100t锅炉烟气脱硫技术
锅炉脱硫除尘工艺流程

锅炉脱硫除尘工艺流程锅炉脱硫除尘工艺流程是指通过一系列的技术手段,将燃煤锅炉中产生的硫化物和颗粒物物质去除掉,从而达到减少大气污染和保护环境的目的。
下面将介绍一下锅炉脱硫除尘工艺的主要流程。
首先是锅炉脱硫工艺。
脱硫工艺主要分为湿法脱硫和干法脱硫两种方式。
湿法脱硫是指将锅炉烟气中的二氧化硫(SO2)通过与氧化剂反应生成硫酸盐,并使用吸湿剂将氯化钙或碱液喷入锅炉烟道,将硫酸盐吸附在吸湿剂上,最终达到脱硫的目的。
干法脱硫则是通过将锅炉烟气中的二氧化硫与吸附剂接触,使之发生化学反应,生成可吸附的硫化物。
常用的吸附剂有活性炭、活性氧化铝等。
脱硫后的烟气经过除尘器处理,达到排放标准。
其次是锅炉除尘工艺。
除尘工艺主要分为机械除尘和电除尘两种方式。
机械除尘是指通过一系列的机械设备,如旋风分离器、湿式多级除尘器等,将烟气中的颗粒物进行分离和捕集,从而达到净化烟气的目的。
电除尘则是通过采用电场作用力,将烟气中的颗粒物带电,并在电场的作用下进行收集和分离。
电除尘器具有除尘效率高、处理能力大、节能环保等优点,是目前比较常用的一种除尘方式。
锅炉脱硫除尘工艺流程一般是先进行脱硫处理,再进行除尘处理。
其中,脱硫工艺通常在燃烧过程中进行,而除尘工艺通常在燃烧后的烟气处进行。
最后是废物处理工艺。
在锅炉脱硫除尘过程中,会产生一定量的废渣和污水。
废渣主要是脱硫工艺中的副产物,可以作为肥料或建材进行回收利用。
而污水则需要经过处理后再进行排放,以免对环境造成污染。
综上所述,锅炉脱硫除尘工艺流程是一个复杂的技术系统,通过湿法脱硫、干法脱硫、机械除尘、电除尘等方式,将锅炉烟气中的二氧化硫和颗粒物去除掉,从而减少大气污染,保护环境。
同时,在废物处理过程中,废渣可以回收利用,污水需要进行处理后再排放。
这些工艺流程相互配合,共同完成锅炉脱硫除尘的任务。
100t锅炉烟气脱硫技术汇总

100t锅炉石灰石膏法脱硫工程技术标书2016年10月第一章概述 (1)1.1工程概况 (1)1.2范围及要求 (1)1.3设计依据和标准 (2)1.4设计治理目的目标 (8)第二章工况分析 (8)2机组主要设备及设计参数 (8)2.1项目烟气原始排放浓度 (9)第三章治理方案 (10)3.1总体设计思路 (10)3.2工艺流程 (11)3.3 炉外脱硫系统 (15)第四章主要设备、设施的技术参数 (16)4.1脱硫塔 (16)4.2 石灰石浆液制备和供应系统 (18)4.3烟气系统 (19)4.4循环液系统 (20)4.5脱硫石膏系统: (20)4.6石膏脱水系统: (20)4.7浆液排放系统 (22)4.8反冲洗系统: (22)第五章主要设备 (22)第一章概述1.1工程概况工程名称:工程地址:建设单位:1.2范围及要求1.2.1 范围(1)设计(工艺、结构、电气等专业设计);(2)施工(设备制造、采购和安装);(3)指导调试;(4)提供技术资料、编织操作维护手册、人员培训。
1.2.2 技术要求1.1(1)烟尘、烟色、SO2的排放浓度及速率达到《火电厂大气污染物排放标准排放标准》(GB13223-2003)及甲方技术要求:即二氧化硫排放浓度小于200mg/Nm3(炉内脱硫保证效率为40%~50%)。
烟尘排放浓度小于50mg/m3,烟气黑度为林格曼一级(烟尘由甲方除尘系统保证)。
并设置永久性采样监测孔及平台,符合环保要求。
工艺系统设计上按当地环保标准在实际工艺状态下,保证外排SO2排放速率满足要求(即保证废气总排口的排放高度满足其速率达标对应值的要求)。
(2)脱硫总效率:大于98.5%;(3)除尘效率:大于99%;(3)系统漏风率:小于2%;(4)治理技术成熟,工程投资省、性价比高,占地面积小,系统运行可靠,操作维护简单,运行费用低,使用寿命长;(5)风管材料选用防腐、耐高温材料及结构形式,风管管道阀门采用开关阀门进行风量调节和切换;(6)引风机具备足够的引风力,振动小、运行平稳,便于检修和更换。
工业锅炉烟气脱硫技术.

工业锅炉烟气脱硫技术主要介绍:烟气脱硫技术——湿法、半干法、干法等1.1 湿法已商业化或完成中试的湿法脱硫工艺包括石灰(石灰石)法、双碱法、氨吸收法、磷铵复肥法、稀硫酸吸收法、海水脱硫、氧化镁法等10多种。
其中,又以湿式钙法占绝对统治地位,其优点是技术成熟、脱硫率高,Ca/S比低,操作简便,吸收剂价廉易得,副产物便于利用。
1.1.1石灰石-石膏法:石灰石/石灰湿法脱硫最早由英国皇家化学工业公司在20世纪30年代提出,目前是应用最广泛的脱硫技术。
该工艺是利用石灰石/石灰石浆液洗涤烟道气,使之与SO2反应,生成亚硫酸钙(CaSO3),脱硫产物亚硫酸钙可直接抛弃,也可以通入空气强制氧化和加入一些添加剂,以石膏形式进行回收,脱硫率达到95%以上。
为了减轻SO2洗涤设备的负荷,先要将烟道气除尘,然后再进入洗涤设备与吸收液发生反应。
吸收过程的主要反应为:CaCO3+SO2+1/2 H2O→CaSO3·1/2H2O+CO2↑Ca(OH)2+SO2→CaSO3·1/2 H2O+1/2H2OCaSO3·1/2 H2O+SO2+1/2H2O→Ca(HSO3)2废气中的氧或送入氧化塔内的空气可将亚硫酸钙和亚硫酸氢钙氧化成石膏:2CaSO3·1/2 H2O+O2+3H2O→2CaSO4·2 H2OCa(HSO3)2+1/2O2+H2O→CaSO4·2 H2O+SO2通常石灰/石灰石法由三个单元组成:① SO2吸收;②固液分离;③固体处理。
图12.2 石灰石/石灰法烟气脱硫示意流程图吸收塔内的吸收液与除尘后进入的烟气反应后,被送入氧化塔内制取石膏。
烟道气脱硫常用的吸收塔有:湍球塔、板式塔、喷淋塔和文丘里/喷雾洗涤塔等。
石灰或石灰石的吸收效率与浆液的pH值、钙硫比、液气比、温度、石灰石粒度、浆液固体浓度、气体中S02浓度、洗涤器结构等众多因素有关,主要因素有:(a)浆液pH值。
电厂锅炉脱硫脱硝及烟气除尘技术

电厂锅炉脱硫脱硝及烟气除尘技术摘要:近年来,我国的科学技术水平不断进步。
现阶段,按照国家《节能减排行动计划》的要求,在实现“碳中和”远景目标的发展过程中,必须要重视火力发电产业的优化改造。
并且,在提升煤炭热值利用率的同时,要控制好生产时排放烟气中的氮、硫和颗粒物的含量,避免对发电厂的周边环境造成污染和破坏,有效实现火电厂的洁净排放。
因此,大型火电厂要积极构建一体化的锅炉排放综合治理体系,实现绿色环保的发展。
本文系统介绍了大型火电厂锅炉环保化的常规技术,并结合实例详细分析了有效脱硫脱硝和烟气除尘的优化方案。
关键词:电厂锅炉;脱硫脱硝;烟气除尘技术引言燃料发电厂是我国能源消耗和污染物排放量最大的源头,燃料电厂的生产系统急需进行脱硫脱硝改造和烟气除尘技术的改造,以此减少电厂生产过程中排放的污染量,使能源利用效率得以提升。
按照国家有关计划限制电厂的燃煤排放,在满足电厂安全生产的基础下保证电厂锅炉的负荷能力和抗震性,并采用最新技术和设备,保证燃煤发电装置实现超低排放。
1意义和技术特点除了碳之外,原煤还包含其他可能对大气造成危害的元素,例如硫和氮。
这些元素的氧化物会破坏大气环境和生态环境。
倘若直接燃烧原煤,不仅会减少碳元素的利用,原煤中有害元素的氧化物也会直接排放到大气中,这些氧化物被释放到大气中会产生酸雨和光化学烟雾等大气污染现象。
电厂的脱硫脱硝、烟气除尘技术的应用改善了这一现象,不仅大大减少了污染物的排放,而且在一定程度上提高了煤炭资源的利用率,降低了电力成本。
脱硫脱硝和烟气除尘技术具有许多其它技术不具备的独特的优势。
第一,该技术无需大量人力,过程并不复杂,操作方便。
第二,无需大量人力,所需的电力成本也不多,运行成本低是该技术的另外一个优势。
最后,这项技术具有很好的适应性。
该技术可以在任何型号和规模的发电厂锅炉运行中使用,也不会有二次污染的产生,这样一来可以保证在发电过程中产生的污染物排放量处于最低。
2电厂锅炉脱硫、脱硝技术分析2.1干法脱硫技术干法脱硫技术对施工环境的干燥指标要求非常严格,主要使用特定的起到吸附作用的试剂完成污染治理,这种试剂为颗粒或粉末形状,吸附后的状态为干粉末,可以完成毒害气体的治理。
锅炉烟气处理方案

锅炉烟气处理方案随着工业化进程的加快,大量工业锅炉的使用导致环境问题日益严峻,其中锅炉烟气排放是一个重要的环境污染源。
锅炉烟气中的氮氧化物、二氧化硫、碳氧化物等有害物质对环境和人体健康造成严重影响。
因此,锅炉烟气的处理成为保护环境和促进可持续发展的重要任务之一。
为了减少锅炉烟气带来的环境问题,净化锅炉烟气成为一种非常关键的技术手段。
以下将介绍几种常见的锅炉烟气处理方案:1. 脱硫净化方案:二氧化硫是锅炉烟气的主要成分之一,对大气和人体健康有较大的危害。
采用脱硫净化技术可以将二氧化硫转化为环境友好的硫酸盐。
常见的脱硫净化方法包括石灰石脱硫法、湿法脱硫法和脱硫石膏法。
2. 脱硝净化方案:燃烧过程中产生的高温条件下,氮氧化物会与氧气反应形成二氧化氮和一氧化氮等有害物质。
采用脱硝净化技术可以将氮氧化物转化为无害的氮气。
常见的脱硝净化方法包括选择性催化还原法、选择性非催化还原法和湿法脱硝法。
3. 脱焦净化方案:锅炉烟气中的颗粒物以及炭黑等固态物质会对环境造成污染。
采用脱焦净化技术可以有效地去除烟气中的颗粒物。
常见的脱焦净化方法包括静电除尘法、布袋除尘法和湿法除尘法。
4. 烟气余热回收方案:煤炭等燃料燃烧过程中会产生大量的余热,如果不能充分回收利用,将会造成能源浪费。
采用烟气余热回收技术可以将烟气中的热能转化为电能或热能。
常见的烟气余热回收技术包括烟气余热锅炉系统、蒸汽再生系统和烟气余热地源热泵系统。
除了上述几种主要的处理方案外,还可以通过改进燃烧技术、优化锅炉结构等方式来减少锅炉烟气排放的污染物。
需要注意的是,选择合适的锅炉烟气处理方案需要考虑多个因素,包括排放标准、处理效果、技术成本、运行维护等。
同时,要结合具体的锅炉和工业生产过程特点,综合考虑各种因素来制定科学的处理方案。
综上所述,锅炉烟气处理方案是一项非常重要的工程技术,对保护环境和人体健康具有重要意义。
在今后的工业发展中,应不断加强对锅炉烟气排放的管理和治理,推动绿色发展,实现可持续发展的目标。
五种常用的烟气脱硫技术

五种常用的烟气脱硫技术1、钠碱法钠碱法采用碳酸钠或氢氧化钠等碱性物质吸收烟气中的SO2,并可副产高浓度SO2气体或Na2SO3,它具有吸收剂不挥发、溶解度大、活性高、吸收系统不堵塞等优点,适合于烟气SO2浓度较高的废气S02吸收处理。
但同时也存在副产品回收困难、运行费用高等缺点。
2、石灰石/石灰法烟气脱硫工艺中的石灰石法,主要采用细度200-300目的石灰石粉与水混合后制成石灰石浆液,然后输送至吸收塔内,再通过喷淋雾化装置使其与烟气接触,并吸收烟气,从而达到脱硫的目的。
该工艺需配备石灰石粉碎与化浆系统。
由于石灰石活性较低,脱硫过程需通过增大吸收液的喷淋量,提高液气比,以保证达到足够的脱硫效率,因此,采用该方法脱硫的运行费用较高。
石灰法是用石灰粉代替石灰石,石灰粉活性大大高于石灰石,可提高脱硫效率。
石灰法存在的主要问题是塔内容易结垢,引起气液接触器(喷头或塔板)的堵塞。
3、双碱法双碱法[Na2CO3/Ca(0H)2]是在石灰法基础上结合钠碱法,利用钠盐易溶于水,在吸收塔内部采用钠碱吸收SO2。
吸收后的脱硫液在再生池内利用廉价的石灰进行再生,从而使钠离子能循环吸收利用。
该工艺是在综合石灰法与钠碱法的特点基础上通过改进的结果。
主要解决了石灰法在塔内易结垢的问题,又具备钠碱法吸收效率高的优点。
脱硫副产物主要为亚硫酸钙或硫酸钙(氧化后)。
与氧化镁法相比,钙盐不具污染性,因此不产生废渣的二次污染。
4、氧化镁法氧化镁法采用氧化镁与SO2反应得到亚硫酸镁与硫酸镁,它们通过煅烧可重新分解出氧化镁,同时回收较纯净的SO2气体,脱硫剂可循环使用。
由于氧化镁活性比石灰水高,脱硫效率也较石灰法高。
它的缺点是氧化镁回收过程需煅烧,工艺较复杂,但若直接采用抛弃法,镁盐会导致二次污染,总体运行费用也较高。
5、氨法氨法采用氨水作为SO2的吸收剂,SO2与NH3反应可产生亚硫酸氨、亚硫酸氢氨与部分因氧化而产生的硫酸氨。
根据吸收液再生方法的不同,氨法可分为氨—酸法、氨—亚硫酸氨法和氨—硫酸氨法。
T锅炉脱硫脱硝除尘技术方案精编版

T锅炉脱硫脱硝除尘技术方案公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]烟台东昌供热有限责任公司虎山二期2×100t/h锅炉除尘、脱硝、脱硫工程技术标书2015-07-15目录一、项目概况1.项目名称烟台东昌供热有限责任公司虎山二期2×100t/h锅炉除尘、脱硝、脱硫工程2.建设单位烟台东昌供热有限责任公司3.设计单位山东通江三达环保科技有限公司4.项目概况烟台东昌供热有限责任公司,主要供热,位于山东烟台莱山区,公司现有虎山、金房、莱阳等锅炉脱硫项目,SO2排放高达2000mg/Nm3。
现除尘采用水膜除尘,均没有建设配套脱硫脱硝设施,出口烟气达不到环保要求。
在“十二五”计划中,我国的节能减排工作任重而道远。
面对日益严峻的环保形势,为响应国家有关部门关于烟气脱硫的政策法规,以及从可持续发展和社会及环保效益的角度出发,烟台东昌供热有限责任公司对虎山锅炉烟气计划建设除尘改造及脱硫脱硝综合环保工程,经处理后外排烟气达到当地环保要求。
(1)SOx含量 < 100mg/Nm3(2)NOx含量 < 200mg/Nm3(3)尘含量 <20mg/Nm3二、设计依据、原则、范围和要求1.设计依据(4)《锅炉大气污染物排放标准》 GB13271-2001(5)《锅炉烟尘测试方法》 GB/T5468-91(6)《工业企业噪声控制设计规范》 GBJ78-85(7)《钢结构工程施工质量验收》 GB50205-2001(8)《钢结构设计规范》 GB50017-2003(9)《袋式除尘器安装技术要求与验收规范》 JB/T8471-96(10)《袋式除尘器用滤料及滤袋技术条件》 GB12625-90(11)《除尘机组技术性能及测试方法》 GB/T11653-89(12)《脉冲喷吹类袋式除尘器》 GB/T8532-1997(13)《电器装置安装工程施工技术条件》 GBJ232-82(14)《建筑抗震设计规范》 GB5011-2001(15)《固定式钢斜梯安全技术条件》(16)《固定式工业钢平台》(17)《袋式式除尘器用滤袋框架技术条件》 JB/T5917-91(18)《袋式式除尘器用电磁脉冲阀》 JB/T5916-2004(19)《电气装置安装工程及验收规程》 GB 50254-6—96 (20)(21)(22)《低压分配和电路设计规范》 GBJ54-83(23)GB 150 钢制压力容器(24)GB 536 液体无水氨(25)GB 2440 尿素(26)GB 爆炸性气体环境用电气设备(27)GB 4208 外壳防治等级(IP代码)(28)GB 8978 污水综合排放标准(29)GB 12268 危险货物品名表(30)GB 12348 工业企业厂界噪声标准(31)GB 12358 作业环境气体检测报警仪通用技术要求(32)GB 12801 生产过程安全卫生要求总则(33)GB 14554 恶臭污染物排放标准(34)GB 18218 重大危险源辩识(35)GB 50058 爆炸和火灾危险环境电力装臵设计规范(36)GB 50160 石油化工企业设计防火规范(37)GB 50222 建筑内部装修设计防火规范(38)GB 50351 储罐区防火堤设计规范(39)GBZ 1 工业企业设计卫生标准(40)GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法(41)GB/T 20801 生产过程安全卫生要求总则(42)GB/T 21509 燃煤烟气脱硝技术装备(43)DL 408 电业安全工作规程(44)GB9078 工业炉窑大气污染物排放标准(45)GB18599 一般工业固体废物贮存、处置场污染控制标准(46)GB50016 建筑设计防火规范(47)GB50040 动力机器基础设计规范(48)GB50212 建筑防腐蚀工程施工及验收规范(49)HG23012 厂区设备内作业安全规程(50)HJ/T75 固定污染源烟气排放连续监测技术规范(试行)(51)HJ/T76 固定污染源烟气排放连续监测系统技术要求及检测方法(试行)(52)《建设工程质量管理条例》(中华人民共和国国务院第279号)(53)《建筑项目(工程)竣工验收办法》(国家计委文件计建设[1990]1215号)(54)《建筑项目环境保护竣工验收管理办法》(国家环境保护总局令第13号)(55)《污染源自动监控管理办法》(国家环境保护总局令第28号)2.设计原则1、烟气脱硫脱硝工艺成熟、可靠。
锅炉脱硝除尘脱硫技术方案

100t/h燃煤锅炉烟气净化系统技术方案有限公司2014年4月第一章总论1工程概述及范围本方案书是针对于的100t/h燃炉锅炉烟气净化(除尘、脱硫、脱硝)的工程设计、设备设计、制造、供货、设备安装、电气、调试、人员培训。
本技术方案的脱硫系统采用选择性非催化还原(SNCR)脱除 NOx 技术、除尘系统采用麻石水膜旋流板湿式高效除尘器、脱硫系统采用钠—钙双碱法除尘脱硫工艺。
2.设计原则本锅炉烟气净化工艺技术方案,依据国家相关环保标准和业主的要求,确定如下设计原则:(1)确保氮氧化物排放浓度达标排放。
(2)确保烟气、二氧化硫达标排放。
(3)确保烟气治理系统的安全、稳定运行。
(4)整个系统设计紧凑,布局合理。
3 设计规范脱硝工程、除尘工程和脱硫工程的设计、制造、安装、调试、试验及检查、试运行、考核、最终交付等符合相关的中国法律及规范。
对于标准的采用符合下述原则:1)与安全、环保、健康、消防等相关的事项执行中国国家及地方有关法规、标准;2)设备和材料执行设备和材料制造商所在国标准;3)建筑、结构执行中国电力行业标准或中国相应的行业标准。
4)本工程脱硝还原剂为尿素溶液。
脱硝工程、除尘工程和脱硫工程的设计、制造、安装、调试、试验及检查、试运行、性能考核、最终交付中采用的所有标准、规定及相关标准的清单如下:上述标准有矛盾时,按较高标准执行。
工程联系文件、技术资料、图纸、计算、仪表刻度和文件中的计量单位为国际计量单位(SI)制。
4.锅炉出口烟气参数5.脱硝工程、除尘工程和脱硫工程的设计指标6.气象条件齐齐哈尔市位于黑龙江省西南部的松嫩平原。
位于北纬45°至48°,东经122°至126°。
东北与本省绥化市、东南与大庆市、南与吉林省白城市、西与内蒙古自治区呼伦贝尔市、北与本省黑河市接壤。
距省会哈尔滨市359公里,距绥化市328公里,距大庆139公里、距白城市282公里,距呼伦贝尔市(海拉尔区)524公里,距黑河市483公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100t锅炉石灰石膏法脱硫工程技术标书2016年10月第一章概述 (1)1.1工程概况 (1)1.2范围及要求 (1)1.3设计依据和标准 (3)1.4设计治理目的目标 (8)第二章工况分析 (9)2机组主要设备及设计参数 (9)2.1项目烟气原始排放浓度 (10)第三章治理方案 (10)3.1总体设计思路 (10)3.2工艺流程 (11)3.3 炉外脱硫系统 (15)第四章主要设备、设施的技术参数 (16)4.1脱硫塔 (16)4.2 石灰石浆液制备和供应系统 (18)4.3烟气系统 (19)4.4循环液系统 (20)4.5脱硫石膏系统: (20)4.6石膏脱水系统: (20)4.7浆液排放系统 (22)4.8反冲洗系统: (22)第五章主要设备 (22)第一章概述1.1工程概况工程名称:工程地址:建设单位:1.2范围及要求1.2.1 范围(1)设计(工艺、结构、电气等专业设计);(2)施工(设备制造、采购和安装);(3)指导调试;(4)提供技术资料、编织操作维护手册、人员培训。
1.2.2 技术要求1.1(1)烟尘、烟色、SO2的排放浓度及速率达到《火电厂大气污染物排放标准排放标准》(GB13223-2003)及甲方技术要求:即二氧化硫排放浓度小于200mg/Nm3(炉内脱硫保证效率为40%~50%)。
烟尘排放浓度小于50mg/m3,烟气黑度为林格曼一级(烟尘由甲方除尘系统保证)。
并设置永久性采样监测孔及平台,符合环保要求。
工艺系统设计上按当地环保标准在实际工艺状态下,保证外排SO2排放速率满足要求(即保证废气总排口的排放高度满足其速率达标对应值的要求)。
(2)脱硫总效率:大于98.5%;(3)除尘效率:大于99%;(3)系统漏风率:小于2%;(4)治理技术成熟,工程投资省、性价比高,占地面积小,系统运行可靠,操作维护简单,运行费用低,使用寿命长;(5)风管材料选用防腐、耐高温材料及结构形式,风管管道阀门采用开关阀门进行风量调节和切换;(6)引风机具备足够的引风力,振动小、运行平稳,便于检修和更换。
(7)符合国家环境保护政策、有关的法律法规、规范及标准;(8)经济、高效节能的原则;(9)平面布置便于施工、安装、维修、占地少、与其他设施设备协调一致的原则;(10)废气经有效收集和治理后满足相应的国家排放标准,不会对区域环境空气造成不利影响,不会对厂区工人身体健康产生不利影响;(11)废气治理系统风量保持稳定,系统各支管风压保持平衡,系统设计合理;(12)废气处理系统具备灵活、可靠的调节功能,能够应对生产情况发生变化而确保稳定运行;1.3设计依据和标准GB16297-1996《大气污染物综合排放标准》GB3095-1996《环境空气质量标准》GB13223-2003《火电厂大气污染物排放标准》DL5000-2000《火力发电厂设计技术规程》DL/T5121-2000 《火力发电厂烟风煤粉管道设计技术规程》GB50264-97《工业设备及管道绝热工程设计规范》HGJ229-91《工业设备、管道防腐蚀工程施工及验收规范》GBJ17-88 《钢结构设计规范》GB/T16157-1996 《烟尘及污染物采样方法》DLGJ158-2001《火电厂钢制平台扶梯设计技术规定》DL/T5072-2007《火力发电厂保温油漆设计规程》GB14554-03《恶臭污染物排放标准》GBJ16-87(2001年版)《建筑设计防火规范》DL5053-1996《火力发电厂劳动安全和工业卫生设计规程》GB12348-90《工厂企业厂界噪声标准》GB3096-93 《城市区域环境噪声标准》GB50058-92《爆炸和火灾危险环境电力装置设计规范》GB5468-91 《锅炉烟尘测量方法标准》DLGJ102-91 《火力发电厂环境保护设计技术规定(试行)及条文说明》GB3095-1996《环境空气质量标准》DL/T5094-99《火力发电厂建筑设计规程》DL435-91 《火电厂煤粉锅炉燃烧室防爆规程》DL/T5032-94《火力发电厂总图运输设计技术规程》DL/T5041-95《火力发电厂厂内通信设计技术规定》DL/T680-99 《耐磨管道技术条件》DL5022-93《火力发电厂土建结构设计技术规定》DL468-92《电站锅炉风机选型和使用导则》DL/T621-1997《交流电气装置的接线》DL/T5068-1996《火力发电厂化学设计技术规范》GB/T16157-1996《固体污染源排气颗粒物测定与气态污染物采用方法》DL/T5121-2000《火力发电厂烟风煤粉管道设计技术规定》DL5027-93《电力设备典型消防规程》DLGJ24-91《火力发电厂生活消防给水及排水设计技术规定及条文说明》DLGJ56-95《火力发电厂和变电所照明设计技术规定》DL5004-91《火力发电厂热工自动化试验室设计标准》GB8970-88《空气质量、二氧化硫的测定四氯汞盐——盐酸付玫瑰苯胺比色法》GB4053.4-93 《固定式工业钢平台》GB4053.2-93《固定式钢斜梯》GB4053.1-93《固定式钢直梯》GB4053.3-93《固定式工业防护栏杆》GB50034-92《工业企业照明设计规范》GB50033-91《工业企业采光设计标准》GB50046-95《工业建筑防腐蚀设计规范》GB50055-93《通用用电设备配电设计规范》GB50052-95《供配电系统设计规范》GB50217-94《电力工程电缆设计规范》GB50010-2002 《混凝土结构设计规范》GBJ29-1988《压缩空气站设计规范》GBJ17-88《钢结构设计规范》GB50007-2002 《建筑地基基础设计规范》GB50040-96 《动力机器基础设计规范》GB50009-2001《建筑结构荷载规范》GB50260-96《电力设施抗震设计规范》GB50011-2001《建筑抗震设计规范》GBJ79-85《工业企业通讯接地设计规范》GBJ87-85《工业企业噪声控制设计规范》GBJ42-81《工业企业通讯设计规范》GBJ63-90《电力装置的电测量仪表装置设计规范及条文说明》NDGJ16-89《火力发电厂热工自动化设计技术规定》NDGJ8-89《火力发电厂变电所二次接线设计技术规定》SDGJ17-88《火力发电厂厂用电设计技术规定》NDGJ91-89《火力发电厂电子计算机监视系统设计技术规定(试行)》GB/T17116.1-1997《管道支吊架第一部分:技术规范》GB/T17116.2-1997《管道支吊架第二部分:管道连接部分》GB/T17116.3-1997《管道支吊架第三部分:中间连接件和建筑结构连接件》DL647-1998 《电力工业锅炉压力容器检验规程》GB/T13275-91《一般用途离心通风机技术条件》GB/T13276-91《容积式压缩机进气消声器生产测试标准》GB/T4975-1995 《容积式压缩机性能测试标准》GB/T700-1988 《碳素结构钢》GB/T2888-91 《罗茨风机噪音测试标准》GB/T2888-1991 《风机和罗茨鼓风机噪声测量方法》JB/T3375-1991《锅炉原材料入厂检验》JB/T1613-1993 《锅炉受压元件焊接技术条件》JB/T1615-1991 《锅炉油漆和包装技术条件》GB8196-87《机械设备防护罩安全要求》JB/T5000.10-1998 《重型机械通用技术条件》装配以下为施工及验收标准:DL/T 657-1998《火力发电厂模拟量控制系统验收测试规程》DL/T 658-1998 《火力发电厂顺序控制系统验收测试规程》DL/T 659-1998《火力发电厂分散控制系统在线验收测试规程》DT/T820-2002《电力建设施工及验收技术规范》(管道焊接接头超声波检验篇)DL5007-92《电力建设施工及验收技术规范》(火力发电厂焊接篇)DL5031-94《电力建设施工及验收技术规范》(管道篇)GB50205-95《金属结构施工及验收标准》GB50209-2002《建筑地面工程施工质量验收规范》GB50259-96《电气装置安装工程施工及验收规范》GB50270-98《连续输送设备安装工程施工及验收规范》GB50275-98《压缩机风机泵安装工程施工及验收规范》GBJ149-90《电气装置安装工程母线装置施工及验收规范》GB50212-91《建筑防腐蚀工程施工及验收规范及条文说明》GB50231-98《机械设备安装工程施工及验收通用规范》GB50205-2001 《钢结构工程施工质量验收报告》GB50202-2002 《建筑地基基础工程施工质量验收规范》GB50204-2002 《混凝土结构工程施工质量验收规范》YB3301-92 《焊接H型钢》SDJ68-85《火力发电厂设备与管道保温材料的技术条件与检查方法》SDJ69-8《电力建设施工及验收技术规范》(建筑工程)《火力发电厂基本建设工程启动及竣工规程》(1996版)SDT279-90《电力建设施工及验收技术规范热工仪表及控制装置篇》电建[1996]第159号行业内部标准《火力发电厂基本建设工程启动及竣工验收规程》(1996年版)《火电工程调整试运质量检验及评定标准》(1996年版)YBJ201 《冶金机械设备安装工程施工及验收规范》通用规定《火电施工质量检验及评定标准热工仪表及控制装置篇》(1998年版)1.4设计治理目的目标1.4.1设计参数3-1 设计参数表如下:1.3.2设计治理原则✧根据现场情况,选用成本可靠的治理技术;✧在保证达到治理目标的前提下,尽可能节省投资;✧确保设备性能稳定可靠和检修方便;第二章工况分析2机组主要设备及设计参数锅炉主要设备设计参数2.1项目烟气原始排放浓度SO2排放浓度根据甲方提供燃煤参数,可计算SO2(额定工况下燃煤耗量16.5t/h)的原始排放浓度:额定工况下燃煤耗量16.5t/h全S 含量:每小时消耗的燃煤中的全S含量:16500Kg×4%=660Kg全S的80%为可燃,形成SO2,则每小时产生的SO2:660Kg×80%×64(SO2分子量)÷32(S分子量)=1056Kg则SO2的原始排放浓度约为:1056Kg÷240000m3/h(锅炉工况排气量) =4400mg/m3第三章治理方案3.1总体设计思路根据现场实际情况及甲方要求,治理工艺初步设计为炉内喷钙(干法)加炉外石灰石膏(湿法)结合脱硫。
炉外除尘部分由甲方解决。
脱硫尘除尘设计原则:(1)脱硫率>98.5%。
(2)技术较为成熟,运行费用低;(3)投资省;(4)系统简便,易于操作管理。