高中数学两角和与差的三角函数公式知识点
两角和与差的公式定理

两角和与差的公式定理两角的和与差是数学中的重要概念,在解决三角函数问题时经常用到。
这里我们将介绍两角和与差的公式定理,并给出证明过程。
1.两角和的公式定理:设角A和角B的角度分别为α和β,则两角的和角是角A+角B,记作(A+B),其三角函数公式如下:sin(A + B) = sinA*cosB + cosA*sinBcos(A + B) = cosA*cosB - sinA*sinBtan(A + B) = (tanA + tanB) / (1 - tanA*tanB)证明:我们可以使用欧拉公式来证明两角和的公式定理:欧拉公式表示:e^(ix) = cosx + i*sinx,其中 i 是虚数单位。
我们将角A和角B分别替换为复数表示,即A=α+iβ,B=γ+iδ。
根据欧拉公式,我们可以得到:e^(i(α+iβ)) = e^(iα-iβ) = cos(α-β) + i*sin(α-β)将等式两边展开,得到:e^(iα-iβ) = cosα*cosiβ + sinα*siniβ + i*(sinα*cosiβ- cosα*siniβ)对比实部和虚部,可以得到:co s(α-β) = cosα*cosβ - sinα*sinβsin(α-β) = sinα*cosβ + cosα*sinβ这就是两角和的公式定理。
2.两角差的公式定理:设角A和角B的角度分别为α和β,则两角的差角是角A-角B,记作(A-B),其三角函数公式如下:sin(A - B) = sinA*cosB - cosA*sinBcos(A - B) = cosA*cosB + sinA*sinBtan(A - B) = (tanA - tanB) / (1 + tanA*tanB)证明:同样使用欧拉公式,我们可以得到:cos(α+β) + i*sin(α+β) = e^(i(α+β))cosα*cosiβ - sinα*siniβ + i*(sinα*cosiβ + cosα*siniβ) = e^(i(α+β))对比实部和虚部,可以得到:cos(α+β) = cosα*cosβ - sinα*sinβsin(α+β) = sinα*cosβ + cosα*sinβ将等式两边进行替换,我们可以得到两角差的公式定理。
高中数学必修四-两角和与差的三角函数公式

两角和与差的三角函数公式知识集结知识元两角和与差公式的正向运算知识讲解1.两角和与差的三角函数【知识点的认识】:cos(α﹣β)=cosαcosβ+sinαsinβ;(1)C(α﹣β)(2)C(α+β):cos(α+β)=cosαcosβ﹣sinαsinβ;(3)S:sin(α+β)=sinαcosβ+cosαsinβ;(α+β)(4)S(α﹣β):sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)T(α+β):tan(α+β)=.(6)T:tan(α﹣β)=.(α﹣β)例题精讲两角和与差公式的正向运算例1.'如图,在平面直角坐标系xOy中,点A(x1,y1)、B(x2,y2)都在单位圆O上,∠xOA=α,且.(Ⅰ)若,求x1的值;(Ⅱ)若∠AOB=,求y=x12+y22的取值范围.'例2.已知△ABC中,7sin2B+3sin2C=2sin2A+2sin A sin B sin C,则=__.例3.'若0,0,sin()=,cos()=.(I)求sinα的值;(II)求cos()的值.'三角函数给值求值问题知识讲解给出三角函数值,求同角的三角函数值或相关角的三角函数值。
例题精讲三角函数给值求值问题例1.已知,则=()A.B.C.D.例2.已知,则=()A.B.C.D.例3.设当x=θ时,函数f(x)=sin x+cos x取得最大值,则tan(θ+)=____.两角和与差公式的逆向运算知识讲解1.两角和与差的三角函数【知识点的认识】(1)C(α﹣β):cos(α﹣β)=cosαcosβ+sinαsinβ;:cos(α+β)=cosαcosβ﹣sinαsinβ;(2)C(α+β):sin(α+β)=sinαcosβ+cosαsinβ;(3)S(α+β):sin(α﹣β)=sinαcosβ﹣cosαsinβ;(4)S(α﹣β):tan(α+β)=.(5)T(α+β):tan(α﹣β)=.(6)T(α﹣β)例题精讲两角和与差公式的逆向运算例1.sin17°sin77°-cos163°cos77°=()A.B.-C.D.-例2.设角α、β是锐角,若(1+tanα)(1+tanβ)=2,则α+β=__.例3.cos42°sin78°+cos48°sin12°__.例4.tan75°-tan15°-tan15°tan75°=__.当堂练习单选题练习1.若tan(α-)=2,则tan(2α)等于()A.-2B.C.2+D.练习2.若tanα=-3,则的值为()A.B.C.D.-2练习3.若,则cos4θ=()A.B.C.D.练习4.若sin(-5°)=m,则cos100°=()A.2m B.1-2m2C.-2m D.2m2-1练习5.已知,且α为第三象限角,则tan(2α+)=()A.B.C.D.填空题练习1.设当x=θ时,函数f(x)=sin x+cos x取得最大值,则tan(θ+)=_____.练习2.设△ABC的内角为A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.则_.的值为__解答题练习1.'已知关于x的方程mx2+(2m-3)x+(m-2)=0(m≠0)的两根为tanα,tanβ.(1)求m的取值范围;(2)求tan(α+β)的最小值;(3)求m sin2(a+β)+(2m-3)sin(α+β)cos(α+β)+(m-2)cos2(α+β)的值.'练习2.'已知函数.(1)求f(x)最小正周期、定义域;(2)若f(x)≥2,求x的取值范围.'练习3.'已知函数f(x)=x.(1)求函数f(x)的最小正周期;(2)求函数f(x)的对称轴和对称中心;(3)若,,求的值.'练习4.'如图,在平面直角坐标系xOy中,点A(x1,y1)、B(x2,y2)都在单位圆O上,∠xOA=α,且.(Ⅰ)若,求x1的值;(Ⅱ)若∠AOB=,求y=x12+y22的取值范围.'练习5.'已知函数f(x)=2sin x cos x+2sin(x+)cos(x+).(1)求函数f(x)的对称轴方程;(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,若关于x的方程g(x)-1=m在[0,)上恰有一解,求实数m的取值范围.'。
两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式是指在给定两个角的情况下,通过公式计算它们的和或差的三角函数值的关系式。
这些公式在解决三角函数的实际问题和简化计算中起着重要的作用。
本文将介绍两角和与差的三角函数公式的基本知识点,包括公式的推导、证明和应用。
一、两角和与差的三角函数公式的推导1.两角和的公式对于两个角A和B,其正弦、余弦和正切的和公式如下:sin(A+B) = sinAcosB + cosAsinBcos(A+B) = cosAcosB - sinAsinBtan(A+B) = (tanA + tanB) / (1 - tanAtanB)这些公式可以通过将和角的正弦、余弦和正切分别展开为各自的和差形式,然后进行合并得到。
以正弦和公式为例,我们可以化简如下:sin(A+B) = sinAcosB + cosAsinB由正弦的和差公式可得:sin(A+B) = sinAcosB + cosAsinB= (sinAcosB + cosAsinB)(cosAcosB – sinAsinB)/(cosAcosB –sinAsinB)= sinAcosBcosAcosB – sinAsinBcosAcosB + cosAsinBcosAcosB –cosAsinBsinAsinB/(cosAcosB – sinAsinB)= sinAcosBcosAcosB – sinAsinBcosAcosB + cosAsinBcosAcosB –cosAsinBsinAsinB/(cos^2A - sin^2B)= sinAcos^2B - sinAsin^2B + cos^2AsinB - cosBsinA/(cos^2A - sin^2B)= sinA(cos^2B - sin^2B) + cosA(sinBcosA - cosBsinA)/(cos^2A - sin^2B)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)/(cos^2A - sin^2B)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)2.两角差的公式对于两个角A和B,其正弦、余弦和正切的差公式如下:sin(A-B) = sinAcosB - cosAsinBcos(A-B) = cosAcosB + sinAsinBtan(A-B) = (tanA - tanB) / (1 + tanAtanB)同样,这些公式也可以通过将差角的正弦、余弦和正切展开为各自的差和比值形式,然后进行合并得到。
高一数学三角函数和与差公式

高一数学三角函数两角和与差1、两角和与差的余弦公式:cos(α+β)=cosαcosβ-sinαsinβ(C(α+β))cos(α-β)=cosαcosβ+sinαsinβ(C(α-β))和(差)角公式可看成诱导公式的推广,诱导公式可看成和(差)角公式的特例.当α、β中有一个角为的整数倍时,以利用诱导公式较为简捷.2、两角和与差的正弦公式:sin(α+β)=sinαcosβ+cosαsinβ(S(α+β))sin(α-β)=sinαcosβ-cosαsinβ(S(α-β))(4)两角和与差的三角函数是诱导公式的推广,诱导公式是它的特例,当α、β中有一个角为90°的整数倍时,用诱导公式较为简便.3、两角和与差的正切公式[点拨](1)Tα+β中:α、β、α+β都不取(k∈Z)时,公式才适用;Tα-β中:α、β、α-β都不取(k∈Z)时,公式才适用.(2)如α、β、α±β有一个角取(k∈Z)时,可用诱导公式,(3)公式特征:右边分子为两项:tanα、tanβ,中间符号与右边角间符号一致;右边分母为两项:1,tanαtanβ,中间符号与左边角间符号相反.(4)注意左、右互化,如求值:,可将式子化为:4、和(差)角的正、余弦公式的“加”、“减”、“乘”规律(1)sin(α+β)+sin(α-β)=2sinαcosβ(2)sin(α+β)-sin(α-β)=2cosαsinβ(3)sin(α+β)²sin(α-β)=sin2α-sin2β(4)cos(α+β)+cos(α-β)=2cosαcosβ(5)cos(α+β)-cos(α-β)=-2sinαsinβ(6)cos(α+β)²cos(α-β)=cos2α-sin2β5、和(差)角的正切公式的变形形式由tan(α+β)=变形得:tanα+tanβ+tanαtanβtan(α+β)=tan(α+β):由tan(α-β)=变形,得.6、形如asinθ+bcosθ的三角函数式可化成一个角的一个三角函数即asinθ+bcosθ=令.故asinθ+bcosθ=,此即为化一公式,其中.7、正弦、余弦、正切的和(差)角公式的联系例1、已知,求sin(α+β). 例2、已知例3、化简.例5、求证:.1、sin14°cos16°+sin76°cos74°的值是( )A .B .C .-D .-2、化简的结果是( ) A .1 B . C .- D .±3、cosx +sinx 等于( )A .B .C .D .5、在△ABC 中,若sinA²sinB<cosA²cosB,则此三角形的外心位于它的( )A .内部B .外部C .一边上D .以上都不对6、tan15°+tan45°+tan15°的值为( )A .B .C .D .(17)(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA(1) 求A ( 2) 若a =2,△ABC 的面积为3,求b ,c.16、(本小题满分12分)已知函数()2cos()12f x x π=-,x R ∈(1) 求()3f π的值; (2) 3cos 5θ=,3(,2)2πθπ∈,求()6f πθ-。
高中数学公式知识点精选:诱导公式两角和差公式

高中数学公式知识点精选:诱导公式两角和差公式【】有关于高中数学公式知识点精选:诱导公式两角和差公式是特地为您集合的,编辑将第一时间为您整理全国学习信息,供大家参考!两角和差公式两角和与差的三角函数公式sin(+)=sincos+cossinsin(-)=sincos-cossincos(+)=coscos-sinsincos(-)=coscos+sinsintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2=2sincoscos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()tan2=2tan/[1-tan^2()]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(/2)=(1-cos)/2cos^2(/2)=(1+cos)/2tan^2(/2)=(1-cos)/(1+cos)另也有tan(/2)=(1-cos)/sin=sin/(1+cos)万能公式sin=2tan(/2)/[1+tan^2(/2)]cos=[1-tan^2(/2)]/[1+tan^2(/2)]tan=2tan(/2)/[1-tan^2(/2)]万能公式推导附推导:sin2=2sincos=2sincos/(cos^2()+sin^2())。
.*,(因为cos^2()+sin^2()=1)再把*分式上下同除cos^2(),可得sin2=2tan/(1+tan^2()) 然后用/2代替即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
三倍角公式三倍角的正弦、余弦和正切公式sin3=3sin-4sin^3()cos3=4cos^3()-3costan3=[3tan-tan^3()]/[1-3tan^2()]三倍角公式推导附推导:tan3=sin3/cos3=(sin2cos+cos2sin)/(cos2cos-sin2sin)=(2sincos^2()+cos^2()sin-sin^3())/(cos^3()-cossin^2 ()-2sin^2()cos)上下同除以cos^3(),得:tan3=(3tan-tan^3())/(1-3tan^2())sin3=sin(2+)=sin2cos+cos2sin=2sincos^2()+(1-2sin^2())sin=2sin-2sin^3()+sin-2sin^3()=3sin-4sin^3()cos3=cos(2+)=cos2cos-sin2sin=(2cos^2()-1)cos-2cossin^2()=2cos^3()-cos+(2cos-2cos^3())=4cos^3()-3cos即sin3=3sin-4sin^3()cos3=4cos^3()-3cos考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。
在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。
本文将从公式的定义、推导及应用方面进行详细解析。
一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。
高考数学两角和与差的正弦、余弦和正切公式

探究点一 两角和与差的三角函数公式
[思路点拨]根据两角差的正弦公式将sin展开,已知等式化简可得sin α +cos α=0,从而求出答案.[解析] cos α+sin=0,整理得cos α+sin α-cos α=0,故sin α+cos α=0,故tan α=-.故选A.
A
(2)设α,β满足tan=3,tan=2,则tan(α+β)=( )A.-1 B.- C. D.1
sin αcos β±cos αsin β
cos αcos β∓sin αsin β
课前基础巩固
◈ 知识聚焦 ◈
2. 两角和与差的正切公式的变形tan α±tan β=tan(α±β)(1∓tan αtan β).3.二倍角的正弦、余弦、正切公式(1)公式S2α:sin 2α= . (2)公式C2α:cos 2α= = = . (3)公式T2α:tan 2α= .
课堂考点探究
[思路点拨] 首先根据α的范围及已知求出sin的值,再利用诱导公式得cos=sin α,然后再利用α=-结合已知即可得答案.[解析]因为0<α<,所以<α+<,又cos=,所以sin=,则cos=sin α=sin=sincos-cossin=×-×=.
[总结反思]三角函数求值中变角的解题思路:当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再利用诱导公式把“所求角”变成“已知角”.
课堂考点探究
[解析]因为cos α=,α为锐角,所以sin α=,则cos=cos α+sin α= ×+×=.故选A.
高中数学两角和与差的正弦、余弦、正切公式课件

Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五
( − ) = ,
( − ) = .
公式六
( + ) = ,
2
( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.
2
;
1
④ cos
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和与差的三角函数公式
本节重点:熟练掌握并运用两角和与差的三角函数公式 课前引入: 3215tan ,4
2
615cos ,42
615sin -=︒+=︒-=
︒ (一).两角和差的余弦公式推导:首先在单位圆上任取两点A (cos ααsin ,)B(ββsin ,cos )
)
si n ,(c os ),si n ,(c os ββαα==∴OB OA
)(,sin sin cos cos βαβαβα-•=•+=•∴OB OA OB OA Θ又=cos(βα-)
βαβαβαsin sin cos cos cos +=-∴)(得出 用得替换ββ- βαβαβαsin sin cos cos cos -=+)(用诱导公式得
β
αβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(+=+-=-
β
αβ
αβαβαβαβαtan tan 1tan tan )tan(,tan tan 1tan tan )tan(+-=--+=
+∴
二倍角公式:
①θθθcos sin 22sin = ②θθθθθ2222
sin 211cos 2sin cos 2cos -=-=-=
③θ
θ
θ2tan 1tan 22tan -=
例1、 求︒15cos
练习1、求︒
︒
-︒70sin 20sin 10cos 2
课堂练习:
1.下列等式中一定成立的是( )
A .cos()cos cos αβαβ+=+
B .cos()cos cos αβαβ-=-
C .sin(
)sin 2π
αα-= D .cos()sin 2
π
αα-= 2.化简sin119sin181sin91sin 29︒⋅︒-︒⋅︒等于( )
A .
12 B .1
2
- C .-
3.若1cos 2α=-
,sin β=(,)2παπ∈,3(,2)2
π
βπ∈,
则sin()αβ+的值是( )
A .
2 B .2
-.1- D .0
4.若,(0,
)2
π
αβ∈,
cos()2
2β
α-=
,1sin()22αβ-=-,则cos()2
αβ
+的值等于( )
A .1
B .12-
或1 C .1
2
或1 D .2
5.已知α为第二象限的角,3
sin 5
a =,则tan 2α= .
6.已知1sin cos 2αβ-=,1
cos sin 3
αβ-=,则sin()αβ+= .
7.要使32cos 1
m
x x m -=-有解,求实数m 的范围
家庭作业:
1.已知sin(
)6
π
α+=
2cos()3
πα+的值等于( )
A .3-
.3 C .3- D .3
2.在ABC ∆中,cos cos cos sin sin cos sin sin 2A B A B A B A B +++=,则ABC ∆是( )
A .等边三角形
B .等腰非等边的锐角三角形
C .等腰直角三角形
D .非等腰的直角三角形 3.若ABC ∆的内角A 满足2
sin 23
A =
,则sin cos A A +=( )
A.
3 B .3- C .53 D .53
-
4.设2cos66a =︒,cos55b =︒︒,2(sin 47sin 66sin 24sin 43)c =︒︒-︒︒,则
,,a b c 的大小顺序是 .
5.在ABC △中,已知3b =,c =,30B ∠=o
,则a =________.
6.已知锐角α和β满足sin 5α=,sin 10
β=,求αβ+.
7.已知α为锐角,且2
2sin
sin cos 2cos 0αααα--=.
(1)求tan α的值; (2)求sin()3π
α-
的值.。