,x2=5(舍).故答案为:1.16.【答案】36+36(1+x)+36(1+x)2=270【解答】解:∵第一年上缴36万元,年上缴利税的年平均增长的百分率为x,∴第二年上缴利税为36×(1+x),∴第三年的上缴利税为36×(1+x)×(1+x)=36×(1+x)2,∴可列方程为:36+36(1+x)+36(1+x)2=270,故答案为:36+36(1+x)+36(1+x)2=270.17.【答案】10【解答】解:设小明发短信给x个人,由题意得:1+x+x2=111,解得:x1=10,x2=−11(不合题意舍去),即小明给10人发了短信.故答案为:10.18.【答案】2s或4s【解答】解:设xs后,△DPQ的面积等于28cm2,此时AP=x,BP=6−x,BQ=2x,CQ=12−2x. 则S△DAP=12×12x,S△PBQ=12×2x(6−x),S△QCD=12×6×(12−2x).根据题意得,S△DAP+S△PBQ+S△QCD=6×12−S△DPQ,即12×12x+12×2x(6−x)+12×6×(12−2x)=44,即x2−6x+8=0,解得:x1=2,x2=4.∴2s或4s后,△DPQ的面积等于28cm2.故答案为:2s或4s.三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】解:(1)等式两边同时加2可得x2+2x+1=2,即(x+1)2=2,开方得:x+1=±√2,∴x1=−1+√2,x2=−1−√2.(2)原式可化为:3x(x−1)+(x−1)=0即(3x+1)(x−1)=0,解得x1=−1,x2=1.3【解答】解:(1)等式两边同时加2可得x2+2x+1=2,即(x+1)2=2,开方得:x+1=±√2,∴x1=−1+√2,x2=−1−√2.(2)原式可化为:3x(x−1)+(x−1)=0即(3x+1)(x−1)=0,,x2=1.解得x1=−1320.【答案】证明:∵m2−8m+17=(m−4)2+1>0,∴关于x的方程(m2−8m+17)x2+2mx+2=0的二次项系数不为零,∴ 关于x 的方程(m 2−8m +17)x 2+2mx +2=0,无论m 取何值,该方程总是一元二次方程.【解答】证明:∵ m 2−8m +17=(m −4)2+1>0,∴ 关于x 的方程(m 2−8m +17)x 2+2mx +2=0的二次项系数不为零, ∴ 关于x 的方程(m 2−8m +17)x 2+2mx +2=0,无论m 取何值,该方程总是一元二次方程.21.【答案】根据题意得m ≠0且△=(2m −3)2−4m(m −1)≥0,解得m ≤98且m ≠0; m 的最大负整数为−1,此时方程变形为x 2−5x +2=0,△=25−4×2=17,x =5±√172×1, 所以x 1=5+√172,x 2=5−√172.【解答】根据题意得m ≠0且△=(2m −3)2−4m(m −1)≥0,解得m ≤98且m ≠0;m 的最大负整数为−1,此时方程变形为x 2−5x +2=0,△=25−4×2=17,x =5±√172×1,所以x 1=5+√172,x 2=5−√172.22.【答案】解:(1)∵ 该一元二次方程有两个实数根, ∴ Δ=9−4(m −2)≥0,解得,m ≤174.(2)若x 2≥0,则2x 1−x 2=1.∵ x 1+x 2=3,∴ {2x 1−x 2=1,x 1+x 2=3,解得{x 1=43,x 2=53.∵ x 1x 2=m −2=209,解得m =389.若x 2<0,则2x 1+x 2=1,∴ {2x 1+x 2=1,x 1+x 2=3,解得{x 1=−2,x 2=5.∵ x 2<0,∴ x 2=5不符合题意,舍去.∴ m =389.【解答】解:(1)∵ 该一元二次方程有两个实数根, ∴ Δ=9−4(m −2)≥0,解得,m ≤174.(2)若x 2≥0,则2x 1−x 2=1.∵ x 1+x 2=3,∴ {2x 1−x 2=1,x 1+x 2=3,解得{x 1=43,x 2=53.∵ x 1x 2=m −2=209,解得m =389.若x 2<0,则2x 1+x 2=1,∴ {2x 1+x 2=1,x 1+x 2=3,解得{x 1=−2,x 2=5.∵ x 2<0,∴ x 2=5不符合题意,舍去.∴ m =389.23.【答案】解:(1)∵ 方程(k −1)x 2−2x +1=0有两个不相等的实数根,∴ △>0,即:4−4(k −1)>0,解得:k <2,又∵ k −1≠0,∴ k 的取值范围是:k <2且k ≠1;(2)假设存在实数k 使得x 12+x 22 =2成立:∵ x 1x 2=1k−1,x 1+x 2=2k−2,∴ x 12+x 22 =(x 1+x 2)2−2x 1x 2=(2k−1)2−2k−1=2,解得:k 1=−1,k 2=2,由(1)知:k <2且k ≠1,∴ k =−1,即:当k =−1时,x 12+x 22 =2成立.【解答】解:(1)∵ 方程(k −1)x 2−2x +1=0有两个不相等的实数根, ∴ △>0,即:4−4(k −1)>0,解得:k <2,又∵ k −1≠0,∴ k 的取值范围是:k <2且k ≠1;(2)假设存在实数k 使得x 12+x 22 =2成立:∵ x 1x 2=1k−1,x 1+x 2=2k−2,∴ x 12+x 22 =(x 1+x 2)2−2x 1x 2=(2k−1)2−2k−1=2,解得:k 1=−1,k 2=2,由(1)知:k <2且k ≠1,∴ k =−1,即:当k =−1时,x 12+x 22 =2成立.24.【答案】解:设平均每次降价的百分率为x ,由题意得200×(1−x)2=128,解得x1=0.2,x2=1.8(不合题意舍去).答:这种药品平均每次降价率是20%.【解答】解:设平均每次降价的百分率为x,由题意得200×(1−x)2=128,解得x1=0.2,x2=1.8(不合题意舍去).答:这种药品平均每次降价率是20%.25.【答案】解:降价x元,则售价为(60−x)元,销售量为(300+20x)件,根据题意得,(60−x−40)(300+20x)=6000,(20−x)(15+x)=300,300+5x−x2=300,x(5−x)=0,解得x1=5,x2=0(舍去),所以定价为55元/件时,每天的利润达到6000元.【解答】解:降价x元,则售价为(60−x)元,销售量为(300+20x)件,根据题意得,(60−x−40)(300+20x)=6000,(20−x)(15+x)=300,300+5x−x2=300,x(5−x)=0,解得x1=5,x2=0(舍去),所以定价为55元/件时,每天的利润达到6000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21章 二元一次方程
一、填空题(每小题3分,共30分)
1.已知关于x 的方程()()2
1210m x m x m -++-=是一元二次方程,则m 的取值应满足__________. 【答案】m ≠-1
2.已知关于x 的一元二次方程
的一个根为2,则另一个根是_________. 【答案】
3.若关于x 的一元二次方程x 2-2x +a -1=0有实数根,则a 的取值范围为________.
【答案】a ≤2
4.为应对金融危机,某工厂从2019年到2019年把某种产品的成本下降了
,则平均每年下降的百分数为______. 【答案】
5.若,是方程的两实数根,则的值为______. 【答案】7
6.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____. 【答案】x (x ﹣1)=21
7.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.
【答案】16
8.若关于x 的方程
的常数项为0,则m 的值等于_____________________
【答案】6或3
9.三角形两边的长分别是8cm 和15cm ,第三边的长是方程x 2﹣24x+119=0的一个实数根,则三角形的面积是_____.
【答案】60cm 2
10.中国民歌不仅脍炙人口,而且许多还有教育意义,有一首《牧童王小良》的民歌还包含着一个数学问题: 牧童王小良,放牧一群羊.问他羊几只,请你仔细想.头数加只数,只数减头数.只数乘头数,只数除头数.四数连加起,正好一百数.如果设羊的只数为x ,则根据民歌的大意,你能列出的方程是 ________ .
【答案】x 2+2x+1=100
一、选择题(每小题3分,共30分)
11.下列方程中,关于x 的一元二次方程是( )
A . x 2+2y=1
B .
﹣2=0 C . ax 2+bx+c=0 D . x 2
+2x=1 【答案】D
12.方程的解是
A.x1=2,x2= 3 B.x1=2,x2=1 C.x=2 D.x=3
【答案】A
13.若是关于x的一元二次方程的一个解,则的值是()
A. 17 B. 1026 C. 2019 D. 4053
【答案】B
14.关于一元二次方程根的情况,下列说法正确的是()
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
【答案】C
15.用配方法解方程,则方程可变形为()
A. B. C. D.
【答案】C
16.已知关于x的方程有一个根为,则另一个根为()
A. 5 B. C. 2 D.
【答案】B
17.某企业因春节放假,二月份产值比一月份下降,春节后生产呈现良好上升势头,四月份比一月份增长,设三、四月份的月平均增长率为x,则下列方程正确的是()
A. B.
C. D.
【答案】D
18.如图,是一个简单的数值运算程序.则输入x的值为()
A.3或-3 B.4或-2 C.1或3 D.27
【答案】B
19.已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()
A. 3 B. 1 C.﹣1 D.﹣3
【答案】B
20.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()]
A . 4
B . 5
C . 6
D . 7
【答案】C
三、解答题(共60分)
21.(本题8分)请选择适当的方法解下列一元二次方程:
(1) ()()23424x x -=-; (2) 2112
x x +=.
【答案】(1) 14x =, 2143
x =;(2) 11x =-, 21x =-- 22.(本题8分)已知关于x 的一元二次方程
有两个实数根.
求k 的取值范围;
设方程两实数根分别为,,且满足
,求k 的值.
【答案】(1);(2). 23.(本题5分)如图所示,在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2
, 设金色纸边的宽为xcm ,求满足x 的方程.
【答案】x 2+65x ﹣350=0.
24.(本题8分)为了完成池百(河池至百色)高速公路能在2019年底通车任务,各项工程都加快了施工力度.其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍:
(1)求甲乙两队单独完成这项工程各需几个月?
(2)若甲队每月的施工费用为100万元,乙队每月的施工费用比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的两倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按时取整数)
【答案】(1)甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月;(2)完成这项工程,甲队最多施工8个月.
25.(本题5分)大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为 1,再进行配方.现请你先阅读如下方程(1)的解答过程,并按照此方法解方程(2).方程(1)
. 解:
, 方程(2). 【答案】 ,.
26.(本题8分)如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.
若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?
若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.
【答案】(1)修建的两块矩形绿地的面积共为144平方米,(2)人行通道的宽度为1米.
27.(本题8分)鹿城大厦某种商品平均每天可销售30件,每件盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出3件,设每件商品降价x元.据此规律,请回答:
(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);
(2)上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利达到1440元?
【答案】(1)3x;36﹣x(2)每件商品降价20元时,日盈利可达到1440元
28.(本题10分)某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价1元,那么每月就可以多售出5个.
降价前销售这种学习机每月的利润是多少元?
经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?
在的销售中,销量可好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.
【答案】(1)4800元;(2)降价60元;(3)应涨26元每月销售这种学习机的利润能达到10580元.。

相关文档
最新文档