LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)
22-LTE干扰专题-2LTE干扰整治

主要干扰因素:低空大气波导效应、天线挂高过高等原因导致 影响范围:全网大面积
7
LTE干扰特征规律总结散干扰
当GPS出现故障不工作时,会对周边其他小区产生明显的上行干扰,从前期处 理的一个案例发现:该类小区频域100个RB中RB7,RB48-51及RB92呈明显尖峰突 起状,其余RB干扰电平很低。
宽频干扰 干扰源:1、电信FDD阻塞:前期电信使用1860-1880MHz带宽,对TDD造成严重的阻塞
干扰,后更改至1875MHz后阻塞干扰消除; 2、干扰器开启:多个场所如学校、驾校发现开启干扰器造成全频段干扰。
远距离同频干扰 主要因素:低空大气波导效应导致远端基站的下行信号干扰近端的上行信号; 次要因素:天线挂高过高、发射功率过大
LTE干扰特征规律总结 LTE干扰整治经验总结
10
LTE干扰整治经验总结整治概
杂散干扰 干扰源:1、DCS1800:主要是由于天线对打或者隔离度不够导致,目前杂散干扰主要为
同站DCS1800导致; 2、移动1800WLAN:共发现9个由于移动1800WLAN导致的杂散干扰小区,
1800WALN使用频段为1855-1865MHz,这9个小区均与LTE小区天线共平台。
D频段干扰问题分析综述
工信部[2012]436号《工信部关于IMT频率规划事宜的通知》(2012年9月25日)
“2500-2690MHz频段为时分双工(TDD)方式的IMT系统工作频率”
潜在干扰
• 带外干扰——通过后续无委定义共存指标来解决 – 已经大规模部署的WLAN系统与位于低端 2500MHz的D频段TD-LTE系统存在干扰风险 – 卫星无线电测定业务(北斗一代下行),目 前应用情况及具体参数不像,参照FCC规定对 GPS保护要达到-65dBm/MHz,在无保护带情 况下实现困难 – 国内共有10多部的空管近程一次监视雷达 – 100部左右的 S 波段多普勒天气雷达等,且该 频段雷达功率较大
LTE干扰现状、原因分析及解决方案介绍

LTE 干扰现状、缘由分析及解决方案介绍干扰原理及分类依据干扰产生的起因可以将干扰分为系统内干扰和系统间干扰。
l 系统内干扰:系统内干扰通常为同频干扰。
TD-LTE 系统中,虽然同一个小区内的不同用户不能使用一样频率资源 (多用户 MIMO 除外),但相邻小区可以使用一样的频率资源。
这些在同一系统内使用一样频率资源的设备间将会产生干扰,也称为系统内干扰。
l 系统间干扰:系统间干扰通常为异频干扰。
世上没有完善的无线电放射机和接收机。
科学理论说明抱负滤波器是不行实现的,也就是说无法将信号严格束缚在指定的工作频率内。
因此,放射机在指定信道放射的同时将泄漏局部功率到其他频率,接收机在指定信道接收时也会收到其他频率上的功率,也就产生了系统间干扰。
主要的干扰具体分类如以以下图所示:系统内干扰原理lGPS 失锁干扰:GPS 失锁、星卡故障、GPS 天线故障等缘由导致时钟不同步的A 基站放射信号干扰到了B 基站的上行接收。
l 超远同频干扰:远距离的站点信号经过传播,DwPTS 与被干扰站的UpPTS 对齐,导致干扰站的基站发对被干扰站的基站收的干扰. l 帧失步干扰:帧偏置配置不当、子帧配比不全都等缘由会导致基站间的上下行帧对不齐,导致SiteA 的下行干扰到了SiteB 的上行,形成帧失步干扰。
l 重叠掩盖干扰:A小区和B 小区存在重叠区域(同频邻区必定会存在确定的切换区域),由于两个小区之间的信号不是全都的,不正交,会形成干扰。
l 硬件故障干扰:设备故障是指在设备运行中,设备本身性能下降等造成干扰包括:RRU 故障,RRU 接收链路电路工作特别,产生干扰;天馈系统故障,包括天线通道故障,天线通道RSSI 接收特别等,天馈避雷器老化,质量问题,产生互调信号落入工作带宽内。
系统间干扰原理l 杂散干扰:由于放射机中产生辐射信号重量落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。
l 互调/谐波干扰:不同频率的放射信号形成互调/谐波产物。
LTE网络优化相关经验总结(华为设备)

参数调整前切换次数
参数调整后切换次数
参数调整前SINR
参数调整后SINR
谢谢!
TDS双模演进站点涉及天线更换的要求施工队必须现场测量 (确认小区编号、测量方位角、俯仰角),如发现设计工参与实 测工参不一致的,需请示网优中心确认再行施工。同时机房按照 新天线型号进行TDS权值更新,保证天线更换前后TDS覆盖的一致 性。
Page 3
TDS升级TDL注意事项(四)
• TDS-TDL双模RF优化协同 双模宏站的TDS与TDL共天馈,整体覆盖情况基本一致,但对部分 小区出现TDL与TDS覆盖目标不同(TDL站点与TDS站点不是全部都 是共址建设)带来的RF调整需求,将会对TDS的覆盖造成影响。
TDS升级TDL注意事项(一)
LTE双模站点改造,因站点硬件发生变化,进而影响到优化方法与流程,后续的优化工作都需 要站在双网的角度出发
变化一:双网共用天线:双模站点天线更换
现网由于TDS天线类型较老,不支持FA或FAD功能,需 要进行更换。
变化二:双 网共用RRU:RRU更换
现网部分RRU(三期以前)需更换至双模RRU
TDS原网
工程改造:更换 天馈或RRU
双模站点开通 升级
双网优化 指标优化流程
监控指标
时间
簇名称
小区语 音话务 量(爱尔
兰)
小区视 频话务 量(爱 尔兰)
小区PS 域流量 (GB)
CS域无 线接通 率(%)
CS域无 线掉话 率(%)
PS域无 线接通 率(%)
PS-域 掉线率
(%)
CS域3G 切换2G 成功率
TDS升级TDL注意事项(五)
• F频段双模宏站RRU的功率配置 双模替换、升级场景下华为建议TDS-TDL功率配置方案采用均
LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

方位角、安装DCS1800滤波器及更换D频段天线的顺序整改。
增加DCS1800 滤波器 21% 调整方位角 7%
按图施工 21%
其他 3%
更换天线位臵 17%
更换为D频段 14% 调整天线平台 17%
22
1、DCS1800杂散干扰的解决方案-按图施工
与设计院会审整改方案时发现存在工程未按设计图纸施工的现象,如宿迁宿城 中豪国际星城LF三个小区均存在上行干扰,现场勘查与DCS1800隔离度仅有 1.2米,与设计图纸不符,已要求按图整改:
龙LF-3小区提升至第一平台
思考:目前宿迁DCS1800暂未发现由于垂直隔离度低导致的杂散干扰,因此在平台 有空余空间的情况可以更换至其他平台。
24
1、DCS1800杂散干扰的解决方案-调整效果
8月10日对3小区更换平台,整改前后指标对比如下:
FTP吞吐率测试 整改前 下载 整改后 宿豫来 龙LF-3 提升 整改前 上传 整改后 提升 RSRP Average SINR 下行吞吐率 RSRP Average SINR 下行吞吐率 下行吞吐率 RSRP Average SINR 上行吞吐率 RSRP Average SINR 上行吞吐率 上行吞吐率 好点 -68 31 60.2 -71 27.3 60.4 0.2 -67 30 9.46 -72 27.3 11.9 2.44 中点 -90 14.75 28.7 -89 15.5 45.7 17 -85 17.3 4.52 -90 15.3 7.91 3.39 差点 -102 5.7 8.6 -99 7.9 29.8 21.2 -97 5.2 1.87 -99 6.7 6.19 4.32
用户 感知
3
系统间干扰-杂散干扰特征
TD—LTE网络优化经验总结

TD—LTE网络优化经验总结【摘要】在现代这个信息化的时代,信息技术的发展迅速,而无线网络的快速发展彻底改变了人与人之间的沟通方式,还有无线网络通过计算机进行操作,使人们的工作更加便捷、快速、高效,进而加快了社会现代化的进程。
然而传统的无线网络技术已经不能够满足现代工作高效、高安全的保障需求,因此对于无线网络通信技术的变革是必然的事情,目前社会科学领域中也对TD-LTE网络进行了优化,并在实际生活工作当中得到很好的应用。
本文将对TD-LTE网络的优化进行进行阐述。
【关键词】TD-LTE网络;优化;方法在现代经济的快速发展中,网络通信技术得到了飞速发展。
而TD-LTE技术由于具有较强的频谱利用效率、网络结构简洁开放、宽带传输灵活以及承载能力强等特点受到人们的青睐。
但是无线网络的发展中各种各样的网络被应用,这些网络在应用的同时也产生了一定的问题,同时也对无线网络的承载力提出了新的要求,因此需要对TD-LTE网络进行优化方能满足现代网络的使用要求。
本文具体阐述了TD-LTE的基本原理,并对目前TD-LTE网络中存在的问题给出了优化方案。
一、TD-LTE网络技术的基本原理TD-SCDMA系统经过长期的改进便产生了TD-LTE(Time Division-Long Term Evolution)网络系统,TD-LTE网络中运用的技术是OFDMA空中接口技术,在TD-LTE网络中通过此技术的运用使无线通信系统的上下行数据传输速率和频谱利用率得到显著的提高,同时还降低了系统的传输时延。
另外运用了OFDMA空中接口技术的TD-LTE网络系统还具有语音、视频点播以等多项功能。
目前,TD-LTE因为其独特的优势在设备制造和电信通信中得到了广泛的应用。
图1 TD-LTE网络系统的基本工作原理图TD-LTE网络系统的基本工作原理如图1所示。
在TD-LTE网络系统中采用的结构是较完全的基站e-Node B结构,此结构具有全新的功能,并且在TD-LTE 网络系统中是连接各节点之间传输的媒介,各节点在系统逻辑层面上的连接接口是X2接口,在系统中通过这样的连接方式使系统内部形成Mesh型网络结构,这种网络结构在系统中的功能是支持UE在整个系统中移动性,通过这样的传输方式和结构类型才保证了用户们在使用移动网络时进行平滑无缝的网络切换。
LTE室分多系统合路干扰分析与整改措施

LTE室分多系统合路干扰分析与整改措施中讯邮电咨询设计院有限公司2014年06月1干扰问题现象 (3)2干扰站点比例 (3)3干扰问题原因.....................3.1互调干扰分析 (3)3.2互调干扰的影响因素 (6)3.3功率容量影响分析 (7)4建议整改措施.....................4.1整改目标 (9)4.2整改方案 (9)4.3其他工作要求 (9)LTE 室分多系统合路干扰分析与整改措施目前,广东联通1800MHz FDD-LTE 室分建设方案大多为合路至原室分系统, 开通后出现了 WCDM 室分底噪异常抬升的干扰问题,严重影响了现网3G 用户。
为 解决此类问题,广东联通网络建设部特制定《LTE 室分多系统合路干扰分析与整 改措施》用于指导LTE 室分工程建设。
1干扰问题现象LTE 室分合路至原系统激活之后, WCDM 室分RTW 有1-5dB 的抬升;LTE 模 拟下行加载100%t ,部分 WCDM 室分RTWP 有 15-20dB 的明显抬升。
干扰现象如 下图所示: LTE (2干扰站点比例前期专项研究工作主要在广州开展,广州 FDD 规模为560站,其中合路站点 共374站,占比66.8%。
目前已开通LTE 室分168个,其中方案为合路站点111 个;存在干扰站点15个,占比13.5%。
广分LTE 占点互调干扰处理进度0512.xlsx3干扰问题原因3.1互调干扰分析无源互调是射频信号路径中两个或多个射频信号因各种无源器件 (例如天线、 电缆或连接器)的非线性特性引起的混频干扰信号。
在大功率、多信道系统中, 铁磁材料、异种金属焊接点、金属氧化物接点和松散的射频连接器都会产生信号出 丽|艸 1』那:TWIT 打Krn •弑<!丹「丹imwRVini I >5ri 珥口二彳 阪;二則 耳炜欝 Kuna4mim W IK .工■甸 ^MWaz诵电 raj*M 册勺汀U 望皿口』a •十 14WffiKJi 内njiwiR* 斗卜护F*/ tWl!■乙.Artwaam鼻;EMCW刑■SAMH此!«■•曲坠干LWH r 屮 D1F-«IL*■■A 2I 九的混频,其最终结果就是PIM(Passive In termodulatio n)干扰信号互调产物的大小取决于器件的互调抑制度。
lte网络优化报告

LTE网络优化报告概述本报告旨在对LTE(Long Term Evolution)网络进行优化分析,并提出相应的解决方案,以提升网络性能和用户体验。
问题识别在进行网络优化之前,我们首先需要识别出存在的问题。
通过对现有LTE网络的分析,我们发现以下几个主要问题:1.覆盖不足:部分区域的信号覆盖不稳定,导致用户在特定地点和时间无法正常使用网络服务。
2.容量不足:高峰时段,网络负载过重,导致数据传输速度下降,延迟增加,影响用户的上网体验。
3.干扰问题:多个基站之间的干扰导致信号质量下降,进而影响用户的通信质量。
解决方案1. 覆盖优化为了解决覆盖不足的问题,我们可以采取以下措施:•新增基站:在信号覆盖不足的区域建设新的基站,以弥补信号盲点。
•室内覆盖优化:在室内区域增加小基站或分布式天线系统(DAS),提供更稳定的信号覆盖。
2. 容量优化为了提升网络容量,我们可以考虑以下方法:•频谱资源优化:合理分配和利用可用频谱资源,以增加网络容量。
•增加小区数量:根据实际需求,增加小区数量,分散用户负载,提升网络性能。
•引入载波聚合技术:通过将多个频段的载波进行聚合,提高用户的数据传输速度。
3. 干扰优化干扰问题是影响网络性能的重要因素,我们可以采用以下方法来解决干扰问题:•基站定位优化:通过合理设置基站的位置和方向,减少不必要的基站之间干扰。
•功率控制:合理调整基站的发射功率,避免功率过大导致的干扰问题。
•频率规划:合理规划频率资源,减少邻频干扰和自干扰。
测试与评估为了验证网络优化效果,我们可以进行以下测试与评估:1.覆盖测试:在问题区域进行覆盖测试,测试信号强度和覆盖范围是否得到改善。
2.容量测试:在高峰时段进行容量测试,测试数据传输速度和延迟是否得到改善。
3.干扰测试:对问题区域进行干扰测试,测试信号质量和通信质量是否得到改善。
结论通过对LTE网络优化的措施和测试与评估,我们可以得出以下结论:1.通过增加基站数量和室内覆盖优化,解决了覆盖不足的问题,提升了信号覆盖范围和稳定性。
LTE网络干扰优化与整治探讨

LTE网络干扰优化与整治探讨发表时间:2020-04-07T15:07:18.193Z 来源:《基层建设》2019年第32期作者:樊健[导读] 摘要:随着移动互联网的迅猛发展,通信质量和用户体验成为了移动通信系统设计的首要目标。
身份证号码:34252919921211XXXX摘要:随着移动互联网的迅猛发展,通信质量和用户体验成为了移动通信系统设计的首要目标。
然而干扰一直是影响通信网络性能的负面因素,对接通率、掉线率都会产生重要影响,严重影响用户感知。
本文从系统内干扰、系统外干扰两个纬度研究探讨解决干扰问题的优化思路和整治方法,从而有效提升用户体验。
关键词:通信质量用户体验系统内系统外1、概述干扰是日常无线网络运维优化中的重点。
本文从系统内干扰、系统外干扰两个维度研究探讨解决干扰问题的优化思路和整治,从而有效提升用户体验。
2、系统内干扰优化2.1 远距离同频干扰优化一.远距离同频干扰原理TDD无线通信系统中,在某种特定的气候、地形、环境条件下,远端基站下行时隙传输距离超过TDD系统上下行保护时隙(GP)的保护距离,干扰到了本地基站上行时隙。
这就是TDD系统特有的“远距离同频干扰”。
在大规模部署的网络中,此类干扰较为普遍,且可能会对本地基站的上行用户随机接入时隙以及上行业务时隙造成干扰,从而影响用户上行随机接入、切换过程以及上行业务时隙。
二.远距离同频干扰规律及优化手段1.远距离同频干扰规律总结(1)频域整体均有抬升,中间6个RB(RB47-52)抬升更明显。
(2)影响范围大,城郊及农村受干扰小区多于市区,夏季雨后天晴稳定天气容易出现,时间段从晚22时持续至次日8时;(3)干扰小区具有明显的方向性,且干扰源不固定。
2.远距离同频干扰优化手段(1)增大Gp的时间长度。
相当于增加了干扰生效的传输距离,可使干扰的功率值进一步减小,但会对基站下行小区的峰值速率和小区容量造成影响。
(2)下倾角自动调整。
由受扰基站定位出施扰基站后,如果通过X2接口信息交互确认为施扰基站下倾角设置的问题,可加大施扰基站的下倾角角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方位角、安装DCS1800滤波器及更换D频段天线的顺序整改。
增加DCS1800 滤波器 21% 调整方位角 7%
按图施工 21%
其他 3%
更换天线位臵 17%
更换为D频段 14% 调整天线平台 17%
22
1、DCS1800杂散干扰的解决方案-按图施工
与设计院会审整改方案时发现存在工程未按设计图纸施工的现象,如宿迁宿城 中豪国际星城LF三个小区均存在上行干扰,现场勘查与DCS1800隔离度仅有 1.2米,与设计图纸不符,已要求按图整改:
南通麦客隆C PRB干扰对比
0 -20 1 4 7 1013161922252831343740434649525558616467707376798285889194 -40 -60 -80 -100 -120 -140 关闭电信FDDLTE前 关闭电信FDDLTE后
12
1、电信FDD-LTE阻塞干扰
思考:现网未按图施工的站点绝不仅有这一个站点,为什么站点建设时不按图施 工?后期单验为什么未发现?为什么会通过验收?
23
1、DCS1800杂散干扰的解决方案-调整天线平台
宿迁宿豫来龙LF-3小区后台指标统计存在较强的上行干扰,现场勘查发现L3小 区与DCS1800隔离度较小导致:
整改方案:现场发现宿宿豫来龙LF-2小区在第一平台,而1、3小区在第二平台,与 结合设计图纸对比一致,同时发现在第一平台240度方向上有空抱杆,建议将宿豫来
影响范围:单个小区
4
系统间干扰-宽频干扰特征
宽频干扰主要是阻塞干扰和设备故障等造成。 频域100个RB的典型特征为绝大部分RB均受到强干扰。
主要干扰源:电信联通FDD使用1880MHz频段,自身接收机性能较差;设备 故障等
影响范围:单个小区
5
系统间干扰-互调/谐波干扰特征
这两种干扰在频域上表现为某个或者某几个RB呈尖峰突起状,未受干扰RB底 噪很低:
主要干扰源:GSM900:2f1、f1+f2,DCS1800:2f1-f2且自身互调性能较差 影响范围:单个小区
6
系统内干扰-远距离同频干扰
远距离同频干扰概述: TDD无线通信系统中,在某种特定的气候、地形、环境条件下, 远端基站下行时隙传输距离超过TDD系统上下行保护时隙(GP)的保护距离,干扰到了本
★★★★☆ ★★★★★ ★★★★★ ★★☆☆☆ ★★★★☆ ★★★★☆
无线 接通 率
DCS1800、FDD ★★★★★ ★★☆☆☆ 、小灵通
上行 吞吐 率
系统 阻塞干扰 全频段抬升 单个站点 DCS1800、FDD ★★★★★ ★★★★☆ 间干 扰 互调/谐 GSM900、 几个RB尖峰突起 单个站点 ★★★☆☆ ★★★☆☆ 波干扰 DCS1800 其他干扰 暂无 单个站点 TDS、其他干扰源 ★★☆☆☆ ★★★★☆
整改方案及效果:
现场将TD-L小区天线位臵更换到离电信LTE天线5米左右的位臵,发现干扰明显降低
14
3、联通FDD-LTE杂散干扰
同样,联通FDD由于天线隔离度不够也会造成杂散干扰
联通FDD-LTE杂散干扰: 根据OMC后台干扰检测监控发现新城大厦L_1小区干扰情况较严重,从现场天线分布可 以看出:移动1800与移动TD-L天线垂直隔离度为0,水平隔离度约3米左右,移动TD-L天线与 联通FDD天线垂直隔离度为0,水平隔离度约50cm左右
LTE网络优化-干扰问题特征规
律总结及整改经验总结
目录
LTE干扰特征规律总结 LTE干扰整治经验总结
2
LTE干扰分类
LTE干扰分为系统内干扰和系统间干扰,系统间干扰包括杂散干扰、阻塞干扰、互调/
谐波干扰等,系统内干扰包括远距离同频干扰、GPS故障、数据配臵错误等。LTE干扰
会导致无线接通率、掉线率的下降,严重影响用户感知,对此,省公司牵头从频域100 个RB分布规律上总结各类干扰的特征。
龙LF-3小区提升至第一平台
思考:目前宿迁DCS1800暂未发现由于垂直隔离度低导致的杂散干扰,因此在平台 有空余空间的情况可以更换至其他平台。
24
1、DCS1800杂散干扰的解决方案-调整效果
8月10日对3小区更换平台,整改前后指标对比如下:
FTP吞吐率测试 整改前 下载 整改后 宿豫来 龙LF-3 提升 整改前 上传 整改后 提升 RSRP Average SINR 下行吞吐率 RSRP Average SINR 下行吞吐率 下行吞吐率 RSRP Average SINR 上行吞吐率 RSRP Average SINR 上行吞吐率 上行吞吐率 好点 -68 31 60.2 -71 27.3 60.4 0.2 -67 30 9.46 -72 27.3 11.9 2.44 中点 -90 14.75 28.7 -89 15.5 45.7 17 -85 17.3 4.52 -90 15.3 7.91 3.39 差点 -102 5.7 8.6 -99 7.9 29.8 21.2 -97 5.2 1.87 -99 6.7 6.19 4.32
对现网9个LTE干扰小区通过闭塞排除DCS1800小区导致因素后,发现该部分小区均存在
共平台的卡特1800 WLAN(即OFDM)小区,水平隔离度2~3米,覆盖方向存在交叉。
如上左图所示为存在干扰的LTE小区,现场勘查发现OFDM小区天线与LTE共平台,且与 3小区几乎对打,干扰较为严重。对比共站不存在干扰的其他OFDM小区,发现均未与 LTE小区共平台。
现场测试情况: 在新城大厦L_1小区天线口扫频频段1800Mhz-1900Mhz,测试发现除了TD-LTE的F频段 1880 Mhz -1900Mhz电平明显整体高于底噪,FDD频段1840Mhz-1860Mhz电平整体较高, 1860-1880Mhz底噪有所抬升。
15
3、联通FDD-LTE杂散干扰
现场扫频情况: 现场测试情况如下图所示,通过现场扫 频,发现信号由移动TDD天线右侧友商美化 罩内天线输出,结合天线所支持的频段 (1710~2170Mhz)和连接天线的RRU类型 (RRUS 12-B3),判断为联通LTE天线 路测指标:
在楼顶天面的天线旁对新城大厦L_1小区 进行了测试,RSRP值-60dBm,SINR值 22db,下载速率10Mbps左右。
地基站上行时隙。这就是TDD系统特有的“远距离同频干扰”。在大规模部署的网络中,
此类干扰较为普遍,且可能会对本地基站的上行用户随机接入时隙以及上行业务时隙造成 干扰,从而影响用户上行随机接入、切换过程以及上行业务时隙。 这类干扰在频域上同样具有明显的分布特征,频域整体均有抬升,中间6个RB(RB4752)抬升更明显。
主要干扰因素:低空大气波导效应、天线挂高过高等原因导致 影响范围:全网大面积
7
系统内干扰-GPS故障
当GPS出现故障不工作时,会对周边其他小区产生明显的上行干扰,从前期处 理的一个案例发现:该类小区频域100个RB中RB7,RB48-51及RB92呈明显尖峰突 起状,其余RB干扰电平很低。
如上左图所示,红色圆圈项里风景区为新建站,LTE的时钟源是级联TD侧的GPS,
由于GPS故障导致,干扰最大时段影响周边25km范围内300多个小区。
影响范围:该站为圆心周边多个小区
8
目录
LTE干扰特征规律总结 LTE干扰整治经验总结
9
LTE干扰整治概述
杂散干扰 干扰源:1、DCS1800ห้องสมุดไป่ตู้主要是由于天线对打或者隔离度不够导致,目前杂散干扰主要为
同站DCS1800导致; 2、移动1800WLAN:共发现9个由于移动1800WLAN导致的杂散干扰小区, 1800WALN使用频段为1855-1865MHz,这9个小区均与LTE小区天线共平台。
图一:设计图纸DCS1800-3小区对打LTE-2小区
图二:后台跟踪100个PRB走势,明显前高后低状
图三:现场实拍效果,存在对打
20
1、DCS1800杂散干扰的成因-隔离度较小
LTE天线与DCS1800天线基本同方向,但隔离度较小,主要是由于前期工程未按图 施工或者平台空间较小导致,目前该类原因造成的干扰占比较大
改善约10dB左右, 未完全清除
BTS下电,干扰是否消除?
是
干扰消除
18
目录
LTE干扰特征规律总结 LTE干扰整治经验总结
1、FDD干扰排查方法 2、系统间干扰排查 3、系统内干扰排查
19
1、DCS1800杂散干扰的成因-天线对打
这类LTE小区受影响较为严重,现场发现隔离度即使超过9米调整LTE小区方位角仍 然受杂散干扰影响,该类LTE小区可通过更换D频段天线或者增加垂直隔离度解决
宽频干扰 干扰源:1、电信FDD阻塞:前期电信使用1860-1880MHz带宽,对TDD造成严重的阻塞
干扰,后更改至1875MHz后阻塞干扰消除; 2、干扰器开启:多个场所如学校、驾校发现开启干扰器造成全频段干扰。
远距离同频干扰 主要因素:低空大气波导效应导致远端基站的下行信号干扰近端的上行信号; 次要因素:天线挂高过高、发射功率过大
用户 感知
3
系统间干扰-杂散干扰特征
频域100个RB典型特征为前端RB底噪较高,后端RB底噪较低(小灵通除外
,干扰特征相反),整体曲线较为平滑,干扰带宽一般为前10M。
主要干扰源:DCS1800(1805-1830Mhz)、OFDM天线(1850-1880MHz)、
小灵通等由于天线对打、或天线隔离度不够造成
17
4、移动1800WLAN杂散干扰现场处理流程
通过闭塞OFDM小区腔体,干扰有所改善,但未全部消除,机架下电后干扰消失: 排查流程:
是否DCS1800干扰
否
是否OFDM共平台
是
闭塞OFDM站点腔体, 干扰是否消除?