第一章_理想气体状态方程_物理化学课件要点

合集下载

理想气体(物理化学)

理想气体(物理化学)

即对于实际气体
lim pV nRT
p0
lim
p0
pVm
RT
看P10的图, 恒定温度下对几种气体pVm随压力的变化进行精确
测量,显然只有压力趋于零时,各种气体的pVm才具有相同的
数值 (pVm)p→0=RT
5000
4500 4000
N2 CH4
3500 3000
pVm / J mol 1 2500
2000 1500 1000
0
He
20 40 60 80 100 120 p/Mpa
而理想气体: pVm=RT(常数), 水平线
注意:根据现在处理数据的统一标准要求,要用纯数作图、 列表。因此坐标轴上的标注应该为纯数,所以坐标轴上物理量的
表示应该为
物理量 单位
,如上图及下表:
列表时: p/MPa
…………
pVm/J . mol-1
…………


表头中物理量的表示: 物理量 表中均为纯数
单位
⑶ 低压气体可近似视作为理想气体。
即低压气体可近似使用理想气体状态方程计算p、T、V 关系。
二 理想气体的微观模型(p9)
按照分子运动论,理想气体微观模型应该是:
1. 分子间无作用力; 2. 分子本身没有体积 3. 分子不停顿地作无规则的热运动。
物质的量n确定时 f (p、V、T) =0 或四变量函数式 f (p、V、T、n) =0
固体、液体物质的体积V受压力p与温度T的影响很小,即它 们的可压缩性(p→ V)及热膨胀性(T→ V) 与气体物质相比小都
很小,在通常的物理化学讨论中常常忽略它们的体积随压力及
温度的变化。而气体物质p、V、T之间相互影响很大,所以这 一章我们先来讨论气体的p、V、T关系,并且气体体系是物理

第一课无机化学课件 第一章

第一课无机化学课件 第一章

某组分气体的分压等于总压与 形式2 该组分PB 气P总体 nn摩总B 尔P总分 xB数的乘摩积尔分数
注意:分压公式中的体积一定为容器的总体积
即:PB

nB V总
RT
而并非:PB

nB VB
RT
T、P不变,n V

ni n

Vi V
其中Vi为组分i的分体积,V是混合气体的总体积
Pi


t

0
n B
/mol
N123.N20g2 g310H.2302Hg2g
2NHNH3 g3
0
g
ξ
0
t

1
n B
/mol
2.0
7.0
2.0
1 =?
t
时n
2B
/mol
ξ1'1ξ.51 Δννnn1NNNN22 225.52.02.130.01/312.30..m00ol
M
(3)计算气体密度
M mRT pV
M mRT M RT
pV
p


pM RT
例:为行车安全,可在汽车 中装备空气袋防止碰撞时司 机受到伤害。这种空气袋是 用氮气充胀起来的,所用的 氮气由叠氮化钠与三氧化二 铁在火花的引发下反应生成。 总反应是:
6NaN3+Fe2O3(s) 3Na2O(s)+2Fe(s)+9N2(g)
5、热力学能 (U)(thermodynamic energy)
系统内部含有的总能量称为热力学能(内能)
包括体系内质点的内动能(平动能、 振动能、转动能)、微粒间相互作用 所产生的势能等,但不包括体系整体

理想气体的状态方程 课件

理想气体的状态方程 课件
学温度增大到原来的2倍。( ) 解析:根据pVT=C可判断此说法正确,该气体在做等容变化。 答案:√
读一读·思一思 辨一辨·议一议
(4)在应用理想气体状态方程时,所有物理量的单位都必须使用国 际单位制中的单位。( )
解析:方程代入数据计算前,必须先统一单位。p、V初、末单位 各自相同即可,不一定全为国际单位,但T必须用热力学温度。
A、C两状态体积相等,则由查理定律得 TC=������������������������TA=0.51×.5480 K=160 K。
探究一
探究二
名师精讲 1.一定质量的理想气体不同状态变化图象的比较
名称 图象
特点
其他图象
p-V 等 温 线 p-V1
pV=CT(C 为常量)即 pV 之积越大 的等温线对应的温度越高,离原 点越远
V=CT,斜率 k=C,即斜率越大,对
p
p
应的压强越小
V 与 t 成线性关系,但不成正比, 图线延长线均过(-273.15,0)点, 斜率越大,对应的压强越小
探究一
探究二
2.一定质量的理想气体一般状态图象的处理方法 基本方法,化“一般”为“特殊”,如图是一定质量的某种气体的状态 变化过程A→B→C→A。
p=CVT,斜率 k=CT 即斜率越大,对应 的温度越高
探究一
探究二
名称 图象
等 p-T 容 线
p-t
特点
其他图象
p=VCT,斜率 k=VC,即斜率越大,对 应的体积越小
图线的延长线均过点 (-273.15,0),斜率越大,对应的体 积越小
探究一
探究二
名称 图象
V-T
等 压 线
V-t
特点
其他图象

物理化学 第一章 气 体

物理化学   第一章   气 体


pV nRT

(1-1) (1-2)
pV
m RT M
其中的R称为摩尔气体常数,其值等于8.314J.K-1.mol-1,与气体种类无关。 理想气体状态方程只有理想气体完全遵守。 理想气体也可以定义为在任何温度、压强下都严格遵守理想气体状态方程的 气体。

实际气体处在温度较高、压力较低即气体十分稀薄时,能较好地符合这个关 系式。
图1.2 混合气体的分体积与总体积示意图

在压力很低的条件下,可得V=VA+VB,即混合气体的总体积等于所
有组分的分体积之和,称为阿马格分体积定律。通式为

V V i
式中 VB——组分B的分体积。 根据理想气体状态方程有
nB VB RT p
(1-5)
n总 V总 RT p
(1-
pV ZnRT
(1-16)
在压力较高或温度较低时,真实气体与理想气体的偏差较 大。定义“压缩因子(Z)”来衡量偏差的大小。
pV Z nRT

Z →
V V nRT / p V理想

等于同温、同压下,相同物质量的真实气体与理想气体的体
积之比。

理想气体的 pV=nRT , Z =1。
对于真实气体,若Z>1,则V> V(理想),即真实气体的体积 大于理想气体的体积,说明真实气体比理想气体难于压缩;
(1-13)
称为截项维里方程,有较大的实用价值。 当压力达到几MPa时(5MPa左右),第三维里系数渐显重要,其近 似截断式为:
Z

pV B C 1 2 RT V V
(1-14)
第四节 对应态原理及普遍化压缩因子图 一.对应态原理 二.压缩因子法 三.普遍化压缩因子图

《物理化学》第一章 气体

《物理化学》第一章 气体

K
l C
图1-1 CO2 定温p-Vm,c 图
图中,每条曲线称为 p-V 等温线,K点所处状态称为临界状态。
以温度T1为例,曲线分为三段: {p}Leabharlann T1T2TcT3 c
加压
g(气体)
体积缩小
a(饱和气体) l
定压 a(饱和气体)体积显著缩小 b(饱和液体) 加压 b(饱和液体) 体积缩小(较小) l(液体)
ni ni 摩尔分数xi n ni
(2)Amagat分体积定理:V= Vi
(恒温、恒压下混合气体总体积等于组成混合气体的各个气 体的体积之和)
T,p相同,某一气体的体积为 Vi=xi V
压力分数、体积分数和摩尔分数的相互关系
pi Vi ni yi p V n
适用于理想气体与低压下的真实气体
对应状态:两种气体的Tr,pr和Vr中有两个参数相等,称这
两种气体处于对应状态。
Z f Tr , pr
各种气体处于对应状态下,它们对理想行为的偏离程度相同 压缩因子图: 在相同Tr下, 不同气体的Z对pr作图基本上都在一条 曲线上, 称为压缩因子图。对于除H2,He,Ne以外 的其它物质都适用。 H2,He,Ne等的Tr,pr需按下式定义后才能适用
p /kPa pr pC /kPa 810 .6 kPa
T /K Tr TC /K 8
实际气体物态方程
pVm ZnRT
理想混合气体的物态方程
(1)Daolton分压定理:P=pi
(恒温、恒容下混合气体总压P等于组成混合气体的各个气 体 的压力之和) T,V相同,某一气体的压力为 pi=xi P
在Tc下使气体液化所施加的最小压力。
临界体积Vc,m (Critical molar volume)

物理化学第一章讲义

物理化学第一章讲义

第一章气体的pVT 关系§1.1 理想气体状态方程§1.2 理想气体混合物§1.3 真实气体的液化及临界参数§1.4 真实气体状态方程§1.5 对应状态原理及普遍化压缩因子图教学重点及难点教学重点1.理解理想气体模型、摩尔气体常数,掌握理想气体状态方程。

2.理解混合物的组成、理想气体状态方程对理想气体混合物的应用,掌握理想气体的分压定律和分体积定律。

3.了解气体的临界状态和气体的液化,理解液体的饱和蒸汽压。

4.了解真实气体的pV m - p图、范德华方程以及压缩因子和对应状态原理。

教学难点:1.理想气体的分压定律和分体积定律。

前言宏观的物质可分成三种不同的聚集状态:气态:气体则最为简单,最易用分子模型进行研究。

液态:液体的结构最复杂,对其认识还很不充分。

固态:结构较复杂,但粒子排布的规律性较强,对其研究已有了较大的进展。

当物质的量n确定后,其pVT 性质不可能同时独立取值,即三者之间存在着下式所示的函数关系:f(p,V, T)= 0也可表示为包含n在内的四变量函数式,即f(p,V,T,n)= 0这种函数关系称作状态方程。

§1-1 理想气体的状态方程1.理想气体状态方程(1)气体的基本实验定律:波义尔定律:PV = 常数(n,T 恒定)盖·吕萨克定律:V/T = 常数(n,p恒定)阿伏加德罗定律:V/n=常数(T,p恒定)( 2 ) 理想气体状态方程上述三经验定律相结合,可整理得理想气体状态方程:pV=nRT(p: Pa(帕斯卡)V: m3(米3) T:K(开尔文)R(摩尔气体常数): J·mol-1·K-1(焦·摩尔-1·开-1))因为摩尔体积V m = V/n,气体的物质的量n=m /M理想气体状态方程又常采用下列两种形式:p V m=RT、pV=(m/M)RT2.理想气体模型(1)分子间力:分为相互吸引和相互排斥,按照兰纳德一琼斯的理论:E=E吸引+E排斥=-A r6+B r12由图可知:[1]当两个分子相距较远时,它们之间几乎没有相互作用。

物理化学第一章知识点

物理化学第一章知识点

气体的pVT关系一、理想气体状态方程pV=nRT (R=8.314472Pa·m3·mol·K-1)根据V m=V/n,n=n/M可得pV m=RTpV m=(m/M)RT根据ρ=m/V和理想气态方程可以求出气体的ρ、V、T、n、M、ρ各种性质。

ρ=pM/RT、M=ρRT/p=RTM/Pv、m=Pvm/RT、n=Pv/RT二、理想气体模型(一)、分子间作用力:两个分子间的相互吸引势能与距离r的6次方成反比,相互排除势能与距离r的12次方成反比。

E=E吸引+E排斥=-A/r6+B/r12(二)、理想气体的微观上的两个特征1、分子间无相互作用力。

2、分子本身不占体积。

(三)、在任何温度和压力下均符合理想气体模型或服从理想气体状态方程的气体称为理想气体图一:兰纳德-琼斯势能曲线示意图(四)、摩尔气体常数当压力趋于零的极限条件下,各种气体pVT均服从pV m=RT的定量关系,R是一个对各种气体都适用的常数。

R=8.314472Pa·m3·mol·K-1三、真实气体状态方程(一)、范德华方程(p+a/V2m)(V m-b)=RT将V m=V/n带入可得(p+n2a/V2)(V-nb)=nRTa只与气体的种类有关,与温度条件无关。

(a/V m2)又称为内压力说明了分子间相互吸引力对压力的影响反比于分子间距离r的6次方。

一般分子间作用力越大,a越大。

a的单位是Pa·m6·mol-2b应该与气体的温度有关。

b是体积修正项,表示每摩尔真实气体分子本身占有体积儿时分子自由活动空间减少的数值。

b的单位是m3·mol-1。

范德华认为真实气体由于分子间的相互作用力会导致气体的压强比理想气体小即p=(p理+a/V2m),体积在考虑了分子本身占有的体积b之后自由活动空间应该是(V m-b)。

范德华方程是一种被简化了的真实气体的数学模型,在任何温度、压力条件下均符合范德华方程的气体叫范德华气体(二)、维里方程pV m=RT(1+Bp2+Cp3+Dp4+……)维里方程是纯经验方程,当压力p→0,摩尔体积V m→0时,维里方程还原为理想气态方程。

物化课件

物化课件
返回
13:24:58
上一内容
下一内容
回主目录
实际气体的液化
270K时CO2相变过程
p=3.204MPa
峭, , 由 如 上在 体 于 果 升等 积 液 继 的温 仅 体 续 线线 有 压 增 段上 微 缩 加 。出 小 性 压 现改很力 陡变小,
上一内容 下一内容
气 体 全 部 凝 结 为 液 体
以上三式结合 理想气体状态方程
pV = nRT
单位:p Pa V m3
TK
n mol R J mol-1 K-1
摩尔气体常数:R = 8.314510 J mol-1 K-1
上一内容 下一内容 回主目录
返回
13:24:58
理想气体状态方程
理想气体状态方程也可表示为: pVm=RT pV = (m/M)RT 以此可相互计算 p, V, T, n, m, M, (= m/ V)
l’1 l’2 T1<T2<Tc<T3<T4
p / [Pa]
1) T < Tc 气相线 g1g’1: p , Vm 气-液平衡线 g1l1 : 加压,p*不变, gl, Vm g1: 饱和蒸气摩尔体积Vm(g) l1: 饱和液体摩尔体积Vm(l)
g’2 g’1ຫໍສະໝຸດ C l2 l1T4
T3 g2 g1 Tc
2) 质量分数wi
wi
def
mi / mi
(单位为1)
wi = 1
上一内容 下一内容 回主目录
返回
13:24:58
理想混合气体状态方程
2. 理想气体方程对理想气体混合物的应用 因理想气体分子间没有相互作用,分子本身 又不占体积,所以理想气体的 pVT 性质与气体的 种类无关,因而一种理想气体的部分分子被另一 种理想气体分子置换,形成的混合理想气体,其 pVT 性质并不改变,只是理想气体状态方程中的 n 此时为总的物质的量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p = nRT / V = (nA+ nB + nC +···)RT/V = nA RT /V + nB RT /V+ nC RT /V+···
p nB (RT / V )
B
注意:
2020/9/30
p pB nB (RT /V )
B
B
理想气体
4.阿马加定律
[1]阿马加分体积定律:理想气体混合物的总体积V 为各组分分体积V*B之和
M m i x = yA MA + yBMB =
yBM B
B
由于 所以
M(O2)= 32.00 ×10 -3 kg·mol-1 M(N2)= 28.01×10 -3 kg.mol-1
M(空气)= y(O2)M(O2)+ y(N2)M(N2)
=(0.2l×32.00×l0-3+0.79×28.01× 10-3)kg·mol-1
2020/9/30
(2)理想气体模型
①分子之间无相互作用力。 理想气体在微观上具有以下两个特征:
②分子本身不占有体积。
3.摩尔气体常数 R (pVm=RT )
[1]不同气体在同样温度下,当压力趋于零时
(pVm)p→0 具有相同值。
[2]按300K条件下的(pVm)的数值,就可求 出各种气体均适用的摩尔气体常数R。
试证此混合气体摩尔质量Mmix形式。若空气组成近似为y(O2)= 0.21, y(N2)= 0.79,试求空气的摩尔质量M(空气)
解:
所以 即
设:气体A、B的摩尔质量分别为M A与MB,则
混合气体的质量
m = nA MA + nBMB
_混合气体的物质的量 n = nA+ nB
M_ mix=m /n =(nA MA + nBMB )/n
B
n:混合物中总的物质的量, nmB::混混合合物物的中总某质种量气,体的物质的量,
Mp,miVx::混混合合物物的的摩总尔压质及量总。体积。
混合物中任一物质 B 的质量 mB= nBMB
_ 而 nB=yBn
混合物的总质量m与M mix的关系:
_
_
2020/9/30
例:今有气体A和气体B构成_的混合气体,二气体物质的量分别为nA和nB 。
三者之间存在着下式所示的函数关系:
f(p, V, T)= 0
也可表示为包含n在内作状态方程。
2020/9/30
§1-1 理想气体的状态方程
1.理想气体状态方程 (1)气体的基本实验定律
波 义 尔 定 律 P V = 常数 (n、T 恒定) 盖·吕萨克定律 V/T = 常数(n、p恒定)
(考核概率100%) 2.理解混合物的组成、理想气体状态方程对理想气体混合物的应
用,掌握理想气体的分压定律和分体积定律。(考核概率100%) 3.了解气体的临界状态和气体的液化,理解液体的饱和蒸汽压。
(考核概率50%) 4.了解真实气体的pVm - p图、范德华方程以及压缩因子和对应
状态原理。 (考核概率20%) 教学难点
[3]R=(pVm)p→0 / T
=(2494.35/300)J·mol-1·K-1 = 8.3145 J·mol-1·K-1 [4]其它温度条件下进行类似的测定,所得R的 数值完全相同。
R值的确定,采用外推法。即测量某些真实气体在一定温度T下,不同 压力P时的摩尔体积Vm,然后将PVm对P作图,外推到p→0处,求出所 对应的pVm值,进而计算R值。
R值的大小 R = 8.314 J·mol-1·K-1
2020/9/30
§1-2 理想气体混合物
1.混合物的组成 [1]摩尔分数x或y
本书对气体混合物的摩尔分数用y表示, 对液体混合物的摩尔分数用x表示.
物质B的摩尔分数定义为
[2]质量分数ωB
物质B的质量分数定义为
[3]体积分数 物质B的体积分数定义为
p V=(m/M)R T
2020/9/30
2.理想气体模型
[1]分子间力
相互吸引
按照兰纳德一琼斯的理论
相互排斥
由图可知:
[1]当两个分子相距较远时,它们之间几
乎没有相互作用。
[2]随着r的减小,相互吸引作用增大。
[3]当r = r0 时,吸引作用达到最大。 [4]分子进一步靠近时,则排斥作用很快
上升为主导作用。
V*m,A表示在一定温度、压力下纯物质A的摩尔体积.
2020/9/30
B 1
B
2.理想气体状态方程对理想气体混合物的应用
[1] 混合理想气体的状态方程
一种理想气体状态方程为:pV = nRT
理想气体混合物的状态方程为:
_
[2]混合物气体的摩尔质量
纯气体的摩尔质量M可由其_相对分子质量直接得出
混合物气体的摩尔质量: M mix yB M B
1.理想气体的分压定律和分体积定律 。
2020/9/30
前言
宏观的物质可分成三种不同的聚集状态: 气态 气体则最为简单,最易用分子模型进行研究。 液态 液体的结构最复杂,对其认识还很不充分。 固态 结构较复杂,但粒子排布的规律性较强,对其研究已 有了较大的进展。 当物质的量n确定后,其pVT 性质不可能同时独立取值,即
阿伏加德罗定律 V/n=常数(T、p恒定) ( 2 ) 理想气体状态方程 上述三经验定律相结合,可整理得 理想气体状态方程:
p V= n R T p: Pa(帕斯卡) V: m3 (米3) T:K(开尔文)
R(摩尔气体常数): J·mol-1·K-1(焦·摩尔-1·开-1)
因为摩尔体积Vm = V/n ,气体的物质的量n = m /M 理想气体状态方程又常采用下列两种形式:p Vm = R T
=28.85 × 10-3kg·mol-1
2020/9/30
3、道尔顿定律
(1)分压力 适用的条件:所有混合气体 在总压力为p的混合气体中,任一组分B的分压力
pB = yB p
若对混合气体中各组分的分压力求和
pB p
B
(2)道尔顿定律 适用的条件:理想气体 低压气体近似符合 混合气体的总压力等于各组分单独存在于混合气体的温度、体积条件 下压力的总和。
第一章 气体的pVT 关系
Physical Chemistry
§1.1 理想气体状态方程 §1.2 理想气体混合物 §1.3 真实气体的液化及临界参数 §1.4 真实气体状态方程 §1.5 对应状态原理及普遍化压缩因子图
2020/9/30
教学重点及难点
教学重点 1.理解理想气体模型、摩尔气体常数,掌握理想气体状态方程。
相关文档
最新文档