第五章聚合方法
第五章聚合方法

第五章聚合方法一、名称解释1. 自由基聚合实施方法(Process of Radical Polymerization):主要有本体聚合,溶液聚合,乳液聚合,悬浮聚合四种。
2. 离子聚合实施方法:主要有溶液聚合,淤浆聚合。
3. 逐步聚合实施方法:主要有熔融聚合,溶液聚合,界面聚合。
4. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
5. 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
6. 悬浮作用:某些物质对单体有保护作用,能降低水的表面张力,能使水和单体的分散体系变为比较稳定的分散体系,这种作用称为悬浮作用。
7. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
8. 溶液聚合:是指单体和引发剂溶于适当溶剂的聚合。
9. 乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。
10. 分散剂:分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。
(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。
11. 乳化剂:常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。
12. 胶束:当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。
13. 临界胶束浓度:乳化剂开始形成胶束时的浓度称为临界胶束浓度,简称CMC。
14. 亲水亲油平衡值(HLB):该值用来衡量表面活性剂中亲水部分和亲油部分对水溶性的贡献,该值的大小表表亲水性的大小。
第五章自由基溶液聚合原理及生产工艺

二、溶液聚合的优缺点 1、优点
科学研究上,可选用 Cs 较小的溶剂,控制低转化率,容 易建立聚合速率、数均聚合度和单体浓度、引发剂浓度 的定量关系,方便动力学研究。 生产工艺上,散热控温容易,可避免局部过热,体系粘 度较低,可推迟自动加速现象出现,控制较低转化率可 消除自动加速现象,接近匀速反应,分子量分布窄。
四、溶剂的选择
产品为溶液,选择良溶剂;产品为固体,选择非溶剂;
成本低,毒性低。
五、向溶剂链转移的应用-----调节聚合
通过链自由基向溶剂或链转移剂的转移,可制备分子量 低的聚合物,也称低聚物,或调聚物,此过程称为调节聚合。 例如,乙烯在溶剂四氯化碳(调节剂)的作用下,制备低聚 物,反应原理如下:
因此当发生意外事故时,可通氧、降温;事故排 除后,可通氮、升温,恢复生产。
五、PVAc 的醇解反应 (1)直接水解法
醇解速率较慢, 醇解度较低,副 产物醋酸钠较难 回收,工业上一 般不采取此法。
醇解速率快,醇解度高(>90%),副产物主要是 (2)无水低碱醇解法 醋酸甲酯,醋酸钠较少,生产效率高、产品能满足 生产 PVF 纤维的要求,工业上一般采取此法。
生产工艺流程图
第三节 丙烯腈溶液聚合生产工艺
一、丙烯腈 丙烯腈在常温常压下是具有独特气味的无色透明、易流动液 体。相对分子质量为 53.06,沸点为 77.3℃,凝固点为-83.6℃, 相对密度为 0.8060 ,易燃、易爆,在空气中的爆炸极限为 3.05%~ 17.0%(体积)。 丙烯腈能与苯、甲苯、四氯化碳、甲醇、、乙醇、乙醚、丙 酮、醋酸乙酯等许多有机溶剂以任何比例互溶,丙烯腈也能溶于 水。 丙烯腈能与水、苯、甲醇、异丙醇、四氯化碳等形成二元共 沸物。其中丙烯腈与水的共沸温度为 71℃,含水 12%(质量)。 丙烯腈分子中含有碳-碳双键和腈基,化学性质很活泼,能进 行聚合反应(均聚和共聚)、加成反应、氰乙基化反应等。 贮存、运输过程要加入酚类、胺类阻聚剂。
高分子化学第5章

• 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等
–(2)不溶于水的无机粉末
• 主要有碳酸镁、滑石粉、高岭土等
水溶性有机高分子
• 高分子分散剂的作用机理主要是:
–吸附在液滴表面,形成一层保护膜,起着保 护胶体的作用;
–介质的粘度增加,有碍于两液滴的粘合;
–明胶、部分醇解的聚乙烯醇等的水溶液,还 使表面张力和界面张力降低,使液滴变小。
第五章 聚合方法
5.1 引言
聚合反应工程考虑的三个层次:
• 聚合机理和动力学(mechanism and kinetics)
–连锁:自由基、阴、阳离子、配位 –逐步:缩聚、聚加成、开环等
• 聚合过程(polymerization process)
–实施方法:本体、溶液、悬浮、乳液 –相态变化:分散性质、是否沉淀、是否存在界面等
• 丙烯腈连续溶液聚合 ; • 醋酸乙烯酯溶液聚合;
• 丙烯酸酯类溶液聚合。
例1. 聚丙烯腈(PAN)连续溶液聚合
• 连续均相溶液聚合:以51-52%的硫氰化钠(NaSCN)水 溶液为溶剂,AIBN为引发剂,pH5±0.2,温度75~85 ˚C,转化率70~75%。进料单体浓度17%,出料聚合 物浓度13%,脱除单体后直接用于纺制腈纶纤维。 • 连续沉淀聚合:以水为溶剂,过硫酸盐类氧化还原引 发体系,温度40~50 ˚C,转化率80%。聚合产物从反应 体系中沉淀出来,经洗涤、分离、干燥后重新配制成纺 丝溶液用于腈纶纺丝。
–沉淀聚合机理与均相聚合有些不同,主要反 映在凝胶效应上,影响因素和生产控制也有 差异。
• 液相聚合; • 气相聚合; • 固相聚合。
从工程角度考虑(需重视操作方式)
高分子化学第五章聚合方法

体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽;重则 温度失调,引起爆聚。(关键:散热)
➢解决办法:分段聚合
预聚:在反应釜中进行,转化率达10~40%,放出一 部分聚合热,有一定粘度。
后聚:在模板中聚合,逐步升温,使聚合完全。
5
聚合实例:聚苯乙烯,有机玻璃(PMMA)
32
单体 液滴 10000A
水相
单体
增溶胶束
乳化剂分子
胶束 40-50A
乳化剂 少量在水相中
单体
引发剂 大部分在水中
大部分形成胶束 部分吸附于单体液滴
一部分增溶胶束内 大部分在单体液滴内
33
聚合场 所
水相中?
单体液滴?
胶束?
水相中单体浓度小, 反应成聚合物则沉 淀,停止增长,因 此不是聚合的主要 场所。
预聚合:立式搅拌釜内进行,80~90℃ ,BPO或 AIBN引发,转化率30%~35%。
后聚合:预聚体流入聚合塔,可以热聚合或加 少量低活性引发剂,料液从塔顶缓慢流向塔底,温 度从100 ℃增至200 ℃,聚合转化率99%以上。
9
例二. 苯乙烯连续本体聚合
聚苯乙烯也是一种非结晶性聚合物,Tg = 95 ℃, 典型的硬塑料,伸长率仅1%-3%。尺寸稳定性优, 电性能好,透明色浅,流动性好,易加工。性脆、不 耐溶剂、紫外、氧。
2). CMC: 形成胶束的临界浓度。不同乳化剂的CMC不同,愈小, 表示乳化能力愈强
3). 三相平衡点:离子型乳化剂处于分子溶解、胶束、凝胶三相平衡 时的温度。(使用最低温度)
高于此温度,溶解度突增,凝胶消失,乳化剂只以分子溶解和胶 束两种状态存在。
4). 浊点:非离子型乳化剂开始分相变浊时的温度。(使用最高温度)
高分子化学第五章_乳液聚合-

(3)非离子型乳化剂 分子中不含阴、阳离子。活性部分呈分子状态。
如环氧乙烷聚合物,或与环氧丙烷共聚物、PVA等。
5.5 乳液聚合
主要类型:酯类、醚类、酰胺类等。
(1)OP系列:烷基酚基聚醚醇类 C9H10 - -O(C2H4O)nH
(2)Span系列:脱水山梨醇脂肪酸酯
73×10-3 N/m 30×10-3 N/m(浓度:0.016 mol/L)
5.5 乳液聚合
(2)形成胶束
胶束—乳化浓度高时,多余分子聚集成球状、层状或棒状的聚 集体,其亲油基团彼此靠在一起,而亲水基团向外伸向水相, 这种聚集体称为胶束(约50~150个分子) 。
聚集
乳化剂分子
或
亲油基 亲水基
珠状胶束
5.5 乳液聚合
4、应用
聚合后分离成胶状或粉末固体产品; 如丁苯、丁腈、氯丁等合成橡胶;ABS等工程塑料和抗冲
改性剂,糊用聚氯乙烯树脂、聚四氟乙烯等塑料。
聚合后直接用作涂料和胶粘剂; 如丁苯胶乳、聚醋酸乙烯胶乳、丙烯酸酯类胶乳等,可用
作内外墙涂料、纸张涂层、木器涂料及粘结剂。
颗粒用作颜料、粒径测定标样、免疫试剂的载体等。
HLB值范围 1.5~3.0
应用 消泡
3.0~6.0 7~9
W/O 润湿\渗透
8~18
O/W
乳液聚合:乳化剂一般属于O/W型;
5.5 乳液聚合
三相平衡点—乳化剂处于分子溶解、胶束、凝胶三相平衡 时的温度。(离子型乳化剂)
高于该温度,溶解度突增,凝胶消失,乳化剂为分子溶解 和胶束状态,起乳化作用。 低于该温度,将有凝胶析出,乳化能力减弱。
HO
CH2COOR
第五章 逐步聚合反应

5.1 引言
近年来出现的一些新型聚合物如聚砜、聚酰亚胺、聚 苯醚和吡咙等也是通过逐步聚合反应合成的。 逐步聚合也是重要的一类聚合反应。 逐步聚合又可分为“缩聚”和“逐步加聚”两类。 缩聚中又分为 平衡缩聚、不平衡缩聚、
线型缩聚和体型缩聚等。
逐步加聚主要是聚氨酯的合成。 本章重点:
缩聚反应的机理、
线型缩聚物相对分子质量的控制方法 体型缩聚凝胶点的预测等问题。
nHO R OH
CH3 nHO Si OH CH3
H [ O R ]nOH + (n-1)H2O
CH3 H [ O Si ]nOH + (n-1)H2O CH3
5.2 缩聚反应概述
2. 具有同类官能团但不能相互作用的单体 这类单体为b-R’-b型,如二元羧酸HOOC-R’-COOH、 二元胺H2N-R-NH2、双酚A和光气等。 它们要进行缩聚反应时,必须在不同种类单体之间进行。 二元胺 H2N-R’-NH2:
O O O O O HO R O C R' C O R O C R' C O R O C R' COOH (f) + H2O
5.2 缩聚反应概述
首先是单体官能团间发生反应生成二聚体、三聚体等低 聚体,单体很快消失。每一步反应都是消耗掉一个 -COOH 和一个-OH生成一个 -COO-,缩去一个 H2O分子的缩合反应。 随着反应的进行 ,分子链逐步增长 ,聚合物的相对分子质 量逐步增加。 用一个简式表示这一系列的缩合反应:
nHO R OH + nHOOC R' COOH
O O 聚酯 H [ O R O C R' C ]nOH + (2n-1)H2O
含有两个(或两上以上)官能团的低分子化合物,在官能团之 间发生缩合反应 , 在缩去小分子的同时生成高聚物的逐步、可
第五章 聚合方法

缺点
产品中附有少量分散剂 残留物,要生产透明和 绝缘性能高的产品须将 残留分散剂除净。
理论基础
悬浮聚合的关键问题是悬浮粒子的形成与控制。
Winslow-Matreyek成粒过程模型
油状单体
1 搅拌剪切力
5 凝聚
4 黏合、凝聚
由于分散剂 生成的分子 层保护胶体 而稳定化
扩大
2 表面张力
3 黏合、凝聚
胶束的形状
球状 ( 低浓度时 ) 直径 4 ~ 5 nm
棒状 ( 高浓度时 ) 直径 100 ~ 300 nm
胶束的大小和数目取决于乳化剂的用量 乳化剂用量多,胶束的粒子小,数目多
加入单体的情况
在形成胶束的水溶液中加入单体
极小部分单体 以分子分散状 态溶于水中
小部分单体 可进入胶束 的疏水层内
大部分单体 经搅拌形成 细小的液滴
本体聚合 Bulk Polymerization
本体聚合定义: 不加其它介质,只有单体本身,在引发剂、
热、光等作用下进行的聚合反应。说得简单点, 就是纯单体的聚合。
本体聚合的优点
产品纯度高; 生产设备简单,可连续生产; 可以得到高分子量的聚合物; 本体聚合很适于实验室研究。例如单体聚合能力 的初步评价,聚合物的试制、动力学研究及共聚 竞聚率的测定。
乳化剂在水中的情况
乳化剂浓度很低时,是以分子分散状态溶解在水中 达到一定浓度后,乳化剂分子开始形成聚集体(约50~ 150个分子),称为胶束 形成胶束的最低乳化剂浓度,称为临界胶束浓度(CMC) 不同乳化剂的CMC不同,愈小,表示乳化能力愈强 乳液聚合的乳化剂浓度比CMC高2~3个数量级
4.5 乳液聚合
4 乳液聚合动力学
(1)聚合速率
高分子化学第五章_聚合方法

1
聚合物生产实施的方法,称为聚合方法。
气相聚合
在单体沸点以上聚合
单体形态
固相聚合
在单体熔点以下聚合
聚合物—单体不溶
沉淀聚合 均相聚合
聚合物—单体互溶
非均相聚合
溶解性
聚合物—单体部分互溶
2
本体聚合
悬浮聚合
物料起始状态
乳液聚合
溶液聚合
5.1 引言
自由基聚合有四种基本的实施方法。 • 本体聚合: 不加任何其它介质, 仅是单体在引发剂(甚至不 加)、热、光或辐射源作用下引发的聚合反应。 • 溶液聚合: 单体和引发剂溶于适当溶剂中进行的聚合反应。
溶剂对聚合度的溶解性能与凝胶效应有关 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应 沉淀剂,凝胶效应显著,Rp 劣溶剂,介于两者之间
20
4、应用实例
多用于自由基聚合、离子聚合、配位聚合、逐步聚合等。
表4
单体
溶液聚合工业生产实例
溶剂 硫氰化钠 水溶液 水 甲醇 聚合机理 自由基聚合 自由基聚合 自由基聚合 产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维尼纶的原料
聚合物—单体—溶剂体系 均相聚合 乙烯高压聚合、苯乙烯、丙 烯酸酯 苯乙烯—苯、丙烯酸—水、 丙烯腈—二甲基甲酰胺 苯乙烯、甲基丙烯酸甲酯 苯乙烯、丁二烯、丙烯酸酯 沉淀聚合 氯乙烯、丙烯腈、丙 烯酰胺 氯乙烯—甲醇、丙烯 酸—己烷、丙烯腈— 水 氯乙烯 氯乙烯
均相体系
非均相体系
6
如何选择聚合方法: 根据产品性能的要求与经济效益,选用一种或几种方
PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐 光耐候性均十分优异,透光性达90%以上,俗称“有机 玻璃”。广泛用作航空玻璃、光导纤维、标牌、指示灯 罩、仪表牌、牙托粉等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 聚合方法
5.4.2 液—液分散和成粒过程 分散剂的作用是防止已经剪切分散的单体液滴和
聚合物颗粒重新聚集。转化率20%左右时,单体— 聚合物液滴表面发粘, 容易粘结,因此需要分散剂进 行保护。
图5—1 悬浮单体液 滴分散聚集示意图
23
第五章 聚合方法
5.4.3 分散剂和分散作用
1. 水溶性高分子物质: 聚乙烯醇、苯乙烯—马来酸酐
18
第五章 聚合方法
例三. (甲基)丙烯酸酯类溶液聚合 (甲基)丙烯酸酯类单体有一个很大的家族,包
括甲基丙烯酸甲酯、乙酯、丁酯、乙基己酯;丙烯酸 甲酯、 乙酯、 丁酯、 乙基己酯等,还有(甲基)丙 烯酸β-羟乙酯、羟丙酯等。除了甲基丙烯酸甲酯之 外,这类单体很少采用均聚合,大多进行共聚。
丙烯酸甲酯、 乙酯、 丁酯、 乙基己酯均聚物的 玻璃化温度为8 ℃ 、 -22 ℃ 、- 54 ℃ 、- 70℃ 。 可根据需要进行共聚调节。也可与苯乙烯、醋酸乙烯 酯共聚。
脱除单体后,即成纺丝液,
17
第五章 聚合方法
例二. 醋酸乙烯酯溶液聚合 以甲醇为溶剂, AIBN为引发剂, 65℃聚合, 转化率
60%。过高会引起链转移,导致支链。 聚醋酸乙烯酯的Tg = 28℃,有较好的粘结性。固
体物冷流性较大 。 在酸性或碱性条件下醇解可得到聚乙烯醇。用作
合成纤维时,聚合度1700,醇解度98%~100% (1799);用作分散剂和织物助剂时,聚合度1700, 醇解度88%左右(1788)。
34
第五章 聚合方法
图5—3 乳化剂在水中的溶解和胶束的形成
胶束由50~150个分子聚集而成。浓度低时呈球状, 直径4~5nm;浓度高时呈棒状,长度100~300nm。
35
第五章 聚合方法
乳化剂从分子分散的溶液状态到开始形成胶束的转 变的浓度称为临界胶束浓度(CMC)。在乳液聚合 中,乳化剂浓度约为CMC的100倍,因此大部分乳化 剂分子处于胶束状态。
20
第五章 聚合方法
聚合物
聚乙烯 聚丙烯
顺丁橡胶
异戊橡胶 乙丙橡胶 丁基橡胶
表5—3 离子型溶液聚合示例
引发体系
溶剂
溶解情况 引发剂 聚合物
TiCl5—AlEt2Cl
TiCl3—AlEt2Cl Ni盐—AlR3—
BF3·OEt2 AlBu
VOCl3—AlEt3Cl3 AlCl3
加氢汽油 加氢汽油
烷烃或芳烃
33
第五章 聚合方法
5.5.1.2 乳化作用 乳化剂使互不相容的油、水转变为相当稳定难
以分层的乳液的过程,称为乳化。 当乳化剂溶于水时,若浓度很低,则大部分乳
化 剂以分子状态分散于水中,并在水面上定向排列。 亲水基团伸向水中,亲油基团指向空气层。但浓度 达到一定值时,乳化剂分子在水面上排满,多余的 分子就会在水中聚集成胶束(图5—3) 。
聚合:预聚物、 大部分单体和另一部分引发剂 加入另一聚合釜内聚合,颗粒骨架继续长大。转化 率可达90%。
通常预聚1~2h, 聚合5~9h。
11
第五章 聚合方法
例四. 乙烯高压连续气相本体聚合 聚合条件:压力150~200MPa, 温度180~200℃ ,
微量氧 (10-6~ 10-4mol/L )作引发剂。 聚合工艺:连续法,管式反应器,长达千米。停留
对聚合物溶解性差→沉淀剂→沉淀聚合→ 凝胶效应显著。
16
第五章 聚合方法
例一. 丙烯腈连续溶液聚合 第二单体:丙烯酸甲酯,降低分子间作用力,提
高加工性,增加柔性和手感,有利于染料分子的扩 散。第三单体:衣糠酸,有利于染色。
在硫氰化钠水溶液中进行连续均相溶液聚合。以 AIBN为引发剂,体系pH = 5,聚合温度75~80 ℃ 。 最终转化率70~75%。
14
第五章 聚合方法
5.3.1.2 溶剂的选择 溶剂对聚合活性有很大影响,因为溶剂难以做到
完全惰性,对引发剂有诱导分解作用,对自由基有链 转移反应。
溶剂对引发剂分解速率依如下递增: 芳烃、烷烃、 醇类、醚类、胺类。
向溶剂链转移: 水为零, 苯较小, 卤代烃较大。
15
第五章 聚合方法
对聚合物溶解性好→良溶剂→均相聚合→ 可消除凝胶效应。
PVC糊用树脂,丁苯橡胶,苯丙乳胶漆,PVAc 胶粘剂等。
30第五章 聚合方法 Nhomakorabea5.5.1 乳化剂及乳化作用 5.5.1.1 乳化剂
分子中既含有亲水(极性)基团,又含有亲油 (非极性)基团的表面活性剂中的一种。可分为阴离 子型、阳离子型和非离子型三种。
31
第五章 聚合方法
阴离子型:极性基团为—COO-、—SO3-、—SO4等,非极性基团为C11~C17的直链烷基或311~C8的 烷基与苯基的组合基团 。乳化能力强。
26
第五章 聚合方法
例:甲基丙烯酸甲酯模塑料的制备
配方(wt):
聚合工艺:
MMA St AIBN Na2CO3 MgSO4 H2O
70
温度 /℃
80~90
30
搅拌速度 r/min 80~150
0.5
反应时间 /h
8~10
0.1
0.1
Na2CO3+MgSO4
MgCO3+Na2SO4
300
27
第五章 聚合方法
生产特征
产物特性
本体聚合
溶液聚合
悬浮聚合
乳液聚合
单体、引发剂
单体引发剂、溶剂
单体、引发剂、分 散剂、水
单体、引发剂、乳 化剂、水
单体内
溶剂内
单体内
胶束内
自由基聚合一般机 理,聚合速度上升 聚合度下降
设备简单,易制备 板材和型材,一般 间歇法生产,热不 容易导出
聚合物纯净。分子 量分布较宽
容易向溶剂转移, 聚合速率和聚合度 都较低
5.5 乳液聚合 5.5.1 概述
单体在介质中由乳化剂分散成乳液状态进行聚合。 与悬浮聚合区别: (1)粒径:悬浮聚合物50~2000 µm ,乳液聚合物 0.1~0.2 µm (2)引发剂:悬浮聚合采用油溶性引发剂,乳液聚 合采用水溶性引发剂 (3)聚合机理:悬浮聚合相当于本体聚合,聚合发 生在单体液滴中;乳液聚合发生在胶束中。
典型例子:十二烷基硫酸钠、二丁基萘磺酸钠、 硬脂酸钠等。
阳离子型:极性基团为—N+R3等。因乳化能力 不足,并对引发剂有分解作用,故在自由基聚合中 不常用。
32
第五章 聚合方法
非离子型:分子中不含阴、阳离子。典型代表为 环氧乙烷聚合物,如:R[O C H 2C H 2]nO H,其中R为 C10~C16的烷基或烷苯基,n一般4~ 30。如OP类、 OS类非离子型乳化剂等。这类乳化剂不含离子,所 以对pH不敏感,所制备的乳液化学稳定性好。但乳 化能力略低于阴离子型。常与阴离子型乳化剂共用, 也可单独使用。
13
第五章 聚合方法
5.3 溶液聚合 5.3.1 自由基溶液聚合 5.3.1.1 自由基溶液聚合的特点
优点: 体系粘度低, 混合和传热容易, 温度易控制, 较少凝胶效应。
缺点: 聚合速率低,设备利用率低,链转移使分 子量低,需溶剂回收。
多用于聚合物溶液直接使用场合,如油漆、粘 合剂、涂料、合成纤维纺丝液等。
5.2 本体聚合
配方: 单体 + 引发剂,选择性加入少量色料、增塑 剂、润滑剂、分子量调节剂等。
优点: 聚合物纯净,后处理简单。 缺点: 聚合热不易扩散, 反应温度较难控制, 容易 局部受热, 反应不均匀, 分子量分布宽, 有气泡, 可能 爆聚。
5
第五章 聚合方法
例一. 聚甲基丙烯酸甲酯板材的制备 将MMA单体, 引发剂BPO或AIBN, 增塑剂和脱模
7
第五章 聚合方法
例二. 苯乙烯连续本体聚合 20世纪40年代开发釜—塔串联反应器,分别承
担预聚合和后聚合的作用。 预聚合:立式搅拌釜内进行,80~90℃ ,BPO或
AIBN引发,转化率30%~35%。 后聚合:预聚体流入聚合塔,可以热聚合或加
少量低活性引发剂,料液从塔顶缓慢流向塔底,温 度从100 ℃增至200 ℃,聚合转化率99%以上。
剂置于普通搅拌釜内, 90~95℃下反应至10~20%转化 率, 成为粘稠的液体。停止反应。将预聚物灌入无机 玻璃平板模具中,移入热空气浴或热水浴中,升温至 45~50℃,反应数天,使转化率达到90%左右。然后 在100~120℃高温下处理一至两天,使残余单体充分 聚合。
6
第五章 聚合方法
PMMA为非晶体聚合物,Tg=105 ℃,机械性 能、耐光耐候性均十分优异,透光性达90%以上, 俗称“有机玻璃”。广泛用作航空玻璃、光导纤维、 标牌、指示灯罩、仪表牌、牙托粉等。
82%。其次是乳液聚合,占10%~12% 。近20年来 发展了本体聚合。
聚氯乙烯不溶于氯乙烯单体,因此本体聚合过程 中发生聚合物的沉淀。本体聚合分为预聚合和聚合 两段:
10
第五章 聚合方法
预聚合:小部分单体和少量高活性引发剂(过氧 化乙酰基磺酰)加入釜内,在50℃ ~70℃下预聚至 7%~11%转化率,形成疏松的颗粒骨架。
25
第五章 聚合方法
3. 分散剂的选择: (1)用量 < 0.1% (2)PVC:紧密型,明胶; 疏松型,1788聚乙烯醇。 (3)助分散剂: 表面活性剂。
5.5.4 影响悬浮聚合的因素 1. 搅拌强度;2. 分散剂的性质和浓度;3. 水/单体比; 5. 温度;5. 引发剂用量和种类;6. 单体种类
抽余油 抽余油 CH3Cl
非均相 非均相
非均相
均相 非均相
均相
沉淀 沉淀
均相
均相 均相 沉淀
21
第五章 聚合方法
5.4 悬浮聚合 5.4.1 概述 体系主要组成:单体、引发剂、水、分散剂 优点: 传热容易, 分子量高。 缺点: 附有少量分散剂残留物。 均相悬浮聚合: 苯乙烯, MMA等。 沉淀悬浮聚合: 氯乙烯。