多刚体系统动力学的主要内容
刚体动力学

●
刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
【推论】匀质刚体如果有一过 A 的镜像对称面,则过 A 且 与该镜像面垂直的轴是主轴;如果过 A 有两个正交的 镜像面,则两镜像面过 A 点的法线以及镜像面的交线 构成主轴系;匀质旋转体的旋转轴和任意与之正交的 两正交轴构成主轴系 . (请自己根据定义证明) 【定理】假定角速度在主轴坐标系下表示为
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
多刚体系统动力学理论概述

多刚体系统动力学理论概述多刚体系统动力学的研究方法包括Lagrange方法、Newton-Euler方法、Roberson-Wittenburg方法、Kane方法和变分法等。
基于第一类Lagrange方程建立带乘子的最大数目动力学方程,对推导任意多刚体系统的运动微分方程提供了一种规范化的方法,其主要特点有:为减少未知量数目,选择非独立的笛卡儿广义坐标;运动微分方程中不包含约束反力,利于求解;在方程中引入动能和势能函数,求导计算量随分析系统的刚体数目增加而大增。
此方法由于方便计算机编译通用程序,目前使用广泛,已被一些多体动力学软件作为建模理论而采用。
一、笛卡儿广义坐标下的各参量笛卡儿方法是以系统中每个物体为单元,在物体上建立随体坐标系。
体的位形均相对于一个公共参考系定义,位形坐标统一为固连坐标系原点的笛卡儿坐标系与坐标系的姿态坐标。
规定全局坐标系OXYZ,其基矢量为e=[e1,e2,e3]T,过刚体任意一点O(基点)建立与刚体固连的随体坐标系oxyz,其基矢量为e′=[e′1,e′2,e′3]T。
随体坐标系能够确定刚体的运动,采用3个笛卡儿坐标以及3个方位坐标。
坐标变换矩阵A表示随体坐标相对于全局坐标系的关系。
如图1.1所示,假设刚体从OXYZ变换到oxyz,随体坐标系oxyz 相对于全局坐标系OXYZ的姿态可以由三次有限转动(绕体轴3-1-3顺序)确定,即先绕OZ轴转ψ角度,再绕ON轴转θ角度,最后绕oz转φ角度。
其中,θ为章动角;ψ为进动角;φ为自转角。
图1.1 坐标系转换示意图将ψ、θ和φ这3个描述刚体姿态的坐标称为欧拉角坐标。
三次转动的坐标变换矩阵分别为从随体坐标系oxyz到全局坐标系OXYZ的坐标变换矩阵为式中,cψ=cosψ,其余类推。
根据角速度叠加原理,刚体的角速度矢量ω为将该矢量投影到全局坐标系中,写成矩阵形式,有其中求导角速度表达式可得到角加速度的表达式:如上所述,刚体的位形由随体坐标系的平动以及相对全局坐标系的转动确定。
《刚体动力学 》课件

牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
ANSYS刚柔混合多体动力学分析技术

• “Sync Views”
• 窗口同步
Joint Features—Reference Coordinate Systems
• 参考坐标系:
• 自动位于joint分支下. • 可以手动更改
Joint Features—Stops
• Stops或者 Lock设置运动副的运动极限或条件. • 当达到相对运动,Stops限制条件会有冲击发生,
Lock则是锁定在固定
• SECSTOP • SECLOCK
Joint Features—DOF Checker (Background)
• 存在过约束问题,也可以计算,但是结果变得不准确. • Question : 模型对称,为什么支反力不对称?
Revolute joint
FX=0 N MY=0 N-m
• 多体动力学和其他模块的连接
Step1 :导入几何
Step2 :定义运动副和接触
使用多窗口工具
自由度检查和过约束分析
Step3 :加载载荷和边界,进行分析设置
载荷可通过直接拖动运动副形式实现
• 载荷步数目
• 初始、最小、 最大时间步
• 输出控制
Step4 :后处理
指定时间点输出
大纲
• 多体动力学分析组成 • 多体动力学分析流程
Random Vibration
A. 多体动力学简介
Ansys中有两种多体动力学分析:
多刚体系统运动分析
• 只包含刚性体 • 求解快 • 由于接触或者运动副产生运动 • 主要求解各个零部件的位移、速度、加速度和反作用力/力矩等历程曲线。 • 支持大变形大旋转效应 • 通过“Rigid Dynamics” 分析ine Connections
多体系统动力学综述

1. 绝对节点坐标法传统有限元方法建立的单元为非等参数单元,其使用节点处的位移梯度来描述物体的无限小的转动,但在物体发生大变形时,节点处的位移梯度已不能准确描述物体的转动变形,从而极大影响到计算的精度。
Shabana [1]提出了绝对节点坐标法(Absolute nodal coordinate formulation, ANCF ),其理论基础主要是有限元和连续介质力学理论。
该方法将物体的单元节点坐标定义在全局坐标系下,使用节点处的斜率(slope)矢量作为节点坐标而不是节点处的无限小转动[2],不需要另外计算刚体位移与柔性变形之间的耦合,能较精确地计算大变形的多体系统动力学问题。
其最终推导出的多体系统的微分代数方程组(DAEs )中,质量矩阵是一个常数矩阵,但刚度矩阵将是一个非线性的时间函数。
1.1梁单元的绝对节点坐标法Shabana 首先推导出一维梁单元的绝对节点坐标法模型[1][3]。
在这种模型中,梁单元用中性轴来简化,如图1所示,其上面任意一点P 在全局坐标系下的坐标表达为:23101232320123r =Se r a a x a x a x r b b x b x b x ⎡⎤+++⎡⎤==⎢⎥⎢⎥+++⎣⎦⎣⎦图1其中,x 为沿轴线的单元局部坐标,[]0,x l ∈,l 为梁单元初始长度;S 为单元形函数;e 为含有8个单元节点坐标的广义坐标矢量。
123456781102205162e []|,|,|,|,Tx x x l x l e e e e e e e e e r e r e r e r ========= 1212304078,,,x x x l x l r r r r e e e e x x x x ====∂∂∂∂====∂∂∂∂最终,通过绝对节点坐标法得到的无约束的单元动力学方程为:k e Me+Q =Q 其中,M 为常数质量矩阵,Q k 为广义弹性力矩阵,Q e 为广义外力矩阵。
工程力学知识点全集总结

工程力学知识点全集总结一、力的作用1. 力的概念力是物体相互作用的结果,可以改变物体的运动状态或形状。
力的大小用力的大小和方向来描述,通常用矢量表示。
2. 力的分类根据力的性质,力可以分为接触力和非接触力两种。
根据力的性质和作用对象的不同,可以将力分为压力、拉力、剪切力、弹性力、重力等不同类型的力。
3. 力的合成与分解多个力共同作用在物体上时,可以将它们的效果看作是一个力的合成。
而反之,一个力也可以根据其方向和大小,被分解为若干个分力。
4. 力的平衡当物体受到多个力的作用时,如果这些力的合力为零,则称物体处于力的平衡状态。
5. 力的矩力的矩是力的大小与作用点到物体某一点的距离的乘积,力矩的方向垂直于力的方向和力臂的方向。
物体在力的作用下发生转动,与力的大小、方向以及力臂的长度有关。
6. 自由体图自由体图是指将某个物体从其他物体中分离出来,然后在自由体上画出受到的所有力的作用线,用以分析物体所受力的平衡情况。
二、刚体静力学1. 刚体的概念刚体是指在受力作用下,形状和尺寸不发生改变的物体。
刚体的转动可以分为平移和转动两种。
2. 刚体的平衡条件刚体的平衡条件包括平衡的外力条件和平衡的力矩条件。
当刚体受到多个力的作用时,这些力的合力为零,力矩的合力矩也为零时,刚体处于平衡状态。
3. 简支梁的受力分析简支梁是指两端支持固定并能够转动的梁,在受力作用下会产生弯曲和剪切。
可以利用简支梁受力分析的原理,对梁在受力作用下的受力和变形进行研究。
4. 梁的受力分析在工程实践中,梁的受力分析是非常重要的。
在不同受力条件下,梁的受力分析方法会有所不同。
通常会用到力学平衡、力学方程等知识来分析和计算梁的受力情况。
5. 摩擦力摩擦力是指物体在相对运动或相对静止的过程中,由于接触面间的不规则性而产生的力。
摩擦力的大小和方向与接触面的性质、力的大小和方向等因素有关。
6. 斜面上的力学问题斜面上的力学问题是工程力学中的一个常见问题,包括斜面上的物体受力情况、斜面上的滑动、斜面上的加速度等内容。
空间运动多刚体系统动力学

F
n i
)
0
多刚体系统动力学变分方程
N
r
T Ci
i 1
Ti
(Z
i
r Ci
i
i
0 J Ci
i
F
a i
)
0
rCi i
H
i
q i
r Ci
i
H
i
q i
hi
N
qT i
H
T i
(Z
i
(H
i
q i
hi
)
F
i i
F
a i
)
0
i 1
qT (M q Q) 0 7/16
多刚体系统动力学变分方程 qT (M q Q) 0
M k( 0 ) c M a
p
F
a
M
0 AT
p
F
a
M
0 AT
p
11/16
§4.6 空间并联机械臂动力学仿真
12/16
中心刚体高0.5m,底边 长0.0866m,质量 100kg, Jx=Jy=Jz=10kgm2
套筒长0.4m,钢,外圆 半径0.02m,内圆半 径0.01m
第四章 空间运动多刚体系统动力学
§4.1 刚体的质量几何 §4.2 刚体的动量、动量矩和动能 §4.3 刚体的牛顿-欧拉动力学方程 §4.4 空间运动多刚体系统动力学方程 §4.5 系统的外力和力元 §4.6 空间并联机械臂动力学仿真 §4.7 焊接机器人动力学仿真
1/16
第四章 空间运动多刚体系统动力学
机械臂长0.7m,钢,半 径0.01m
F 5N
13/16
一、力学模型A ADAMS建模与仿真过程
多刚体动力学

多刚体动力学多刚体动力学是研究多个刚体之间相互作用和运动的学科。
刚体是指不受变形的物体,可以看作是由无限多个质点组成的系统。
在多刚体动力学中,常常涉及到刚体的平动、转动、碰撞等运动形式。
在多刚体动力学中,我们经常使用牛顿定律来描述刚体的运动。
根据牛顿第二定律,刚体受到的合力等于其质量乘以加速度。
对于多个刚体系统,我们需要考虑每个刚体受到的力和力矩,并根据牛顿第二定律进行求解。
我们需要确定刚体系统受到的外力和外力矩。
这些外力可以是重力、摩擦力、弹力等。
对于每个刚体,我们可以根据其受力情况列出动力学方程。
例如,对于一个平面上的刚体,我们可以根据合力等于质量乘以加速度的关系,得到其平动方程。
对于一个绕固定轴旋转的刚体,我们可以根据合力矩等于惯性矩乘以角加速度的关系,得到其转动方程。
我们需要考虑刚体之间的相互作用力。
当两个刚体接触时,它们之间会产生碰撞力。
碰撞力的大小和方向取决于两个刚体之间的接触情况和碰撞的性质。
在多刚体系统中,我们需要考虑每个刚体受到的碰撞力,并根据牛顿第二定律求解。
在多刚体动力学中,我们还需要考虑刚体的约束条件。
约束条件可以限制刚体的运动范围,如固定轴约束、刚体之间的接触约束等。
这些约束条件可以通过等式或不等式来表示,将它们纳入动力学方程中求解。
多刚体动力学的求解可以使用数值方法或解析方法。
对于简单的刚体系统,我们可以使用解析方法进行求解,得到刚体的运动方程和轨迹。
对于复杂的刚体系统,我们通常需要使用数值方法进行求解。
数值方法可以通过离散化刚体的运动,将其转化为一系列的计算问题,并通过迭代求解得到刚体的运动状态。
在多刚体动力学中,我们还可以研究刚体的稳定性和控制问题。
刚体的稳定性可以通过刚体的自由度和刚体系统的约束条件来分析。
刚体的控制问题可以通过施加外力或外力矩来改变刚体的运动状态,实现特定的控制目标。
多刚体动力学是研究多个刚体之间相互作用和运动的学科。
通过应用牛顿定律和约束条件,我们可以分析和求解刚体系统的运动问题。