第五章自由基反应

合集下载

第五章-自由基反应

第五章-自由基反应

第五章自由基反应5.1 自由基自由基是含有一个或多个未成对电子的物种,它是缺电子物种,但通常不带电,因此它们的化学性质与偶电子的缺电子物种——例如碳正离子和卡宾——很不相同。

“基”(radical)这个词来自拉丁语“根”。

“基”的概念最初用于代表贯穿于一系列反应始终保持不带电的分子碎片,而“自由基”(free radical)的概念最近才被创造出来,代表一个不与任何其他部分成键的分子碎片。

时至今日,“基”和“自由基”可以混用,但“基”在特定文献中依然保留了它的原意(例如,有机结构中的R基)。

5.1.1 稳定性本章讨论的大多数化学问题都涉及烷基自由基(·CR3)。

它是一个七电子、缺电子的物种,其几何构型可以看做一个较钝的三角锥,杂化类型兼有sp2和sp3成分,三角锥发生翻转所需能量很小。

实际操作中,你可以把烷基自由基看做sp2杂化的。

烷基自由基和碳正离子都是缺电子物种,能稳定碳正离子的结构因素同样能稳定烷基自由基。

烷基自由基可以被相邻的带孤对电子的杂原子或π键所稳定——正如它们稳定碳正离子时那样——且稳定性顺序为3°>2°>1°。

但是,在碳正离子和烷基自由基的能量趋势之间依然存在两个主要的区别:1.最外层含7个电子的C原子不如只含6个电子的C原子缺电子,因此烷基自由基不如相应的碳正离子能量高。

因此,极不稳定的芳基和1°烷基碳正离子从未观察到,但芳基和1°烷基自由基则相当常见。

2.对碳自由基而言,相邻的孤对、π键或σ键带来的额外稳定性不如碳正离子那么显著。

原因是:一个充满的AO或MO与一个碳正离子全空的AO之间的相互作用会将两个电子放置在一个能量降低的MO中,而一个充满的AO或MO与一个碳自由基半充满的AO之间的相互作用会将两个电子放置在一个能量降低的MO中,一个电子放置在一个能量升高的MO中。

尽管相邻的孤对、π键或σ键对碳自由基的稳定效果不如碳正离子,但若干个这些基团对自由基的稳定作用累积起来依然相当可观。

第5章 自由基反应

第5章 自由基反应

CH3CHCH3
CH3CCH3 CH3
一级碳自由基
二级碳自由基
三级碳自由基
自由基的结构特点:有三种可能的结构; 自由基的结构特点:有三种可能的结构; 刚性角锥体,( ,(2 迅速翻转的角锥体, (1)刚性角锥体,(2)迅速翻转的角锥体, 平面型。如下图: (3)平面型。如下图:
C
C
C
刚性角锥体
迅速翻转的角锥体
第5章 自由基反应 Radical Reactions
5.1 碳自由基的定义和结构
定义:带有孤电子的原子或原子团称为自由基。 定义:带有孤电子的原子或原子团称为自由基。 孤电子的原子或原子团称为自由基 碳自由基:含有孤电子碳的体系称为碳自由基。 碳自由基:含有孤电子碳的体系称为碳自由基。
CH3CH2
平面型
5.2 键解离能和碳自由基的稳定性 自由基的产生
热均裂产生
O CH 3CO
辐射均裂产生
O OCCH 3
55 - 85oC
O
C6H 6
CH 3CO
Br
Br

25 o C
2Br
单电子转移的氧化还原反应产生 H2 O2 + Fe2+ -eRCOO电解
HO• HO
+
HO-
+
Fe3+
RCOO •
5.4.4 α-H的卤代 Halogenation of α-H) 的卤代( 的卤代
Stereochemistry of halogenation
5.5 自由基加成(Radical addition of alkene)
CH3CH2CH CH2 CH3CH2CH=CH2 HBr Br
ROOR

化学反应中的自由基反应机理解析

化学反应中的自由基反应机理解析

化学反应中的自由基反应机理解析自由基反应是一类重要的化学反应,其在有机合成、燃烧反应以及大气化学等领域中发挥着重要作用。

本文将对自由基反应机理进行解析,以便更好地理解和应用这一类反应。

1. 自由基的定义和性质自由基是具有一个不成对的电子的化学物质,其稳定性较低。

自由基常常通过断裂共价键、光解反应以及电离等方式生成,并具有高度的反应活性。

自由基的反应机理一般遵循三步走原则,即初始生成步骤、反应链传递步骤和终止步骤。

2. 自由基反应的分类和例子自由基反应可分为自由基取代反应、自由基加成反应和自由基消除反应等几种类型。

自由基取代反应是指自由基与有机物取代基发生反应,常见的例子包括卤代烷烃与氢氧自由基的反应。

自由基加成反应是指自由基与双键化合物发生加成反应,例如烯烃与氢自由基的反应。

自由基消除反应则是指自由基之间或自由基与双键之间的消除反应,如自由基链状反应等。

3. 自由基反应机理解析自由基反应的机理通常包括四个步骤:初始自由基生成、自由基扩散、反应链传递和终止。

首先,在自由基反应中,通常通过热解、光解或电离等方式产生初级自由基。

生成的初级自由基随后会与周围分子进行碰撞,从而形成次级自由基。

这种自由基的扩散过程可以通过气相或溶液相中的分子碰撞来实现。

其次,自由基反应过程中的反应链传递是指自由基之间的相互转化反应。

这种传递机制常常包括自由基与分子的碰撞,形成新的自由基,并继续参与反应过程。

最后,在自由基反应的终止步骤中,自由基可以发生自由基络合、自由基与杂质反应等多种方式来终止反应链。

4. 自由基反应在实际应用中的重要性自由基反应在有机合成、药物开发和燃烧等领域中具有广泛的应用价值。

例如,在有机合成中,自由基反应能够实现重要有机分子的构建,如醛和酮的合成、烯烃的加成反应等。

此外,自由基反应还可以用于对空气污染物的降解和燃烧反应的机理研究等领域。

综上所述,自由基反应机理的解析对于理解和应用这一类反应具有重要的意义。

第5章 自由基反应(有机化学)

第5章 自由基反应(有机化学)
第5章 自由基反应
本章内容 5.1 自由基的产生 5.2 自由基的结构及稳定性 5.3 烷烃的自由基取代反应 5.4 不饱和烃的α-H卤代 5.5 自由基加成反应 5.6 烷烃的热裂
5.1 自由基的产生
自由基(free radicals),又称游离基,是化学键发 生均裂时产生的含未成对电子的中间体。
烷烃在光照下可与卤素发生反应生成卤代烃。烷烃的取 代反应又称卤代反应。
5.3.1 甲烷的氯化反应
CH4 +
光照 Cl2 或高温 CH3Cl +
CH3Cl + Cl2
HCl
H= 100 kJ.mol-1
混合物
CH2Cl2 + HCl
CH2Cl2 Cl2
CHCl3
HCl
CHCl3 Cl2
CCl4
HCl
5.3.2 氯代反应的机理
碳为sp2
H CH
H
p轨道 三个σ键
R.
烷基自由基(R·)的中心碳原子大多数也是 sp2杂化,单电子占据未杂化的p轨道上,其 结构与甲基自由基类似。
5.2.2 自由基的稳定性
碳自由基的稳定性为:3o2o1o ·CH3。
原因
(1)键能:键能越大,断裂此键需要提供的能量越高, 自由基的内能越高,稳定性越差。
作业
1 ; 3(1, 2, 3, 4, 6)
O
CH3CH
CH2 +
CH2 C N
Br
CH2 C
O
h , CCl4 (C6H5COO)2
CH2CH Br
CH2 +
O CH2 C
NH CH2 C
O
N-溴代丁二酰亚胺(简称NBS)

化学反应中的自由基反应机理

化学反应中的自由基反应机理

化学反应中的自由基反应机理自由基反应是一种重要的化学反应类型,其机理在很大程度上影响了化学反应的速率和产物选择性。

本文将深入探讨自由基反应机理以及它在化学反应中的作用。

一、自由基的定义和性质自由基是指带有一个未成对电子的化学物质。

由于其不稳定的电子配置,自由基具有高度活性。

在常温下,自由基会通过接触氧气或其他分子而发生反应。

二、自由基反应机理自由基反应机理可以概括为三个步骤:起始步、传递步和终止步。

1. 起始步:在起始步中,一个化学物质被能够提供电子的外部源(如光、热或其他反应物)激活,从而产生一个自由基。

这个自由基会在后续的反应中参与。

2. 传递步:在传递步中,活性自由基与其他分子发生反应,将其转化为一个新的自由基。

这个新的自由基又可以进行下一步骤的传递反应。

3. 终止步:在终止步中,不同自由基之间或自由基与其他分子之间发生反应,以消耗自由基并生成稳定的产物。

这个过程会逐渐结束反应。

三、自由基反应的重要性自由基反应在化学反应中起着重要的作用,有以下几个方面的重要性:1. 燃烧反应:自由基反应是燃烧反应的基础。

例如,燃烧烷烃的过程中,烷烃分子首先经过起始步产生自由基,然后通过传递步和终止步进行反应,最终生成二氧化碳和水。

2. 化学链反应:自由基反应是化学链反应的关键步骤。

在一个化学链反应中,一个活性自由基可以引发多个传递反应,从而导致连锁反应的进行。

3. 生物分子反应:在生物体内,许多重要的生物分子反应也是通过自由基反应进行的。

例如,光合作用中的一些步骤以及细胞内某些酶的催化反应,都涉及到自由基。

四、自由基反应的应用自由基反应在许多领域都有实际的应用价值:1. 合成有机化合物:自由基反应可以用于有机合成中,例如通过氢氟酸催化剂引发的自由基取代反应可以合成许多有机化合物。

2. 油漆和涂料:油漆和涂料的干燥过程就是一个自由基反应。

油漆中的单体分子通过光或热进行起始步,然后通过传递步和终止步完成干燥过程。

第五章-自由基反应

第五章-自由基反应

第五章-自由基反应第五章自由基反应5.1 自由基自由基是含有一个或多个未成对电子的物种,它是缺电子物种,但通常不带电,因此它们的化学性质与偶电子的缺电子物种——例如碳正离子和卡宾——很不相同。

“基”(radical)这个词来自拉丁语“根”。

“基”的概念最初用于代表贯穿于一系列反应始终保持不带电的分子碎片,而“自由基”(free radical)的概念最近才被创造出来,代表一个不与任何其他部分成键的分子碎片。

时至今日,“基”和“自由基”可以混用,但“基”在特定文献中依然保留了它的原意(例如,有机结构中的R 基)。

5.1.1 稳定性本章讨论的大多数化学问题都涉及烷基自由基(·CR3)。

它是一个七电子、缺电子的物种,其几何构型可以看做一个较钝的三角锥,杂化类型兼有sp2和sp3成分,三角锥发生翻转所需能量很小。

实际操作中,你可以把烷基自由基看做sp2杂化的。

烷基自由基和碳正离子都是缺电子物种,能稳定碳正离子的结构因素同样能稳定烷基自由基。

烷基自由基可以被相邻的带孤对电子的杂原子或π键所稳定——正如它们稳定碳正离子时那样——且稳定性顺序为3°>2°>1°。

但是,在碳正离子和烷基自由基的能量趋势之间依然存在两个主要的区别:1.最外层含7个电子的C原子不如只含6个电子的C原子缺电子,因此烷基自由基不如相应的碳正离子能量高。

因此,极不稳定的芳基和1°烷基碳正离子从未观察到,但芳基和1°烷基自由基则相当常见。

2.对碳自由基而言,相邻的孤对、π键或σ键带来的额外稳定性不如碳正离子那么显著。

原因是:一个充满的AO或MO与一个碳正离子全空的AO 之间的相互作用会将两个电子放置在一个能量降低的MO中,而一个充满的AO或MO与一个碳自由基半充满的AO之间的相互作用会将两个电子放置在一个能量降低的MO中,一个电子放置在一个能量升高的MO中。

尽管相邻的孤对、π键或σ键对碳自由基的稳定效果不如碳正离子,但若干个这些基团对自由基的稳定作用累积起来依然相当可观。

自由基反应

自由基反应

.
+
Y
.
由于自由基中心碳的周围只有 7 个电子,未达到八隅体, 属于缺电子的活泼中间体,具亲电特性。
(CH3)3C·
烷基自由基
H2C
CHCH2
桥头碳自由基
3
烯丙基型自由基
b.碳自由基的稳定性
常见碳自由基稳定性顺序
CH2
>
CH2 CH CH2
( CH3)3 C
>
(CH3)2 CH >
CH3CH2 > CH3
CH3
380 KJ/mol

离解能小的键易断裂,生成的自由基就稳定;反之亦然。
5
H H H CH 3 C H
CH2 CH2 p-
CHCH2 p-
CH C CHC 3 H3 C p
H H C H H
>
CH3
共轭效应
p-σ超共轭效应
共轭强度越大,自由基越稳定; σ-p 超共轭的强度 与C-H键数目有关,σ-p重叠的几率越大,超共轭强度越 大,自由基越稳定。
自由基反应机理
橡胶的老化、石油的裂解、油漆的干燥、脂肪的变质等都与自 由基有关。生命代谢过程、细胞的凋亡、某些疾病(如癌症)的 产生、机体的衰老等也与体内的自由基有很大关系。
自由基取代反应
自 由 基 反 应
CH4
Байду номын сангаас
+
Cl2
光照
CH3Cl
+
HCl
自由基加成反应
CH3 C CH3 CH2
+
HBr
ROOR
13
Cl Cl
Cl +
Cl
+ Cl Cl H + CH3

有机化学基础知识点整理自由基反应和自由基取代反应

有机化学基础知识点整理自由基反应和自由基取代反应

有机化学基础知识点整理自由基反应和自由基取代反应有机化学基础知识点整理自由基反应和自由基取代反应在有机化学领域中,自由基反应和自由基取代反应是两个重要且广泛应用的知识点。

了解这些反应类型的基本原理和机理,对于理解有机化学的本质和应用具有重要意义。

本文将对自由基反应和自由基取代反应进行整理和阐述。

一、自由基反应自由基反应是指通过自由基中间体参与的化学反应。

自由基是具有不成对电子的中性分子或离子,通常由光解或热解引发。

自由基反应常见的几种类型包括自由基链反应、自由基偶联反应和自由基置换反应等。

1.自由基链反应自由基链反应是由一个自由基引发,然后通过一系列连锁反应形成产物的反应。

其中最重要的链反应类型包括自由基聚合反应和自由基引发的自由基聚合反应。

自由基聚合反应是一类通过自由基引发、自由基传递和自由基链终止来形成高分子的反应。

例如,聚合氯乙烯的反应过程中,氯自由基首先引发反应,然后不断传递氯自由基,最终形成聚合物。

自由基引发的自由基聚合反应是有机合成中的重要反应类型。

以自由基溴化反应为例,当溴代烷类物质受到光照或热解时,生成溴自由基。

这个自由基可以引发其他有机物质的链反应。

2.自由基偶联反应自由基偶联反应是指两个自由基分子发生反应生成一个新分子的反应。

其中,最常见的自由基偶联反应类型为自由基与烯烃的加成反应。

举例来说,自由基溴反应产生的溴自由基可以与乙烯发生加成反应,生成溴乙烷。

3.自由基取代反应自由基取代反应是一种通过自由基取代反应产生新化合物的反应。

常见的自由基取代反应包括氟自由基取代反应和氯自由基取代反应等。

亲核取代反应通常由亲核试剂攻击亲电中心而发生。

当自由基试剂被引发后,会攻击一段电子密度相对较高的化学键,从而发生取代反应。

例如,自由基氟反应常用于药物合成中,产生氟取代的化合物。

二、自由基反应的应用自由基反应在有机合成和药物研发中有着广泛的应用。

它们能够产生复杂的分子结构并引发多样性选择性反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H = -112.9 kJmol-1 Ea= 8.3 kJmol-1
Cl + Cl
CH3 + CH3
Cl + CH3
C l2
H3CCH3
H 3C C l
势能 /(kJ mol-1)
Cl H
CH3
H3C
Cl
Cl
+16.7
Ea1
Ea2
+8.3
CH4 + Cl
CH3 + HCl
Cl2
+7.5
112.9 105.4
平面三角形sp2
角锥型sp3
快速反转
角锥型自由基
自由基的稳定性
共价键均裂时所需的能量称为键解离能(page 17)。碳自由 基可以看作C-H键均裂产生,C-H键键能越大,断裂C-H所需 能量越高,自由基越不稳定。
键解离能越小,形成的自由基越稳定。
常见的自由基稳定性顺序:
C H 2> C H 2 C H C H 2>(C H 3 )3 C>(C H 3 )2 C H
Why???
甲烷的氯化 反应式 C H 4+ C l2 h v C H 3 C l+H C l
链引发 链增长
链终止
hv Cl2
2Cl 速控步骤
C H 4 + lC H 3 +HC Cl
H = 7.5 kJmol-1 Ea= 16.7 kJmol-1
C H 3+ C l2 C H 3 C l+C l
第 五 章 自由基反应 (2课时) Radical Reactions
作业题:P 141, 习题 5-1, 5-3, and 5-4.
重点内容:
自由基的产生、结构及相对稳定性; 自由基取代反应,甲烷的氯代反应机理; 烷烃结构、卤素种类对烷烃自由基取代反应的影响; 不饱和烃的α-H卤代; 自由基加成反应,烯烃在过氧化物存在下与卤化氢的
神奇的一氧化氮("伟哥"理论发明人
甲基正离子
比较碳正离子
碳正离子可看成自由基电 力出一个电子产生,所以 碳正离子能量更高。
甲基负离子
碳负离子采取sp3杂化,四面 体构型。稳定性顺序为:伯 > 仲 > 叔。
乙烯基,苯基负离子的负电荷在含s成分较高的sp2轨道, 比烷基负离子稳定。乙炔负离子更稳定。(此处为何未提 到共轭效应呢???)
NO可以产生于人体内多种细胞, NO在维持血管张力的恒定和 调节血压的稳定性中起着重要作用, 免疫系统,神经系统。 一氧化氮起着信使分子的作用。当内皮要向肌肉发出放松指 令以促进血液流通时,它就会产生一些一氧化氮分子,这些 分子很小,能很容易地穿过细胞膜。血管周围的平滑肌细胞 接收信号后舒张,使血管扩张。
苯甲基自由基
CH3CH2 >CH3 >
乙基自由基 甲基自由基 烯基 苯基自由基
➢不同类型自由基的相对稳定性
CH3CH2CH3
键离解能(DH)
397.5 kJ/m ol
CH3CHCH3 + H
410.0 kJ/mol
CH3CH2CH2 + H
CH3 CH3CHCH3
甲基的给电子诱导效应和超共轭效应,叔碳自由基更稳定。
烯丙基和苄基自由基
烯丙基和苄基自由基由于p-π共轭效应,降低了自由基碳 的缺电子性,增强了稳定性。
自由基稳定性的影响因素 影响自由基稳定性的因素是很多的,如: 电子离域,空间 阻碍和邻位原子的性质等;
p-p共轭效应
稳定的自由基
食品防腐剂BHT
非碳自由基
Cl2解离需要+243KJ/mol
O
CH3Cl + Cl
反应进程
甲烷氯化反应势能图的分析
1 第一步反应的活化能比较大,是速控步骤。
2 第二步反应利于平衡的移动。
3 反应 1 吸热,反应 2 放热,总反应放热,所以反应 只需开始时供热。
4 过渡态的结构与中间体(中间体是自由基)相似, 所以过渡态的稳定性顺序与自由基稳定性顺序一致。 推论:叔H最易被取代,仲H次之,伯H最难被取代。
单自由基比双自由基稳定
C H 3 + O O
双自由基
C H 3O O
单自由基
甲烷的氯化 在紫外光或者高温250-400 oC,甲烷发生氯代反应。
甲烷氯代常得到混合物,控制反应物比例,可选择性合成。
实验发现: (1) 混合物室温暗处不反应; (2)混合物室温光照能反应; (3) 混合物加热到250 oC能反应; (4)光照Cl2,再暗处与CH4混合能反应; (5)光照CH4,暗处与Cl2混合,不反应; (6)光引发时一个光子可产生数千个氯甲烷分子; (7)氧或者自由基捕捉剂存在时,反应有诱导期。
389.1 kJ/m ol 410.0 kJ/mol
CH3 CH3CCH3
+H
CH3 CH3CHCH2 + H
2o 自由基 较易生成
1o 自由基 较难生成
3o 自由基 较易生成
1o 自由基 较难生成
自由基的相对稳定性:3o > 2o > 1o
自由基稳定性解释
自由基结构与相应的碳正离子相似,且缺电子。给电子诱导效应, 共轭效应和超共轭效应都能稳定自由基。 反之,吸电子基团降低自由基稳定性。
问题:2-甲基丁烷一个C-H键断裂可形成四种自
由基,比较稳定性。
自由基产生
(1)热均裂产生
过氧苯甲酰
过氧化苯甲酰具有强氧化性能,可漂白小麦粉,且有杀菌性能。用作 丙烯酸酯、醋酸乙烯溶剂聚合,氯丁橡胶、天然橡胶、SBS与甲基丙烯 酸甲酯接枝聚合
偶氮二异丁腈AIBN
氯乙烯、醋酸乙烯、丙烯腈等单体聚合引发剂,也可用作聚氯乙烯、 聚烯烃、聚氨酯、聚乙烯醇、丙烯腈与丁二烯和苯乙烯共聚物、聚 异氰酸酯、聚醋酸乙烯酯、聚酰胺和聚酯等的发泡剂。
加成;
5.1 自由基的结构
定义:带有孤电子的原子或原子团称为自由基。 碳自由基:含有孤电子碳的体系称为碳自由基。
CH3CH2
CH3CHCH3
C H 3C CH 3 CH3
一级碳自由基 二级碳自由基 三级碳自由基
自由基的结构
开链烷烃的自由基接近于平面三角形,近似于sp2杂化。未参与杂 化的p轨道上只有一个电子。 理论计算表明,平面三角形和角锥型结构能量差别不大。有些自由 基也采取角锥型结构,典型的是桥头碳自由基。
自由基产生
(2)辐射均裂产生 光
过氧苯甲酰和偶氮二异丁腈也可通过光照产生自由基。
(3)单电子转移的氧化还原反应产生
锂钠还原炔制备反式烯烃也是产生自由基的例子(page 113).
5.3.自由基反应机理
由化学键均裂引起的反应称为自由基反应。
(1)反应机理包括链引发、链增长、链终止三个阶段。 (2)反应必须在光、热或自由基引发剂的作用下发生。 (3)溶剂的极性、酸或碱催化剂对反应无影响。 (4)氧气是游离基反应的抑制剂。
相关文档
最新文档