JACS文献
用ENDNOTE编辑中文文献

Endnote是文献管理和word文献插入的管理工具,如何使用这里不提,网上一大堆。
现在提出一个问题,然后解决它。
问题:endnote在和word连用的时候,如果文献中英文混排,那么会出现中文姓名之后也是et al.这样的字样。
显然我们希望中文文献引用的时候逗号以及et at都用中文格式,也就是中文的","和"等",而非","和"et al",另外卷期页码之间的标点符号也是英文,也需要更改。
讨论:事实上在文献输入到word中的格式可以通过endnote的out style来规定,文字的大小,字体,也可以用word 中endnote的插件"format bibliography"中的"layout"来规定。
然而一个word文档的输入格式只能是一种,而且输入的文献必然在word的最后。
这个是无法改变的事实,也许以后endnote会考虑多语言文献引用的可能性而进行调整。
目前一个格式意味着你只能规定文献输出的作者文题卷期等之间的符号只能一种!!!???这也无法改变。
唯一选择中文文献不用"journal"类型,而使用其他自定义的类型。
这样你选择输出的out style里可以编辑这个类型。
比如类型名"中文期刊"。
解决:1、在endnote软件中选择edit-preference,在选项界面里,reference types中,选择"modify reference types",在这里点开,"journal article"下拉菜单。
里面选择一个新的文献类型,比如"unused 1",在下方菜单把这个unused 1改为"中文期刊"。
2、现在"中文期刊"已经建立,但其中的详细内容是空的,需要添加。
英文参考文献的著录与编辑

电子版本资料:期刊电子版本论文、音像制品、
专著电子版、计算机软件
期刊中论文的引用格式:GB/T 7714-2005
Worldwide research on pegmatites has involved the study of their petrogenesis[1-2], classification[3]135, texture and structure[3]137, ... Worldwide research on pegmatites has involved the study of their petrogenesis (Solodov, 2002), classification (Zou et al., 2004)135,
胜于胜以直接地胜胜的姓胜于胜以直接地胜胜的姓照作者文引用的方式判照作者文引用的方式判jacsjacs日本作者胜注日本作者胜注期刊胜文中胜文胜目通常只有首字母大期刊胜文中胜文胜目通常只有首字母大他一律小写他一律小写胜有名胜除外胜有名胜除外最好加注胜文胜目最好加注胜文胜目以使感胜趣的胜者以使感胜趣的胜者和胜胜管理胜和胜胜管理胜更容易地定是否需要胜一步追踪相胜文更容易地定是否需要胜一步追踪相胜文且各胜胜的首且各胜胜的首字母采用大形式字母采用大形式期刊文的出版年和卷期刊文的出版年和卷vol
Publications in Chinese should be indicated.
Always give the original title of publications in other languages using the French, German, Spanish, Portuguese etc., but the translated title
JACS最新综述:电化学方法修饰多肽及蛋白质

JACS最新综述:电化学方法修饰多肽及蛋白质电化学在多肽和蛋白质修饰方面的应用是一个迅速发展的领域。
温和的反应条件和氧化还原化学基本形式的固有可调谐性使其成为一种强大的和使能的技术。
目前的方法已经开发了小分子试剂和催化剂的电活性,电助剂,并选择固有功能来修饰肽和蛋白质底物。
基于此,悉尼大学Richard J. Payne和澳大利亚国立大学Lara R. Malins围绕电化学方法修饰多肽和蛋白质主题在Journal of the American Chemical Society上发表综述文章。
题目为“Electrochemistry for the Chemoselective Modification of Peptides and Proteins”。
该综述将展示最近发展的多肽和蛋白质修饰的电化学方法;强调了生产均质修饰生物分子的大量未开发的机会;着眼于实现电化学在化学选择性生物偶联化学中的巨大潜力。
主要的修饰方法:(1)间接电化学方法修饰肽和蛋白质;(2)使用电子辅助设备和(3)特异性蛋白质残基电化学修饰肽和蛋白质。
图1. (A)标准化电化学电池. (B)基本电化学装置。
(C)电化学中的常见定义。
(D) pH值为7或*pH值为8.2时,关键蛋白原氨基酸vs NHE 的氧化还原电位。
图2. 小分子试剂电化学激活激活酪氨酸多肽和蛋白质修饰:(A) e-Y-Click反应,(B) e-Y-Click反应,(C)吩噻嗪修饰。
展望:到目前为止,大多数工作都是在有机溶剂和使用恒流电解对小的疏水肽进行的。
因此,系统地探索在水溶剂中现有和新的修饰技术和全套蛋白质原氨基酸侧链的兼容性,以确保在广泛底物上的最大适用性,是该领域的下一步关键。
虽然操作上比较复杂,但也应该探索使用分裂电池设置和恒压电解,因为这些反应设置可以提供改进的控制和可调性,从而提高选择性。
现有方法中广泛使用的电极配置强调了筛选各种电极材料的关键重要性,以探测反应的选择性和最大限度地提高产量。
journal of the american chemical society引用简写

journal of the american chemical society引用简写摘要:一、引言1.介绍《美国化学学会杂志》2.阐述其在化学领域的重要性3.简述本文将讨论的内容二、《美国化学学会杂志》引用简写1.简写的定义及作用2.简写规则及示例3.简写与全写的转换三、简写在学术文献中的应用1.提高写作效率2.方便阅读与理解3.规范引用格式四、简写与全写的选择1.根据文献类型选择2.根据作者与读者需求选择3.注意保持学术规范五、结论1.总结简写的重要性2.强调在学术写作中合理使用简写3.展望简写在化学领域的未来发展趋势正文:《美国化学学会杂志》(Journal of the American Chemical Society,简称JACS)是化学领域具有重要影响力的学术期刊,发表了许多关于化学研究的原创性论文。
在学术研究中,为了提高写作效率和方便读者阅读与理解,作者们常常使用引用简写。
本文将围绕《美国化学学会杂志》的引用简写展开讨论。
首先,我们需要了解简写的定义及作用。
简写是学术文献中常用的一种写作手法,通过用缩写或首字母代替全名,以减少文字篇幅。
在《美国化学学会杂志》中,简写可以帮助作者更快地完成论文写作,同时便于读者快速理解相关概念。
其次,《美国化学学会杂志》中简写的规则及示例。
通常,简写遵循以下规则:首次全写,再次出现时使用简写。
例如,在全写“美国化学学会”(American Chemical Society,ACS)后,再次出现时可以简写为“ACS”。
需要注意的是,在首次使用简写时,需要在括号内注明全名。
此外,简写与全写之间的转换。
当文章中出现简写时,读者可能不熟悉其全写形式。
因此,在文章中需要不时进行简写与全写之间的转换,以确保读者能够理解。
例如,在简写“JACS”后,适时插入全写“Journal of the American Chemical Society”,以帮助读者建立联系。
JACS投稿指南总结

Notice to Authors of JACS Manuscripts稿件提交要求及注意事项•当一篇稿件提交至JACS后,编辑会对这篇稿件做一个初步的筛选,以判断这篇稿件是否适合此期刊的读者,大部分的稿件会在这个阶段被退回。
•文章的题目不能包含“First”,“Novel”这类词或任何数字或号码形式。
•标题中不允许用缩写,除非是通识的缩写•文章的题目、作者列表及作者的排序都应与提交的稿件保持一致。
•所有作者的姓名应列入提交页面,同时须提供当前的每一个联系信息和直接的/有效的电子邮件地址。
•Communications和Articles须在手稿文档文件中包含摘要和目录(TOC)•Communications 文章必须使用现有的communication 模板,篇幅不超过4页。
•文章要正确标记所有部分(介绍、讨论、实验部分及结论等)。
•在提交文件前请取消“track changes”;上传的注释文件Supporting Information仅供审查工作。
•无论是“In press”、“accepted”或“submitted”等的相关发表稿件副本需在发表或者其他准备阶段中上传提交稿件Supporting Information以供审查。
只有被Digital Object Identifier(DOI)引用参考文献才可以被引用。
•所有PDF的Supporting Information页面应依次编号。
CIF和txt文件的页面不需要编号。
•在手稿文件中可能不包含Supporting Information,供文章发表或只供编辑审稿Supporting Information需要单独上传。
•可以声明贡献基本相同的作者;逐条记载作者的个人贡献或部分著作权是不允许的。
•不鼓励使用过多的自引。
•在JACS稿件或Supporting Information中不能包含免责声明。
•附录可能只出现Supporting Information中,而不出现在稿件中。
journal of the american chemical society引用简写

journal of the american chemical society引用简写一、概述期刊《美国化学学会期刊》(Journal of the American Chemical Society,简称JACS)的重要性《美国化学学会期刊》(Journal of the American Chemical Society,简称JACS)是全球顶级化学领域期刊,创刊于1879年,由美国化学学会(American Chemical Society)出版。
JACS涵盖化学研究的各个领域,包括无机化学、有机化学、物理化学、分析化学、应用化学等,是化学领域学者们交流研究成果、分享创新思想的重要平台。
二、介绍JACS的引用简写及其意义在学术交流中,为了方便快捷地引用相关文献,通常会使用引用简写。
JACS的引用简写就是Journal of the American Chemical Society的缩写,即“J.Am.Chem.Soc.”。
这个简写不仅具有辨识度,还可以在学术搜索引擎中快速定位到该期刊。
三、分析JACS引用简写的应用场景和实用性在化学领域的学术论文、研究报告、书籍等文献中,作者经常会引用JACS 上发表的研究成果。
使用JACS引用简写,如“J.Am.Chem.Soc.”,可以清晰地表示引用的文献来源,便于读者理解和查找。
同时,JACS引用简写具有一定的权威性,能增加文献的认可度。
四、举例说明如何在学术论文和报告中使用JACS引用简写以下是一个使用JACS引用简写的例子:在论文中,作者可以这样引用一篇发表在JACS上的文章:“近年来,研究者们对金属有机框架材料(Metal-Organic Frameworks,简称MOFs)的研究兴趣不断增加。
据报道,MOFs具有很高的比表面积和可调变的组成,因此在气体吸附、分离和储存等方面具有广泛的应用前景(J.Am.Chem.Soc., 2018, 140, 10916-10918)。
j. am. chem. soc.的文章类型

j. am. chem. soc.的文章类型在此我假设您是要求写一篇1500-2000字长的文章,这篇文章的主题是有关"j. am. chem. soc."(即"Journal of the American Chemical Society",简称JACS)的文章类型。
遵循您对于文章类型的要求,我将会一步一步回答。
文章类型是指在学术期刊中发表的文章,它们可以涵盖多种主题、研究方法和实验技术。
对于JACS这类顶级化学期刊,其文章类型多种多样。
以下是几种常见的JACS文章类型的介绍:1. Communication(通信):Communication是JACS中最常见的文章类型之一,它通常是对于某一最新研究成果的简短报道。
这类文章通常以简单的结构和语言,直接陈述研究发现,重点在于揭示其重要性和创新之处。
Communication的篇幅通常较短,一般不超过文章的3页。
2. Article(论文):Article是JACS中的一种全文研究论文,是对研究工作的全面描述和解释。
这类文章一般具有较完整的研究结构,包括引言、实验方法、结果与讨论、结论等部分。
Article的篇幅较长,可以超过10页,以便于作者充分呈现他们的研究发现和实验数据。
3. Perspective(展望):Perspective是JACS中的一类综述性文章,旨在对某一领域的最新进展进行总结和评价。
这类文章不仅会回顾过去的研究成果,还会展望未来的发展方向。
Perspective的篇幅通常较长,一般在5-20页之间。
4. Review(综述):Review是一种详尽综述性的文章类型,主要回顾和总结某一领域内的大量研究成果,以系统性的方式评估和综合现有的文献。
这类文章的目的是为读者提供对该领域广泛了解。
Review的篇幅往往很长,可以超过30页。
5. Feature Article(专题文章):Feature Article是JACS中的一类重要文章,它涉及到某一研究领域的深入探讨并提供了新的见解。
jacs书籍引用格式

jacs书籍引用格式JACS(Journal of the American Chemical Society)是美国化学学会的官方期刊,它使用的引用格式是ACS(American Chemical Society)引用格式。
下面是关于JACS书籍引用格式的详细说明。
在引用JACS书籍时,一般要包括以下信息:作者(或编辑)、书名、出版社、出版年份和页码。
下面是一个示例引用:作者. 书名; 出版地: 出版社, 出版年份, 页码.请注意以下几点:1. 作者格式,多个作者之间用逗号分隔。
如果有很多作者,可以使用 et al. 表示其余作者。
例如,Smith, J.; Johnson, A.; Brown, M. 或者 Smith, J. et al.2. 书名格式,书名一般使用斜体或者引号包围。
例如,Organic Chemistry 或者 "Introduction to Physical Chemistry".3. 出版地和出版社,出版地指的是书籍的出版地点,例如纽约、伦敦等。
出版社是指出版该书籍的出版公司,例如Wiley、Elsevier等。
4. 出版年份,书籍的出版年份。
5. 页码,如果你引用的是书籍中的特定页码或者章节,需要提供页码范围或者具体章节的编号。
下面是一个具体的示例引用:Smith, J.; Johnson, A.; Brown, M. Organic Chemistry; New York: Wiley, 2010, pp 45-48.这个引用示例中,Smith, J.; Johnson, A.; Brown, M. 是书籍的作者,Organic Chemistry 是书名,New York 是出版地,Wiley 是出版社,2010 是出版年份,pp 45-48 是引用的页码范围。
希望以上解释对你有所帮助,如果你还有其他问题,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Total Synthesis and Biological Investigation of (−)-PromysalinAndrew D.Steele,Kyle W.Knouse,Colleen E.Keohane,and William M.Wuest *Department of Chemistry,Temple University,Philadelphia,Pennsylvania 19122,United States*Supporting Information coupled with computational analysis methods have revolutionized research into microbiomes the entirety of the microbial community in a given system.1At the same time,the burgeoning field of microbial ecology has shed light on the inherent complexity of interrelationships in such ecosystems.2Studies investigating the coexistence of organisms,ranging from mutualistic to parasitic,have had a profound impact on our understanding of life,most notably in the human body.There has been a call to provide small-molecule probes that could be used to deconvolute such systems by speci fically targeting pathogenic bacteria.For example,a narrow-spectrum antibiotic that can speci fically target pathovars without disrupting the remaining population would be of interest in agriculture.If successful,these compounds would be of value not only to farming but also to human health (i.e.,oral,gastrointestinal)and other commercial interests.A well-studied example of a multispecies community is the root system of plants,generally termed the rhizosphere microbiome.3The predominant players in this arena are the Pseudomonads ,which comprise both commensal and patho-genic species competing for vital resources,either ensuring or jeopardizing the health of the host.The competitors produce an array of secondary metabolites with unique bioactivities evolutionarily designed to promote survival.Functions include siderophores,4virulence factors,5biosurfactants,6and anti-biotics.7Such species-speci fic compounds represent attractive targets for agricultural and medicinal needs and may shed light on novel virulence targets for future drug design.In 2011,De Mot and co-workers isolated a novel metabolite,promysalin (1),from Pseudomonas putida (PP )RW10S1,which resides in the rhizosphere of rice plants (Figure 1).8The natural product showed unique species-speci fic bioactivity,mostnotably against Pseudomonas aeruginosa (PA ),inhibiting growth at low-micromolar concentrations.Promysalin selectively inhibits certain PA strains and other Gram-negative bacteria but shows no activity against their Gram-positive counterparts.In contrast,the compound was also shown to promote swarming of the producing organism,hinting at two discrete modes of action.The original report characterized the biosynthetic gene cluster and proposed a biosynthesis via annotation and the characterization of shunt products.The authors elucidated the structure of promysalin through spectroscopic methods;however,no absolute or relative stereochemical assignments were made.Considering the signi ficance of PA in clinical settings 9(cystic fibrosis,immunocompromised patients)and in agriculture,promysalin could serve as an attractive alternative to current therapies.TheReceived:May 7,2015Published:May 29,2015Figure 1.Proposed biosynthesis of promysalin.Polyketide synthase (PKS),NRPS,and tailoring enzymes (Rieske iron −sulfur cluster,asparagine synthase,chorismate synthase)are depicted.unique bioactivity,unknown mode of action,and structural ambiguity are what prompted the synthesis reported herein.Before initiating our synthetic investigation,we sought to reannotate the biosynthetic gene cluster using AntiSMASH (Figure 1).10We postulated that this computational work would aid in determining the absolute stereochemistry of dehydroproline,thus limiting the synthesis to one enantiomeric series.This study con firmed that ppgJ encodes for a truncated nonribosomal peptide synthetase (NRPS)module containing both adenylation (A)and thiolation domains but lacking a condensation domain,reminiscent of sylC found in Pseudomo-nas syringae .11Upon closer inspection,we were unable to identify any putative epimerase or thioesterase domains contained in either the characterized gene cluster or the flanking regions.Bioinformatic investigation of the ppgJ A domain revealed the Stachelhaus code,12DVQFVAHV,corresponding to the selective activation of L -proline as previously hypothesized by De Mot.8This exercise led us to the conclusion that the absolute con figuration of the C16stereocenter should be assigned as (S ).On the basis of these results,we reevaluated the proposed biosynthesis of promysa-lin,which is depicted in Figure 1.With this information in hand,we began our campaign to synthesize the four diastereomers generated from the two unresolved stereocenters (C2and C8).Our synthetic e fforts began with the construction of the four diastereomers of the myristic acid fragment (Scheme 1).We envisioned utilizing a convergent route wherein cross-meta-thesis followed by hydrogenation would be used to forge the complete aliphatic chain,providing a succinct route to all four L -proline diastereomers.Beginning with the known compound (−)-2,available in one step from 5-hexenoic acid and the phenylalanine-derived Evans oxazolidinone,13diastereoselective oxidation using the Davis oxaziridine 14followed by silyl protection furnished compound (−)-4in good yield.Cross-metathesis with the known enantiomerically pure homoallylic alcohol (+)-5or (−)-5in the presence of catalyst C711,15subsequent hydrogenation,and ammonolysis provided diaster-eomers (+)-6a and (+)-6b ,respectively.Analogously,the enantiomeric series of compounds (−)-6c and (−)-6d were synthesized starting with (+)-2.This route provides concise access to all four diastereomers in enantiomerically pure form (45−54%yield over five steps).The synthesis of the proline −salicylate fragment commenced with ester hydrolysis of (2-(trimethylsilyl)ethoxy)methyl (SEM)-protected methyl salicylate,amidation with trans -4-L -hydroxyproline methyl ester,and Dess −Martin oxidation to provide (+)-9(Scheme 2).At this stage,we sought to develop a method for the regioselective dehydration of (+)-9to give the delicate enamine functionality.To this end,we treated the ketone with tri flic anhydride and 2,6-lutidine to provide the desired enol tri flate,which was cleanly reduced using a modi fied Stille reaction to furnish the corresponding enamine with the desired regiochemistry found in the natural product.16Base hydrolysis of the methyl ester ultimately led to the key coupling fragment (−)-10in six steps and an overall yield of 56%.EDC-mediated esteri fication of alcohols 6a −d with (−)-10proceeded smoothly to give all four diastereomers of fully protected promysalin.As is the case in many total syntheses,the final global deprotection proved to be nontrivial.Most literature methods for SEM deprotection call for either Brønsted or Lewis acidic conditions or fluoride (TBAF or TASF)at elevated temperatures.Unfortunately,the substrate was unstable to both prolonged heat and/or acid,providing only trace amounts of the desired product.Undeterred,we sought milder deprotection conditions.After much exper-imentation,we found that 1M TBAF in THF with DMPU as a cosolvent cleanly removed both silyl protecting groups in a single operation.17Our method of SEM deprotection provides a straightforward alternative to previously published precedent,as it is performed at ambient temperature using commercially available TBAF/THF solution and short reaction times (30−60min).With the four diastereomers in hand,we set out to unequivocally de fine the relative and absolute stereochemistries through both NMR spectral comparison and biological assays.Upon careful examination of the chemical shift di fferences in the 1H and 13C NMR spectra of compounds 1a −d ,we identi fied distinct features that were used to assess the correct con figurations at C2and C8.As shown in Figure 2,the spectral data of compound 1a best correlate to those of the isolated material compared with the other diastereomers.Key chemical shifts of protons located on C3,C7,C9,and C19stronglyScheme 1.Synthesis of Aliphatic Precursors 6a −dScheme 2.Synthesis of Promysalin Diastereomers 1a −dindicate that (2R ,8R ,16S )is the proper relative stereochemical assignment for promysalin.Unfortunately,with neither a reported optical rotation nor an authentic sample available,we were unable to determine the absolute con figuration unequivocally.We postulated that only the correct enantiomer would elicit the biological responses reported previously,and therefore,we sought to recapitulate both the inhibitory activity with compounds 1a −d versus PAO1and PA14and the swarming activity identi fied in the producing strain.In De Mot ’s initial report,they surveyed the biological activities of >100bacterial strains through halo di ffusion assays with cotreatment of the producing organism,noting qualitative inhibition.8More speci fically,they quanti fied the IC 50value for PA14,providing a strain with which we could directly compare.In accordance with their findings,compound (−)-1a possessed the most potent biological activity of the four compounds,with IC 50values of 125nM against PA14(1.8μM reported)and 1μM against PAO1(not reported).Compounds 1b −d were each ∼10−60times less e ffective against both strains (Figure 3A left).On the basis of these results,we propose that the absolute stereochemistry of promysalin be assigned as (2R ,8R ,16S ),as depicted by structure (−)-1a (Scheme 2).In contrast to the activity observed in PA ,promysalin has been shown to increase both swarming and bio film formation in PP RW10S1.We were curious as to whether the compound would elicit a swarming response in multiple strains of PP or solely in the producing organism.As can be seen in Figure 3B,compound 1a clearly promotes swarming in the native producing organism and three other species (two strains of PP and one of Pseudomonas fluorescens (PF )).Curiously,thestrain PP OUS82,which was originally isolated from oil-contaminated soil and is known for its ability to cannibalize hydrocarbons,was una ffected.18PP OUS82has been previously shown to contain enzymes capable of degrading salicylate;therefore,it is possible that the bacteria consumed promysalin before it was able to elicit a biological response.Nevertheless,these results indicate that (−)-1a is responsible for a swarming phenotype in a broad range of closely related organisms.The main mode by which bacteria swarm is through biosurfactant production.19We postulated that 1a could act either directly as a biosurfactant or as a trigger for biosurfactant production.In order to di fferentiate the former from the latter,we performed a simple surface tension assay.We found that all four diastereomers displayed similar biosurfactant properties at equimolar concentrations (Figure S1in the Supporting Information).It is well-established that amphipathic molecules,such as rhamnolipids,can disperse and/or eradicate mature bio films.20We hypothesized that if compounds 1a −d act solely as biosurfactants,then all would possess equipotent dispersant activity.To test this proposal,we grew mature bio films of both PA14and PAO1for 24h and then dosed each trial with varying concentrations of compounds 1a −d .All of the diastereomers dispersed PA bio films at 100μM;however,compound (−)-1a again showed the most potent biological activity,dispersing bio films at both 6.25and 12.5μM (Figure 3A right and Figure S4).These results suggest that promysalin acts on a speci fic target.Finally,during the course of these studies we serendipitously observed that 1a inhibits fluorescence in PP KT2440compared with either the control or compounds 1b −d (Figure 3C).Pyoverdine is a siderophore produced by a wide-range of Pseudomonads and is responsible for their fluorescent proper-ties.21Furthermore,it has been shown that pyoverdine-de ficient mutants of P.syringae pv tabaci 6605exhibit reduced virulence in host tobacco infection.22Recent reports have shown that strains de ficient in pyoverdine have increased swarming and biosurfactant phenotypes,23in accordance with observations reported herein.Taken together,theseresultsFigure parative (left)1H and (right)13C NMR spectra depicting the absolute Δδof compounds 1a −d relative to the natural product.Red lines indicate Δδvalues of >0.06(1H NMR)and >0.4(13C NMR).For numerical comparison,see Table S1in the SupportingInformation.Figure 3.(A)Concentrations of compounds 1a −d at which 50%of growth is inhibited (left)and visual e ffects of dispersion are observed (right)against PAO1and PA14.(B)Swarming assays performed on 1%agar and visualized after 24h.(C)Pyoverdine production by PP KT2440upon treatment with control (DMSO)and compounds 1a −d ,visualized with UV light.suggest that promysalin either directly or indirectly affects pyoverdine biosynthesis and/or transport in this strain.In conclusion,we have reported a concise,stereocontrolled synthesis of the four diastereomers of the L-proline series of the natural product promysalin guided by bioinformatics.The compounds were synthesized in a longest linear sequence of eight steps from known compound7in31−37%overall yield. This culminated in compound(−)-1a,which is identical to the isolated material as determined by1H NMR,13C NMR,and HRMS analyses and proposed to be the structure of promysalin.Furthermore,biological investigations support that the synthesized enantiomer is that of the natural product. Finally,we have demonstrated for thefirst time that promysalin disperses established biofilms and inhibits pyoverdine produc-tion,two pathogenic phenotypes,which may hint at the role the compound plays in the rhizosphere.The potential of promysalin to act specifically on pyoverdine-related processes is enticing,as it could provide a novel method to combat virulence both in agricultural and human health.Current work in our laboratory is focused on deciphering the target triggering PA biofilm dispersion and whether the molecule acts directly on pyoverdine production or through a pyoverdine-signaling pathway.The route presented herein allows the preparation of gram quantities of the natural product and analogues to better understand the specific target of promysalin,all of whichwill be reported in due course.■ASSOCIATED CONTENT*Supporting InformationExperimental procedures,characterization data,NMR spectra, and supportingfigures.The Supporting Information is available free of charge on the ACS Publications website at DOI:10.1021/jacs.5b04767.■AUTHOR INFORMATIONCorresponding Author*wwuest@NotesThe authors declare no competingfinancial interest.■ACKNOWLEDGMENTSThis work was supported by the National Science Foundation under CHE-1454116and Temple University through the Undergraduate Research Program(K.W.K.)and a Summer Research Award(W.M.W.).We thank B.A.Buttaro,M.C. Jennings,C.DeBrosse,and C.Ross(Temple University)for invaluable assistance,Materia,Inc.for olefin metathesis catalysts,and G.A.O’Toole(Dartmouth Medical School) and R.De Mot(KU Leuven)for the generous donation ofstrains.■REFERENCES(1)Blaser,M.;Bork,P.;Fraser,C.;Knight,R.;Wang,J.Nat.Rev. Microbiol.2013,11,213.(2)Hugenholtz,P.Genome Biology2002,3,No.reviews0003.(3)(a)Mendes,R.;Garbeva,P.;Raaikmakers,J.M.FEMS Microbiol. Rev.2013,37,634.(b)Philippot,L.;Raaijmakers,J.M.;Lemanceau, P.;van der Putten,W.H.Nat.Rev.Microbiol.2013,1,789.(4)Lankford,C.E.Crit.Rev.Microbiol.1973,2,273.(5)Strauss,E.J.;Falkow,S.Science1997,276,707.(6)Kuiper,I.;Lagendijk,E.L.;Pickford,R.;Derrick,J.P.;Lamers,G.E.M.;Thomas-Oates,J.E.;Lugtenberg,B.J.J.;Bloemberg,G.V.Mol. Microbiol.2004,51,97.(7)Fischbach,M.A.;Walsh,C.T.Science2009,325,1089.(8)Li,W.;Santos,P.E.;Matthijs,S.;Xie,G.;Busson,R.;Cornelis, P.;Rozenski,J.;De Mot,R.Chem.Biol.2011,18,1320.(9)Gellatly,S.L.;Hancock,R.E.W.Pathog.Dis.2013,67,159.(10)Blin,K.;Medema,M.H.;Kazempour,D.;Fischbach,M.A.; Breitling,R.;Takano,E.;Weber,T.Nucleic Acids Res.2013,41,W204.(11)Imker,H.J.;Walsh,C.T.;Wuest,W.M.J.Am.Chem.Soc.2009, 131,18263.(12)Stachelhaus,T.;Mootz,H.D.;Marahiel,M.A.Chem.Biol. 1999,6,493.(13)Kaliappan,K.P.;Ravikumar,.Chem.2007,72,6116.(14)(a)Davis,F.A.;Vishwakarma,L.C.;Billmers,J.M.;Finn,J.J. Am.Chem.Soc.1984,49,3241.(b)Davis,F.A.J.Am.Chem.Soc. 2006,71,8993.(15)Hanawa,H.;Hashimoto,T.;Maruoka,K.J.Am.Chem.Soc. 2003,125,1708.(16)Scott,W.J.;Stille,J.K.J.Am.Chem.Soc.1986,108,3033.(17)(a)An,C.;Hoye,A.T.;Smith,A.B.,.Lett.2012,14, 4350.(b)Smith,A.B.,III;Jurica,J.A.;Walsh,.Lett.2008,10, 5625.(18)Takizawa,N.;Kaida,N.;Torigoe,S.;Moritani,T.;Sawada,T.; Satoh,S.;Kiyohara,H.J.Bacteriol.1994,176,2444.(19)Kearns,D.B.Nat.Rev.Microbiol.2010,8,634.(20)(a)McDougald,D.;Rice,S.A.;Barraud,N.;Steinberg,P.D.; Kjelleberg,S.Nat.Rev.Microbiol.2012,10,39.(b)Davey,M.E.; Caiazza,N.C.;O’Toole,G.A.J.Bacteriol.2003,185,1027.(21)(a)Ravel,J.;Cornelis,P.Trends Microbiol.2003,11,195.(b)Schalk,I.J.;Guillon,L.Environ.Microbiol.2013,6,1661.(22)Taguchi,F.;Suzuki,T.;Inagaki,Y.;Toyoda,K.;Shiraishi,T.; Ichinose,Y.J.Bacteriol.2010,192,117.(23)Johnstone,T.C.;Nolan,E.M.Dalton Trans.2015,44,6320.。