预测模型(灰色系统分析方法)

合集下载

灰色模型算术公式

灰色模型算术公式

灰色模型算术公式灰色模型是一种用于预测和分析数据的方法,其基本思想是将数据分为两类:已知数据和未知数据。

已知数据是指已经确定并可以用来建模的数据,而未知数据则是需要预测或者分析的数据。

为了对未知数据进行预测或分析,灰色模型使用了灰色系统理论中的灰色预测方法。

灰色模型的算术公式包括:灰色微分方程、灰色模型GM(1,1)、灰色关联度等。

其中,灰色微分方程是灰色预测方法的核心公式,它的形式为:$$ frac{dx}{dt} + a x = u $$其中,$x$ 表示原始数据序列,$t$ 表示时间,$a$ 表示灰色微分方程的参数,$u$ 表示灰色微分方程的非齐次项。

通过对该方程进行求解,可以得到灰色模型的预测结果。

另外,灰色模型GM(1,1)是一种常用的灰色预测模型,它的基本形式为:$$ x(k+1) = (x(1)-frac{u}{a})e^{-ak} + frac{u}{a} $$ 其中,$x(k+1)$ 表示预测值,$x(1)$ 表示初始值,$a$ 和$u$ 分别表示灰色微分方程的参数。

通过对历史数据进行处理,可以得到灰色模型GM(1,1)的预测结果。

此外,灰色关联度是用于分析数据间关系的一种方法,在灰色系统理论中被广泛应用。

灰色关联度的计算公式为:$$ r_{ij} = frac{sum_{k=1}^nmin(x_i(k),x_j(k))}{sum_{k=1}^n x_i(k)} $$其中,$x_i(k)$ 和 $x_j(k)$ 分别表示第 $i$ 个和第 $j$ 个数据在第 $k$ 个时刻的值,$n$ 表示时刻数。

通过计算灰色关联度,可以了解数据之间的关系,从而对其进行进一步的分析和预测。

总之,灰色模型的算术公式包括灰色微分方程、灰色模型GM(1,1)、灰色关联度等,这些公式是灰色预测和分析方法的核心内容。

在实际应用中,可以根据具体情况选择合适的公式进行计算和分析。

灰色预测模型公式

灰色预测模型公式

灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。

灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。

灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。

灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。

系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。

灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。

2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。

3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。

4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。

5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。

灰色预测模型在实际应用中具有广泛的应用价值。

它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。

同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。

灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。

灰色系统预测方法介绍

灰色系统预测方法介绍

指 标 p越 大 越 好 , p越 大 , 表 明 残 差 与 残 差 平 均 值 之 差 小 于 给 定 值 0.67451的 点 较 多 , 即 拟 合 值 ( 或 预 测 值 ) 分 布 比 较 均 匀 . 按 C , p两 个 指 标 , 可 综 合 评 定 预 测 模 型 的 精 度 . 模 型 的 精 度 由 后 验 差 和 小 误 差 概 率 共 同 刻 划 .一 般 地 ,将 模 型 的 精 度 分 为 四 级 , 见 表 2-1
设X 0 = { X 0 (1), X 0 (2),⋯ , X 0 ( n)} 为参考序列, 其它序列, 则X 0与X 1的关联系数为 :
X i = { X i (1), X i (2),⋯ , X i ( n)} , i = 1, 2,⋯ , m为
ε ij =
min X 0 ( j ) − X i ( j ) + ρ max max X 0 ( j ) − X i ( j )
1 ε i = ∑ ε ij n j =1
n
(2 − 39)
(0) (0) (0) (0) 设原始数据序列X 0 = { x0 (1), x0 (2),⋯ , x0 ( n)} 为
参考序列, 用m种灰色建模方法所得模型值分别为 ˆ X (0) = { x (0) (1), x (0) (2),⋯ , x (0) ( n)} , i = 1, 2,⋯ , m .求出该
表2 − 1 精度检验等级参照表
模型精度等级 均方差比值 均方差比值C 1级(好) 级 2级(合格) 级 合格) 3级(勉强) 级 勉强) C<=0.35 0.35<C<=0.5 0.5<C<=0.65 小误差概率p 小误差概率 0.95<=p 0.80<=p<0.95 0.70<=p<0.80 P<0.70

灰色预测模型

灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。

二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。

一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。

软件DPS 的分析结果也提供了C 、p 的检验结果。

(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。

我们在原始数据序列中取出一部分数据,就可以建立一个模型。

一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。

灰色预测模型理论及其应用

灰色预测模型理论及其应用

灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。

一、灰色系统及灰色预测的概念1.1灰色系统灰色系统产生于控制理论的研究中。

若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。

若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。

灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。

区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。

特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。

1.2灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。

生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。

灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。

用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。

(2) 畸变预测(灾变预测)。

通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。

(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。

灰色预测模型原理

灰色预测模型原理

灰色预测模型原理灰色预测模型(Grey Prediction Model)是一种基于灰色系统理论和数学建模方法的预测模型。

灰色系统理论是我国学者黄金云教授于1982年提出的一种系统理论,它是研究非确定性和不完备信息系统的一种新方法,可用于研究多变量、小样本和非线性系统。

灰色预测模型主要基于灰色数学建模方法,通过对已知的部分序列数据进行建模和预测,来推测未知的序列数据趋势。

它适用于研究数据量小、信息不完备、非线性关系复杂的系统。

下面将简要介绍灰色预测模型的原理、模型建立过程以及一些应用案例。

1. 灰色预测模型的原理灰色预测模型的核心思想是通过对已知数据进行灰色关联度的度量,从而建立出合适的数学模型,进行未来数据的预测。

其基本原理可以概括为以下五个步骤:(1)建立灰色微分方程:根据原始数据的特点,确定合适的灰色微分方程,通常使用一阶或高阶灰色微分方程。

(2)求解灰色微分方程:根据所选择的灰色微分方程,求解其参数,得到模型的特征参数。

(3)模型检验:检验所建立的灰色预测模型的拟合程度和误差是否符合要求。

(4)进行灰色关联度分析:根据已知数据的变化规律,计算各个因素的灰色关联度,确定相关因素的重要性。

(5)进行预测:利用建立好的灰色预测模型,对未来的数据进行预测和分析,得出预测值。

2. 模型建立过程灰色预测模型的建立过程中,通常包括以下几个步骤:(1)数据的建立与处理:对原始数据进行筛选、预处理和归一化处理,以满足模型的要求。

(2)建立灰色微分方程:从已知数据中提取主要特征,并根据数据的特点选择合适的灰色微分方程。

(3)求解灰色微分方程:根据所选的灰色微分方程,通过累加生成序列、求解参数等方法,得到模型的特征参数。

(4)模型的检验:根据已知数据的拟合程度和误差范围,评估所建立的灰色预测模型的准确性和可靠性。

(5)模型的应用与预测:利用已建立的模型进行未来数据的预测和分析,得出预测结果。

3. 应用案例灰色预测模型在实际应用中具有广泛的应用范围,以下是一些常见的应用案例:(1)经济领域:用于对经济指标、市场需求、价格变动等进行预测,为经济决策提供参考。

灰色系统与神经网络分析方法及其应用研究

灰色系统与神经网络分析方法及其应用研究

灰色系统与神经网络分析方法及其应用研究灰色系统与神经网络分析方法及其应用研究引言灰色系统理论作为一种非统计性的系统分析与预测方法,具有应用广泛、数据要求低、适用于小样本与非线性系统等优点。

然而,随着大数据时代的到来和信息量的不断增加,灰色系统理论在某些场景下的应用面临一定的局限性。

与此同时,神经网络作为一种强大的模式识别和机器学习工具,其应用范围也逐渐扩展,并在某些领域取得了重要的研究成果。

本文将探讨灰色系统与神经网络在分析和预测方面的方法,并且介绍了它们在不同领域的应用研究进展。

一、灰色系统分析方法灰色系统理论是由我国学者黄东南提出的一种系统分析方法,其核心思想是将不完全信息转化为完全信息,并通过构建相应的数学模型进行分析和预测。

常用的灰色系统分析方法包括灰色关联分析、灰色预测模型、灰色关联预测模型等。

1. 灰色关联分析灰色关联分析是灰色系统的基本方法之一,它主要用于确定变量之间的关联程度。

通过计算得到的灰色关联系数,可以评估不同变量之间的相互关联程度,并进一步分析其影响因素。

2. 灰色预测模型灰色预测模型是灰色系统理论的核心内容之一,其目的是根据已知的历史数据,对未来变量进行预测。

其中,最常用的模型是GM(1,1)模型,它是一阶线性微分方程模型,适用于短期时间序列数据的预测。

3. 灰色关联预测模型灰色关联预测模型是将灰色关联分析与灰色预测模型相结合的方法,通过计算得到的灰色关联系数和预测值,进行综合预测。

它可以综合考虑不同变量之间的关联程度,并得出更准确的预测结果。

二、神经网络分析方法神经网络是一种模拟人脑神经元网络结构和工作原理的计算模型,具有良好的非线性映射能力和自适应学习能力。

在数据分析和预测方面,神经网络通常通过训练的方式从大量样本数据中学习,建立相应的模型,并用于未知数据的预测。

1. 前馈神经网络前馈神经网络是最常用的神经网络类型之一,其结构由输入层、隐藏层和输出层组成,信息在网络中单向传递,不具备反馈机制。

数学建模——灰色预测模型

数学建模——灰色预测模型

数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。

它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。

灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。

该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。

灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。

其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。

通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。

灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。

2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。

3.求解微分方程:求解微分方程,得到预测模型的参数。

4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。

示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。

然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。

这种情况下,你可以考虑使用灰色预测模型来预测销售量。

步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。

2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。

3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。

4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。

这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。

虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 p 是已知的, i (i 1,2, , p) 是未知参数, 服从正 4 个模型中选择 1 个(用字符串输入,缺省时为线性模型):
linear(线性): y 0 1 x1 m xm
purequadratic(纯二次):
y 0 1 x1
称 x(0) (k 1), x(0) (k)为数列的邻值
对于常数α∈ [0,1] ,称
z(0) (k) x(0) (k) (1 )x(0) (k 1)
为该数列生成系数(权)为α的邻值生成
特别的α=0.5
z(0) (k)
1
(x(0)
(k)
x(0)
(k
1))
2
为邻均值生成数。类似可定义非邻均值生成数
(1)用试验值(样本值)对未知参数 和 2 作点估计和假设检验,从而建立 y 与
x1, x2 ,..., xk 之间的数量关系;
(2)在 x1 x01, x2 x02 ,..., xk x0k , 处对 y 的值作预测与控制,即对 y 作区间估计.
多项式回归
设变量 x、Y 的回归模型为
Y 0 1x 2 x2 ... p x p
2、GM(1,1)模型
• 设原始序列为 X (0) (x(0) (1), x(0) (2), , x(0) (n)) • 其1-ago序列为
X (1) (x(1) (1), x(1) (2), , x(1) (n))
• 邻均值生成序列 Z (1) (z (1) (2), z (1) (3), , z (1) (n))
Y 0 1x ,称为 y 对 x 的回归直线方程.
一元线性回归分析的主要任务是:
1.用试验值(样本值)对 0 、 1 和 作点估计; 2.对回归系数 0 、 1 作假设检验;
3.在 x= x0 处对 y 作预测,对 y 作区间估计.
非线性回归:
(1)双曲线 1 a b
y
x
(2)幂函数曲线 y=a x b , 其中 x>0,a>0
y1
1 x11 x12 ...
Y
y2

X
1
x21
x22
...
M
M M M O
yn
1 xn1 xn2 ...
x1k
0
1
x2
k

1

2
M
M
M
xnk
k
n
y 0 1x1 ... k xk 称为回归平面方程.
返回
线性模型 (Y , X , 2 I n ) 考虑的主要问题是:
1-ago为:X 1 1,3, 4.5,7.5
将上述数据作图如下:

X 0 1,2,1.5,3
k
• r-ago为 xr k xr1 i; k 1, 2,n i 1
• B累减生成IAGO
是在获取增量信息时常用的生成,累减生成对累加 生成起还原作用
记原始数列 X (1) (x(1) (1), x(1) (2), , x(1) (n))
• 灰色系统分析方法主要是根据具体灰色系 统的行为特征数据,充分利用数量不多的 数据和信息寻求相关因素自身与各因素之 间的数学关系.即建立相应的数学模型.
二、灰色系统理论的主要内容
• 灰色关联分析 • 灰色模型 GM(1,1)等 • 灰色预测 • 等等
三、灰色模型GM
• 1、数据的生成
A累加生成(Accumulating Generation Operator )AGO
则令 x0 k x1 k x1 k 1; k 2,, n
称为一次累减生成 如(1,5,6,8)一次累减生成序列(1,4,1,2)
类似定义r次累减生成
• C均值生成
原始序列
X (0) (x(0) (1), x(0) (2),L , x(0) (k 1), x(0) (k )..., x(0) (n))
m xm
n
jj
x
2 j
j1
interaction(交叉): y 0 1 x1 m xm jk x j xk
1 jk m
quadratic(完全二次): y 0 1 x1 m xm jk x j xk
1 j,k m
灰色系统分析方法
一、灰色系统相关背景
• 1982年,中国学者邓聚龙教授创立的灰色 系统理论,是一种研究少数据、贫信息不 确定性问题的新方法。灰色系统理论以 “部分信息已知,部分信息未知”的“小 样本”、“贫信息”不确定性系统为研究 对象,主要通过对“部分”已知信息的生 成、开发,提取有价值的信息,实现对系 统运行行为、演化规律的正确描述和有效 监控。灰色系统模型对实验观测数据没有 什么特殊的要求和限制,因此应用领域十 分宽广。
预测模型
• 回归模型 • 灰色模型 • 微分方程模型 • 等等
回归分析方法
• 一元线性回归 • 可线性化一元非线性回归 • 多元线性回归 • 多项式回归 • 多元二项式回归
一般地,称由 y 0 1x 确定的模型为一元线性回归模型,
记为
y 0 1x E 0, D 2 固定的未知参数 0 、 1 称为回归系数,自变量 x 也称为回归变量.
z (1) (k) 1 (x(1) (k) x(1) (k 1)) 2
• 则GM(1,1)模型的基本形式 为 x (0) (k) az (1) (k) b
• 参数a为发展系数,反映了X (0及) x(1的) 发展态
势 • b为灰色作用量 • z(1) (k)又称为白化背景值序列
• 则GM(1,1)模型的基本形式 为 x (0) (k) az (1) (k) b
设为原始序列 X (0) (x(0) (1), x(0) (2), , x(0) (n))

k
X (1) (k) x0 i; k 1, 2,, n
i 1
则称数列 X (1) (x(1) (1), x(1) (2), , x(1) (n))
为一次累加生成数列,1-AGO
• 例如已给原始数据数列 它没有明显的规律性。
(3)指数曲线 y=a ebx 其中参数 a>0.
(4)倒指数曲线 y=a eb / x 其中 a>0,
(5)对数曲线 y=a+blog x,x>0
(6)S
型曲线
y
a
1 bex
多元回归:
一般称
Y X
E
(
)
0,
COV(
,
)
2
I
n
为高斯-马尔可夫线性模型(k 元线性回归模型),并简记为 (Y , X , 2 I n )
相关文档
最新文档