电磁环境和电磁波传播模型.

合集下载

电磁波传播与电磁环境控制

电磁波传播与电磁环境控制

电磁波传播与电磁环境控制电磁波传播是一种普遍存在于自然界和人造环境中的现象。

它们是一种电磁辐射,与光波、射线和声波一起被认为是日常生活中最普遍的形式之一。

电磁波的能量可以通过许多介质和环境传播,例如水、大气和建筑材料等。

这种能量传播在无线通信、卫星技术、雷达系统、遥感数据和医学成像等许多应用中都发挥着重要作用。

然而,电磁波辐射也可能对人类健康和环境造成负面影响。

对大多数人来说,暴露于电磁波辐射水平的最高安全限值之内是安全的。

然而,那些长期暴露在较高的电磁辐射水平下,可能会出现头痛、失眠、视力模糊和其他相关健康问题。

在事先评估和控制电磁环境方面,需要了解电磁波如何在不同介质和环境中传播,以及如何通过防护手段来保护生命和财产的安全。

电磁波在空气中和其他介质中传播的速度有所不同。

在真空中,电磁波速度为光速,大约为每秒299,792,458米。

然而,电磁波在不同介质中传播的速度不同,取决于介质中的介电常数和磁通量。

在水中,电磁波的传播速度仅为真空中光速的3/4,并且在更密集的介质中,传播速度可能会更慢。

这些因素影响了电磁波在不同媒介和环境中的传播规律。

在日常生活中,人们常常受到许多不同类型的电磁波辐射。

例如,电视、手机、微波炉和计算机等电子设备都会产生电磁波。

此外,电力线、通信工具和雷达系统等设施也会产生大量的电磁波。

在大多数情况下,这些设备使用微弱的电磁波,对人类健康和环境没有任何危害。

但是,电磁波的强度和频率可能对生命、健康和环境造成威胁。

为此,人们需要采取措施来评估和控制电磁环境。

在某些情况下,可以通过使用防护设备、使用屏蔽材料或在辐射源周围施加屏蔽来减小电磁辐射的强度。

例如,在医疗图像设备中,屏蔽可以用于防止电磁波对患者和医务人员造成伤害。

此外,在工作场所和家庭中,屏蔽也可用于减轻电磁波对人体和设备的影响。

另一种控制电磁环境的方法是尽可能减小电磁辐射的来源。

这可以通过在设计和开发电子设备时考虑减少电磁波辐射、使用更低频率的电磁波、使用更弱的电磁波以及在设备工作时采取措施来实现。

电磁环境与传播途径

电磁环境与传播途径
• 设备功能非线性产生的辐射:所谓设备功能非线 性所产生的辐射干扰,指的是电路中器件工作在 非线性状态时所产生的干扰。
9
• 核电磁脉冲辐射 核电磁脉冲辐射是能量很大的一种特殊的辐射干 扰源。爆炸核武器时,核辐射与周围环境相互作 用,使带电粒子强烈运动,由此产生核电磁脉冲。
• 电弧辐射 当开关、继电器触点开启和闭合时,触点间会产 生电弧。特别是在驱动电感负载时,这种现象更 为明显。
10
11
12
13
3.3频谱的使用与管理
频谱是一个有限的自然资源。
频谱分配必须以频谱利用的有效性和合理性为 基础,既要充分有效地利用频谱资源,又要保 证相互之间不存在电磁干扰,即满足电磁兼容 性。
频谱管理就是为了实现电磁频谱的有效管理、 保护和合理利用等,确保各类无线电业务的有 效进行,包括了无线电频谱资源的频率划分、 指配和控制。
注:l/f噪声:功率谱与振动数f的倒数成比例,背景 能量的涌动。
5
➢ 在地球表面存在着地磁场,它是一种自然场。 ➢ 在海拔高度500km处存在着大气电离层。 ➢ 宇宙噪声主要来自太阳辐射和银河系无线电辐射。 ➢ 太阳辐射可分为热辐射和非热辐射两类,热辐射
频谱从十几兆赫到30GHz,在太阳黑子剧烈活动 期的辐射强度比静止期大60dB。 ➢ 银河系无线电辐射频率在150MHz~200MHz频段 内。因此宇宙噪声在20MHz~500MHz频率范围 内影响相当明显。
21
静电放电试验装置
22
静电的放电与人体放电模型
当人体接近导电物体时(最坏的情况是接触到一个 金属物体,例如仪器外壳、集成电路的管脚等), 如果空气气隙上的电位梯度足够高,电荷会以火 花的形式转移到那个物体上。 下图给出了人体静电放电的等效电路。

电磁波的传播与吸收知识点总结

电磁波的传播与吸收知识点总结

电磁波的传播与吸收知识点总结电磁波是由电场和磁场相互作用而产生的一种辐射能量,其传播与吸收具有一定的特点和规律。

本文将对电磁波的传播与吸收相关知识点进行总结,并深入探讨其机制与应用。

一、电磁波的传播方式电磁波的传播方式分为三种:地面传播、大气传播和空间传播。

1. 地面传播地面传播是指电磁波在地面上传播的方式,主要通过地面的反射和绕射来实现。

反射是指当电磁波遇到物体表面时,部分能量被物体表面反射回去;绕射是指当电磁波遇到物体边缘时,会绕过物体障碍物的边缘而传播。

2. 大气传播大气传播是指电磁波在地球大气层中传播的方式,主要通过大气层的吸收和散射来实现。

大气层对不同波长的电磁波有不同的吸收特性,例如电离层对较短波长的电磁波具有强烈吸收能力,而较长波长的电磁波相对较容易穿透。

3. 空间传播空间传播是指电磁波在真空中传播的方式,由于真空中没有物体存在,所以电磁波可以自由传播。

在空间传播中,电磁波保持其波动特性,传播速度为光速。

二、电磁波的吸收机制电磁波在传播过程中会被物体吸收,吸收的机制主要包括反射、散射和吸收。

1. 反射当电磁波遇到物体边界时,部分能量会被物体表面反射回去,反射的能量与入射能量有关系。

反射率越高,物体对电磁波的吸收越小。

2. 散射散射是指电磁波遇到物体表面或物体内部的不均匀介质时,会发生方向改变。

散射会使电磁波重新分布,一部分能量被吸收,一部分被散射出去。

3. 吸收吸收是指电磁波被物体吸收转化为其他形式能量的过程,被吸收的能量会转化为热能、化学能等。

物体的吸收能力与其材料特性有关,不同的物体对电磁波的吸收程度有所差异。

三、电磁波传播与吸收的应用电磁波的传播与吸收机制广泛应用于通信、无线电、雷达、遥感等领域。

1. 通信电磁波的传播性质是无线通信的基础,通过电磁波的传播,可以实现无线电话、无线网络、卫星通信等。

不同频段的电磁波具有不同的传播特性,可以根据需求选择合适的频段进行通信。

2. 无线电无线电是利用电磁波传播信息的技术,通过调制和解调的方式将信息转化为电磁波,并利用电磁波的传播特性进行无线通信。

电磁波传播的三级损耗模型

电磁波传播的三级损耗模型

电磁波传播的三级损耗模型
1、电磁波传播损耗预测目的
掌握基站周围所有地点处接收信号的平均强度及变化特点,以便为网络覆盖的研究以及整个网络设计提供基础。

2、方法
根据测试数据分析归纳出基于不同环境的经验模型,在此基础上对模型进行校正,使其更加接近实际,更准确
3、确定传播环境的主要因素
(1)自然地形(高山、丘陵、平原、水域等)
(2)人工建筑的数量、高度、分布和材料特性
(3)该地区的植被特征
(4)天气状况
(5)自然和人为的电磁噪声状况
(6)系统的工作频率和移动台运动等因素
4、常用的几种室外电波传播损耗预测模型
(1)Hata模型
广泛使用的一种适用于宏蜂窝的中值路径损耗预测的传播模型。

根据应用频率的不同,分为Okumura-Hata模型和COST 231Hata模型。

(2)CCIR模型;
(3)LEE模型;
(4)COST 231 Walfisch-Ikegami模型。

电磁波传播模式及概念

电磁波传播模式及概念

电磁波传播模式及概念
电磁波传播是指电磁场在空间中的传递过程。

电磁波是由电场和磁场交替变化的波动组成,其传播方式主要有以下几种:
1、空间传播:电磁波在自由空间(无介质)中传播,如无线通信、雷达、光通信等应用中的电磁波传播。

2、导播传播:电磁波在特定介质中传播,如光纤通信中的光波、无线电波在空气、水等介质中的传播。

3、折射:电磁波从一种介质进入另一种介质时,由于介质密度、电导率等特性不同,传播速度发生变化,导致传播方向改变。

4、反射:电磁波遇到物体表面时,部分能量被反射,形成反射波。

如雷达探测、无线通信中的信号反射等。

5、衍射:电磁波遇到障碍物或通过狭缝时,波前发生弯曲,形成衍射现象。

衍射分为菲涅耳衍射和夫琅禾费衍射两类。

6、干涉:当两个或多个电磁波在同一空间叠加时,根据波的相位差产生干涉现象,表现为亮暗相间的干涉条纹。

电磁波的概念:
电磁波是由电场和磁场交替变化的波动组成,二者互相垂直。

在任何介质中,电磁波的传播速度都与该介质的性质有关。

在真空中,电磁波的传播速度等于光速(约为3×10^8 米/秒)。

根据波长的不同,电磁波可分为无线电波、微波、红外光、可见光、紫外光、X射线、γ射线等。

我们日常生活中遇到的无线通信、广播电视、光通信等均依
赖于电磁波的传播。

电磁波传播过程中可能受到环境、介质、设备等因素的影响,如衰减、反射、折射等。

为了实现高效、稳定的电磁波传播,科学家和工程师们进行了大量研究和实践。

无线电波的传播模型分析

无线电波的传播模型分析

无线电波的传播模型分析无线电通信是人类社会发展进程中的一项重要成就,也是21世纪信息科学的重要组成部分,使用了无线电波传播技术。

无线电波是以电磁场的形式传输的,具有广泛的覆盖范围,便捷性和实时性等诸多优点。

本文将从无线电波的传播模型分析来介绍无线电通信中的传播特性和影响因素。

一、无线电波的传播模型无线电波作为电磁波,传播模型主要分为两种类型:地面波和空间波。

1.地面波地面波也叫地波,是在地球表面与大气继电器的相互作用下产生的,主要依靠短波的反射和散射。

它的传播方式具有一定的局限性,主要适用于频率较低的波段,例如中、低频的AM广播。

由于地波的传播距离有限,因此它的应用范围受到限制。

2.空间波空间波是指在大气层高度以上发送无线电信号产生的波,主要依靠大气继电器的传播方式。

空间波分为直接波、反射波和绕射波。

其中,直接波是指在天线发射的无线电波沿着一条直线传播到达接收方,主要应用于近距离的通信;反射波是指无线电波在大气层中反射,从而到达接收方;绕射波则是指无线电波在距离障碍物一定距离处发生弯曲而传输到接收方。

由于空间波传播距离远,因此被广泛应用于广播、卫星通信和移动通信等领域。

二、无线电波传播特性的影响因素1.频率无线电波向外辐射是以电磁场的形式进行的,不同频率的波对传输距离、传输损耗等有着直接的影响。

频率低的电磁波,因其波长长,具有较好的穿透性,不易受到障碍物的阻碍,有利于传播距离较远的环境;高频无线电波因其波长短,具有更弱的穿透性,主要适用于短距离传输。

根据频率的不同,无线电波传输的特性也会有所区别。

2.天线高度和功率天线是信息传输的重要载体,其高度和功率决定了无线电波的传输效果。

天线高度可以影响电波的传播距离和传输覆盖面积,高天线通信的距离更远,更通畅;天线功率的大小则决定了无线电信号传输的能力,功率越大,传输的距离越远。

在实际应用中,高度和功率的大小应该结合实际情况进行权衡,以达到最佳效果。

3.障碍物和地形无线电波的传输受到障碍物和地形的影响。

无线电波空间传播模型

无线电波空间传播模型

无线电波空间传播模型一、引言无线电波是一种电磁波,它的传播是通过空间介质进行的。

无线电波的传播模型是对无线电波在空间中传播过程的一种描述和模拟。

了解无线电波空间传播模型对于实现高效的无线通信系统设计和优化至关重要。

本文将介绍几种常见的无线电波空间传播模型,包括自由空间传播模型、二维和三维传播模型以及多径传播模型。

二、自由空间传播模型自由空间传播模型是最简单也是最常用的一种传播模型。

它假设无线电波在真空中传播,没有遇到任何障碍物和干扰。

根据自由空间传播模型,无线电波的传播损耗与距离的平方成反比。

具体而言,传播损耗(L)可以通过以下公式计算:L = 20log(d) + 20log(f) + 20log(4π/c)其中,d是发送端和接收端之间的距离,f是无线电波的频率,c是光速。

自由空间传播模型适用于开阔的空间环境,如农村、海洋等,但在城市和山区等环境中,由于有大量建筑物和地形等障碍物的存在,自由空间传播模型并不适用。

三、二维和三维传播模型二维和三维传播模型考虑了障碍物和地形等因素对无线电波传播的影响。

在二维传播模型中,地面被简化为平面,建筑物和其他障碍物被建模为二维形状。

在三维传播模型中,地面和建筑物等障碍物被建模为三维形状。

为了计算二维和三维传播模型中的传播损耗,常用的方法是射线追踪。

射线追踪将无线电波视为一束射线,通过计算射线与障碍物的相交点,从而确定传播路径和传播损耗。

射线追踪可以基于几何光学原理进行,也可以使用电磁波的波动性质进行更精确的计算。

四、多径传播模型多径传播模型是一种复杂的传播模型,考虑了多个传播路径和多个传播信号的叠加效应。

当无线电波传播过程中遇到建筑物、地形等障碍物时,会发生反射、折射和散射等现象,导致信号在接收端出现多个传播路径。

这些多个传播路径的信号叠加在一起,会引起传播信号的衰减和时延扩展。

多径传播模型通常使用统计方法进行建模和仿真。

常见的多径传播模型包括瑞利衰落模型和莱斯衰落模型。

无线射频基础知识-无线传播原理与传播模型

无线射频基础知识-无线传播原理与传播模型


P波段:230~1000MHz; L波段:1000MHz~2000MHz;

大家熟知的GPS系统,其工作频率就在此波段(1575MHz左右);

S波段:2000MHz~4000MHz; C波段:4000MHz~8000MHz;目前主要用于卫星电视转播; X波段:8000MHz~12.5GHz;目前主要用于微波中继; Ku波段:12.5GHz~18GHz;目前主要用于微波中继和卫星电视转播; K波段:18GHz~26.5GHz; Ka波段:26.5GHz~40GHz; 频率越低,传播损耗越小,覆盖距离越远,绕射能力越强。但是,低频段频率 资源紧张,系统容量有限,因此主要应用于广播、电视、寻呼等系统。 高频段频率资源丰富,系统容量大;但是频率越高,传播损耗越大,覆盖距离 越近,绕射能力越弱。另外频率越高,技术难度越大,系统的成本也相应提高。
慢衰落损耗是由于在电波传播路径上受到建筑物及山丘等的阻挡所产生的阴影 效应而产生的损耗。它反映了中等范围内数百波长量级接收电平的均值变化而 产生的损耗,一般遵从对数正态分布。 快衰落损耗是由于多径传播而产生的损耗,它反映微观小范围内数十波长量级 接收电平的均值变化而产生的损耗,一般遵从瑞利分布或莱斯分布。快衰落又 可以细分为以下3类:
从公式可以推导出以下结论:


无线电波在地面传播时,在同样的传播距离上,其传播损耗比自由空间传播时 要大得多:当取值为4时,距离d加倍,传播损耗增加12dB,即:信号衰减16 倍; 增加天线高度,可以减少传播损耗。

华为技术有限公司 版权所有 未经许可不得扩散
无线射频基础知识-无线传播原理与传播模型

在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计 算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传 播特性的研究、了解和据此得到的传播模型进行场强预测。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正斜坡: 电波传播方向上 地形逐渐增高, 倾角为+θm (mrad) 负斜坡: 地形逐渐降低, 倾角为-θm
斜坡地形的修正因子Ksp
参数
倾角θm 收发天线间距d
(4)水陆混合地形修正因子
水陆混合地形: 区域中既有水面, 又有陆地 水陆混合地形 修正因子Ks(>0)
水域信号比陆地强 参数
5.室外传播模型
在室外的传播环境中,按照覆盖区域的不同,室外传播模型可以分为宏 蜂窝模型和微蜂窝模型。 在宏蜂窝场景中,基站发射功率可达到几十瓦特,蜂窝覆盖半径为几公 里至几十公里。 相比于宏蜂窝场景,微蜂窝覆盖范围小一些,一般为200米至1000米,基 站高度一般为3m至10m,发射功率一般为10mw至IW,所预测的区域 一般为市区街道等人口密集区域。 最常用的室外传播环境模型包括Okumura模型、Hata模型、车载传 播模型、双折线模型、Lee模型、Mallllattan传播模型、Berg模型、 Xia.H模型等。
水面位置位于 BTS侧/MS侧 水面距离与全距离比例 全距离d
6.室内传播模型
6.1室内无线环境特征 室内无线环境的特点是传输功率较小,覆盖距离更近,环境的变动更大。对于不同 的建筑物而言,室内布置、材料结构、建筑物尺度和应用类型等因素的变化更大, 这就使得传播环境产生了很大的差异。 即使在同一个建筑物的不同位置,其传播环境也不尽相同,甚至差别很大。例如, 信号电平很大程度上依赖于建筑物内的门是开还是关。不同材料制成的墙体和障碍 物对信号有不同的阻隔,因此路径损耗衰减指数变化也比较大,甚至建筑物窗口的 数量也影响楼层间的损耗。墙壁和地板的穿入损耗,根据建筑材料的不同而变化, 从轻质编织物的3dB,到混凝土砖块结构的13~20dB。 建筑物的内在结构会引起无线电波的反射、绕射、透射和散射,也就是引起发射信 号通过不止一条途径到达接收端,就是多径现象。
4.1直射

4.2反射
当电磁波遇到比其波长大得多的物体时,或者在不同介质交界处时,发生 反射。在理想介质表面上发生反射是没有能量损失的。但是实际中都是非 理想介质表面,故存在一定的能量损失。
发生反射时,入射射线、反射射线以及反射点都在同一个平面内,入射射 线与反射射线的夹角等于反射射线与反射点法线的夹角,这就是电磁波的 反射定理。
反射定理的基本原 理图
4.2反射

4.3绕射
绕射是指电磁波传播路径上,当尺寸相当大的障碍物产生遮挡 时,在障碍物背后的阴影区中产生电磁波。当入射射线遇到散 射体边界面的边缘、拐角、尖顶和凸曲面时,会产生一新的绕射 射线。在边缘绕射情况下,边缘绕射射线与边缘的夹角等于入射 射线与边缘的夹角。一条入射射线会激起无穷多条绕射射线,它 们都位于一个以绕射点为顶点的圆锥面上。圆锥轴就是绕射点 所在边缘的切线,圆锥的半顶角等于入射射线与边缘切线的夹角。
产生于粗糙表面、 小物体或其它不规 则物体
4.1直射
电磁波可以认为是自由空间内的传播,即在均匀的、所有方向 都可认为是无限大的理想电介质内的传播。对于自由空间内的 传播,在从源出发的任一给定方向上,超过某一由源尺寸和波 长决定的距离后,电磁波的每一矢量的大小均与离开源的距离 成反比。 直射波又称为空间波,是由发射点从空间直线传播到接收点的 无线电波。直射波传播距离一般限于视距范围。在传播过程中, 它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。
5.1Okumura模型
相对于自由空间的传输损耗与频率和 距离之间的关系
5.1Okumura模型
奥村模型(Okumura)是最常用的传播模型,比较简单,分析起来比较方便,常用 于无线网络的设计中。 奥村模型得名于奥村,奥村在20世纪60年代测量了日本东京等地无线信号的传播特 性,根据测量数据得到了一些统计图表,用于对信号衰耗的估计。 奥村模型有一定的适用范围,例如,载波频率从150~2 000 MHz;离基站不能太近, 有效距离为1~100 km;天线高度要在30 m以上。
4.3绕射
一致性绕射理论基本原理图
4.4散射
当电磁波入射到宏观物体或微观电子上时,引起物体上的诱导 电荷和电流,或改变电子运动,从而向各个方向辐射电磁波, 这个过程叫做电磁波的散射。散射传播是由天线辐射出去的电 磁波投射到低空大气层或电离层中不均匀介质时产生散射,其 中一部分到达接收点。散射传播距离远,但是效率低,不易操 作,使用并不广泛。
5.1Okumura模型
Hata在奥村模型上做了改进,将统计图表转换为公式,这样计算信号衰耗就不必查 图表,非常方便,而且还适合计算机处理。尽管如此,这些公式仍然统称为奥村模 型。 在城市,奥村模型描述为以下的Hata公式: Lp = 69.55 + 26.16 lg f - 13.82 lg hb - a(hm) +(44.9 - 6.55 lg hb) lg d 式中,Lp对应路径损耗;f 代表载波频率;hb代表基站的等效高度;hm代表终端的 等效高度;d代表基站与终端之间的距离;a(hm) 是与终端有关的修正因子,当终 端的等效高度为1.5 m时a(hm) 被忽略。
无线信道环境
电波传播面临的是随时变化、复杂的无线信道 环境。
首先传播环境十分复杂,传播机理多种多样, 几乎包括了电波传播的所有过程,如直射,绕 射,反射,散射和透射等。
其次,由于移动台的移动性,传播参数随时变 化,引起接受场强,时延等参数的快速波动。
移动通信系统的无线传播主要是利用了电磁波的直达 波和反射波。 在设计移动通信系统或对移动通信系统的覆盖进行分 析时,研究电磁波的传播是非常重要的,这主要有以 下两个原因: 第一,用于计算不同覆盖小区的信号强度。在大多数 情况下,每个覆盖区域包括直达波和反射波。
室外传播模型
Hata模型
Okumura-Hata 模型 COST 231 Hata模型
CCIR模型
LEE模型 COST 231 Walfisch-Ikegami 模型
Байду номын сангаас
常用的 几种室 外电波 传播损 耗预测 模型
5.1Okumura模型
okumura模型是okumura等人根据在日本大量测试数据统计出的以曲线表 示的传播模型。该模型是预测城区信号时使用最广泛的模型。它以准平坦地 形大城市市区的中值场强或路径损耗为参考,对其他传播环境和地形条件等 因素分别以校正因子的形式进行修正。 Okumura等人的模型基于经验数据,这些数据源于在各种不规则地形和环 境分布下进行的详细的传播测试。这些结果以统计方法进行分析并合成为图 表。在城区准光滑地形下可以得到中值场强的基本预测结果。在开阔地带或 郊区都有可供使用的修正因子。其他的一些修正因子包括起伏的丘陵地貌, 孤立的山峰,混合的陆地海面路径,街道走向,一般的斜坡地貌等等,这使 得最终的预测结果接近于实际环境中的场强值。
电磁环境和电磁波传播模型
1.什么是电磁环境?
电磁环境是在特定区域内各种电子设备在该区域产 生的电磁波信息的总和。 空间电磁环境研究的主要内容是空间电磁辐射强度。
2.研究电磁环境对移动通信的意义?
在已知地形、地物、频率和收发天线的高度等数据的条件下,可利用这 些模型估算基站服务区内的场强分布。 在已知地形和地物的条件下,可以利用这些模型对移动通信网进行规划 与设计。 在对已部署的网络进行优化时,可以利用这些模型对网络的质量经行评 估,并对调整天线高度,天线倾斜角度和频率配置等参数所带来的影响 做出预测,从而为网络优化提供指导性意见。 无线传播环境决定了电波传播的损耗,然而由于电波传播环境极为复杂, 所以在研究建立电磁传播预测模型时,人们常常根据测试数据分析归纳 出基于不同环境的经验模型,在此基础上对模型进行校正,以使其更加 接近实际,更准确。
2 h sin i s exp 8
s
4.5透射
电磁波的透射也称为电磁波的折射,其原理与反射一 样都是发生在两种介质的交界处,只是反射的电磁波 返回原介质中,而透射的电磁波则进入到另一种介质 中。由于电磁波在两种介质中的传播速度不同,故在 两种介质的交界处传播方向发生改变,射线经过两次 透射后穿过墙体。
5.2.不规则地形修正因子
丘陵地修正因子 孤立山岳的修正因子 斜坡地形的修正因子
水陆混合地形修正因子
(1)丘陵地修正因子
32
丘陵地:连绵、起伏高度有限
33
丘陵地修正因子Kh 、微小修正因子Khf
参数:△h:自MS向发射BTS方向延伸10km范围内,地形起伏的90%与10%处的高 度差。 预测点靠近山峰处与山谷处衰耗不同,考虑微小修正因子Khf (近山峰处>0;近山谷 处<0) 在丘陵地预测时,须同时使用Kh和Khf
传播损耗和 弥散 阴影衰落 多径衰落 多普勒频移
3.电磁波传播公式

3.电磁波传播公式

4.电磁波的传播机制
电磁波最基本的五种传播机制为直射,反 射,绕射,散射和透射。
电波的传播机制
反射
阻挡体比传输波长 大的多的物体 产生多径衰落的主 要因素
基本电波 的传播机制
绕射
阻挡体为尖利边缘
散射
5.1Okumura模型
除了城市以外,奥村模型还分别针对郊区、农村和开阔地定义了相应的公式。 一般天线的高度为30 m,考虑到上行信号的频率为1.9 GHz,可以简化Hata公式中 上行信号损耗计算公式,为: Lp = A+35.2 lg d 其中,城市环境A为134.7,郊区环境A为127.5,农村环境A为115.4。 同样地,考虑到下行信号的频率为2.1 GHz,可以简化Hata公式中下行信号损耗计 算公式,为:
Lp = A+35.2 lg d
其中,城市环境A为135.8,郊区环境A为128.6,农村环境A为116.5。
相关文档
最新文档