八年级数学下册 第十六章 二次根式 162 二次根式的除法第2课时课件 新版新人教版1

合集下载

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;

16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4

4 5;
(2) 4 2

2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因

人教版八年级数学下册_16.2二次根式的乘除

人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).

第十六章 二次根式 单元解读 课件(共14张PPT)2024-2025学年人教版八年级数学下册

第十六章 二次根式 单元解读 课件(共14张PPT)2024-2025学年人教版八年级数学下册
了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数) 的加、减、乘、除运算法则,会用它们进行有关的简单四则运算.
教材分析
本章主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、 减、乘、除运算.通过本章学习,学生将建立起比较完善的代数式及其运算的知 识结构,并为勾股定理、一元二次方程、二次函数等内容的学习作好准备.
本章教学建议
02 加强归纳法,使学生经历从特殊到一般的认识过程
前已指出,教材对本章内容的处理,一以贯之地用“从具体数字的算术平方根的运算 中观察规律,归纳得出二次根式的性质、运算法则”的方式展开.因此,教学时一定要根据 教材的这一编写意图,让学生通过观察、思考、讨论等,经历从特殊到一般的过程,归纳 得出有关结论.例如,对于二次根式的乘法法则和除法法则,都应该先让学生利用二次根式 的概念和性质进行一些具体数字的计算,并观察所得结果,发现二次根式相乘(除)与积(商) 的算术平方根之间的关系;然后让学生自己举例,利用发现的规律进行验证性计算;最后 归纳出二次根式的乘法、除法法则.
单元解读
第十六章 二次根式
R·八年级下册
课标分析
“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数 式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论 具有一般性.
数与代数领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发 展几何直观和运算能力.
课标要求
加强符号意识、运算能 力的培养
教材分析
设计思路 概念
性质
运算
介绍二次根式的性质,包括一 通过观察、操作、归纳、
个非负数的平方的算术平方根 类比等方法,给出二次
根式的概念
的性质、积的算术平方根和商

八年级数学下册(新人教版)同步习题精讲课件:第十六章 二次根式(预习导航 堂堂清 日日清)(共32张PPT)综述

八年级数学下册(新人教版)同步习题精讲课件:第十六章 二次根式(预习导航 堂堂清 日日清)(共32张PPT)综述

7.(8分)当x取何值时,下列代数式在实数范围内有意义?
(1) x-3; (2) x-2- 5-x;
(3)1-2
; x
(4) x2+2x+5.
解: (1)x≥3
(2)2≤x≤5解:
(3)x≥0且x≠1
8.(3分)(2014·张家界)若+(y+2)2=0,则(x+y)2 014等于( ) A.-1 B.1
22.(6 分)已知三角形的两边长分别为 3 和 5,第三边长为 c,
化简: c2-4c+4- 14c2-4c+16.
解:依题意知 5-3<c<5+3,即 2<c<8, 原式= (c-2)2- (12c-4)2=c-2-(4-12c)=32c-6
23.(6 分)若实数 a,b 满足 b<
2a-1+
1-2a+3,试化简: 4a2-4a+1-
16 . 1 二 次 根 式
第2课时 二次根式的性质
11.下列各式正确的是( )
A. (-3)2=-3 B.- 32=-3 C. (±3)2=±3
12.若a<1,化简 (a-1)2 -1=( ) A.a-2 B.2-a C.a D.-a
D. 32=±3
13.实数a,b在数轴上的位置如图所示,且|a|>|b|,则化简-|a+b|的结果是( ) A.b B.-b C.2a+b D.无法确定 14.计算 2-x)2+ (x-3)2 的结果是( ) A.-1 B.2x-5、 C.5-2x D.1
. (1) x-2+2 2-x; (2) xx-+11+(x-2)0.
解:(1)x-2≥0,2-x≥0, ∴x=2 (2)xx+ -11≥≠00,且 x-2≠0, ∴x≥-1 且 x≠1,x≠2
20.(9分)已知a2+
=4a-4,求a+b的值.

人教版八年级数学下册第十六章 二次根式16.2二次根式的乘除课件(2课时66张)

人教版八年级数学下册第十六章 二次根式16.2二次根式的乘除课件(2课时66张)

22
35
3 4
32 3 4 4
2
3
2
巩固练习
连接中考
(2019•株洲) 2 8 =( B )
A.4 2
B.4
C.10
D.2 2
课堂检测
基础巩固题
1.下面计算结果正确的是 ( D )
A. 4 5 2 5 8 5
B. 5 3 4 2 20 5
C. 4 3 3 2 7 5
人教版 数学 八年级 下册
16.2二次根式的乘除
第一课时 第二课时
第一课时
二次根式的乘法
返回
导入新知
如何计算 5 3?
苹果ios手持操作系统的图标为圆角矩形,长为 5 cm, 宽为 3cm,则它的面积是多少呢?
素养目标
2. 会运用二次根式的乘法法则和积的算术平 方根的性质进行简单运算. 1. 掌握二次根式乘法法则.
不成立!
- 4、- 9 没有意义!
因此被开方数a,b需要满足什么条件?
a,b是非负数,即a≥0,b≥0
探究新知
二次根式的乘法法则是:
在本章中, 如果没有特 别说明,所 有的字母都 表示正数.
二次根式相乘,_根__指__数___不变,被__开__方__数__相乘.
语言表述: 算术平方根的积等于各个被开方数积的算术平方根.
探究新知
方法点拨
比较两个二次根式大小的方法: (1)被开方数比较法,即先将根号外的非负因数移到根号内, 当两个二次根式都是正数时,被开方数大的二次根式大.
(2)平方法,即把两个二次根式分别平方,当两个二次根式 都是正数时,平方大的二次根式大. (3)计算器求近似值法,即先利用计算器求出两个二次根式的 近似值,再进行比较.

2023-2024学年人教版八年级数学下册课件16.1 二次根式第2课时 算术平方根及化简

2023-2024学年人教版八年级数学下册课件16.1 二次根式第2课时 算术平方根及化简

=____=

− < 0 .
典例分享
例 实数,,在数轴上的位置如图16.1-1所示,化简:
2 − − +
+ 2.
图16.1-1
[答案] 解 由图16.1-1可知, < −1, > 1,−1 < < 0,所以
+ > 0, − < 0.
所以 2 = −,− − = − ,
2−
2
+
−4
2
= 2,求的取值.
解:原式= − 2 + − 4 ,
当 < 2时,原式= 2 − + 4 − = 6 − 2 = 2,解得 = 2
(舍去);
当2 ≤ < 4时,原式= − 2 + 4 − = 2,等式恒成立;
当 ≥ 4时,原式= − 2 + − 4 = 2 − 6 = 2,解得 = 4.
8.计算:
6
(1) 36 =___.
(2)
5
2
5
=___.
(3) −
2
0.5
=____.
1

=____.
3
(5)
(6)
(7)
(8)
2
3
2
−5
2
=__.
9
2
5
=___.
2−3
2− 3
2
3− 2
=_______.
2 023
2+ 3
2 024
− 2− 3
=__________.
人教版八年级数学下册课件
第十六章 二次根式

【最新】人教版八年级数学下册第十六章《二次根式的加减乘除混合运算》公开课课件.ppt

【最新】人教版八年级数学下册第十六章《二次根式的加减乘除混合运算》公开课课件.ppt

。2020年12月16日星期三2020/12/162020/12/162020/12/16
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/162020/12/162020/12/1612/16/2020
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/162020/12/16December 16, 2020
• 10、人的志向通常和他们的能力成正比例。2020/12/162020/12/162020/12/1612/16/2020 11:32:57 AM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/162020/12/162020/12/16Dec-2016-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/162020/12/162020/12/16Wednesday, December 16, 2020 • 13、志不立,天下无可成之事。2020/12/162020/12/162020/12/162020/12/1612/16/2020
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
【例 1】计算: (1)( 8+ 3)× 6; (2)(4 2-3 6)÷2 2. 分析:二次根式仍然满足整式的运算规律,所以可直接用整式的运 算规律. 解:(1)( 8+ 3)× 6= 8× 6+ 3× 6 = 48+ 18=4 3+3 2; (2)(4 2-3 6)÷2 2 =4 2÷2 2-3 6÷2 2=2-23 3.

人教版数学八年级下册第十六章16.3.2二次根式的混合运算课件

人教版数学八年级下册第十六章16.3.2二次根式的混合运算课件

二次根式的乘法法则是什么?
+二次根=式的混合运算顺序=与实x数y类[(似x,+即先y乘)方2-, 2xy]
将所求对称式进行适当变形,使之成为只含有x+y,
=1×[(2 3 ) -2×1]=10. (2)(中考·包头)计算:
- +( -1)0=2
同学们,今天这节课,我们就一起来学习关于二次根式的混合运算的相关知识。
号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,
则 x 不可能是( C )
A. 3+1
B. 3-1
C. 2 3
D. 1- 3
【点拨】A.( 3+1)-( 3+1)=0,故本选项不合题意;B.( 3+
1)×( 3-1)=2,故本选项不合题意;C.( 3+1)与 2 3无论是相 加,相减,相乘,相除,结果都是无理数,故本选项符合题意;
C. 6 到 7 之间
D. 7 到 8 之间
5. (2020·荆门)下列等式中成立的是( D )
A. (-3x2y)3=-9x6y3
B. x2=x+2 12-x-2 12
C.

1+ 2
13=2+
6
D. (x+1)1(x+2)=x+1 1-x+1 2
6. 计算:
(1)(2019·泰州) 8-
1 2×
人教版数学八年级下册
第十六章
16.3.2 二次根式的混合运算
复习旧知
1.二次根式的乘法法则是什么? 2.二次根式的除法法则是什么? 3.怎样进行二次根式的加减运算?
导入新知
同学们,今天这节课,我们就一 起来学习关于二次根式的混合运算的 相关知识。
二次根式的混合运算
学习目标
1.含有二次根式的式子实行乘除运算和含有二 次根式的多项式乘法公式的应用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档