综合热分析法测定CaC2O4·H2O

合集下载

热重分析原理及方法介绍

热重分析原理及方法介绍

ICTA对热分析技术的分类
物理 性质 1.质量 分析技术名称 1)热重法 2)等压质量变化 测定 简称 TG 物理性质 3.热焓 4.尺寸
(9 类 17 种)
分析技术名称 9)差示扫描量热法 10)热膨胀法
简称 DSC
3)逸出气体检测
4)逸出气体分析 5)放射热分析 6)热微粒分析 2.温度 7)加热曲线测定
热分析的应用类型
成份分析:无机物、有机物、药物和高聚物的鉴别和分析以及它们的 相图研究。
稳定性测定:物质的热稳定性、抗氧化性能的测定等。 化学反应的研究:比如固 -气反应研究、催化性能测定、反应动力学 研究、反应热测定、相变和结晶过程研究。
热重法 (THERMOGRAVIMETRY TG )
定义:在程序控制温度下,测量物质质量与温度关系的一 种技术。
(2) 气氛的影响
热重法通常可在静态气氛或动态气氛下进行测定。在静态气氛 下,如果测定的是一个可逆的分解反应,随着温度的升高,分解 速率增大。但由于试样周围气体浓度增加会使分解速率下降。另 外炉内气体的对流可造成样品周围的气体浓度不断变化。这些因 素会严重影响实验结果,所以通常不采用静态气氛。为了获得重 复性好的实验结果,一般在严格控制的条件下采用动态气氛。 试样周围气氛对热分解过程有较大的影响,气氛对TG曲线的影 响与反应类型、分解产物的性质和气氛的种类有关。 热重法所研究的反应大致有下列三种类型:
利用热重法测定发泡剂含量
AB段:热重基线 B点:Ti 起始温度 C点:Tf 终止温度 D点:Te外推起始温度,外 推基线与 TG 线最大斜率切 线交点。
DTG曲线上出现的各种峰对应着TG线的各个 重量变化阶段。
DTG曲线的优点
能准确反映出起始反应温度Ti, 最大反应速率温度Te和Tf 。 更能清楚地区分相继发生的热 重变化反应,DTG比TG分辨率更 高。

综合热分析法测定CaC2O4·H2O

综合热分析法测定CaC2O4·H2O

山西大学综合化学实验报告实验名称综合热分析法测定CaC2O4·H2O的脱水、分解曲线以及用非等温方法计算各步反应的活化能学院化学化工学院学生姓名专业学号年级指导教师二Ο年月日综合热分析法测定CaC2O4·H2O的脱水、分解曲线以及用非等温方法计算各步反应的活化能摘要:热分析是在程序控温下测定物质的物理性质与温度关系的一类技术。

由于物理化学过程都伴随有热效应,而且固-气体系在反应过程中又可出现固相或液相的质量变化。

因此,可借于对其热效应或质量的测定来了解过程的变化,从而解决研究中的一些问题。

这种方法的特点是由简单的实验曲线可以了解体系的变化过程和计算出物理化学参数,给研究者带来很大的方便。

本实验主要是了解差热和热重分析法的基本原理及方法,用同步热分析仪来测定差热和热重曲线并求出各步反应活化能。

关键词:差热分析示差扫描量热分析 CaC2O4·H2O 活化能引言热分析是研究物质随温度变化所发生的物理化学过程以及相应产生的性质状态变化的一种方法,这种分析方法应用广泛的一类技术。

热分析技术种类很多,比较常用的方法有差热法(DTA),热重法(TG)(包括微分热重(DTG)),差示扫描量热法(DSC)。

(1)热重分析热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。

热重法实验得到的曲线称为热重(TG)曲线。

TG 曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。

如图10.1CaC2O4·H2O 的热重曲线,有三个非常明显的失重阶段。

第一个阶段表示水分子的失去,第二个阶段表示CaC2O4 分解为CaCO3,第三个阶段表示CaCO3 分解为CaO。

CaC2O4·H2O的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。

这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线(图10.1 也显示出了CaC2O4·H2O 的微分热重曲线(DTG))。

热分析法测定草酸钙热分解机理及反应级数和活化实验报告

热分析法测定草酸钙热分解机理及反应级数和活化实验报告

热分析法测定草酸钙热分解机理及反应级数和活化能刘金河一、前言随着热分析仪器的智能化和精确度的提高,热分析技术在许多领域得到广泛应用,在石油石化领域的应用也日益增多。

因此,化学化工类专业的学生有必要了解热分析技术。

本实验的目的是通过实验使同学们了解热分析技术的基本原理,掌握热分析技术用于反应动力学研究的基本原理和确定固体物质热分解反应的分解机理。

二、实验原理热分析是指在程序控制温度下测量物质的物理性质与温度关系的一类技术,是研究物质在加热或冷却过程中,所发生的物理或化学变化的一种较简便又直观的研究方法。

程序控制温度一般是指线形的升温、降温,也包括恒温和非线形的升、降温过程。

物理性质是指质量、热量、温度、力学性质、电学性质等等。

本实验所用的热分析仪为WCT —2微机差热天平,可同时记录T 、TG 、DTA 三条曲线,通过对TG 曲线的微分可得DTG 曲线。

● 热重法(Thermogravimetry,TG ):在程序控温下,测量物质的质量与温度的关系的技术,测得的记录曲线称为热重曲线(TG ),其纵坐标为试样的质量,由上向下减少;横坐标为试样的温度或时间,由左向右增加。

● 微商热重法(Derivative Thermogravimetry, DTG )是热重曲线对时间或温度一阶微商的方法,即质量变化速率作为温度或时间的函数被连续地记录下来,即dT dw =f(T)或dt dw =f(t),测得的曲线为DTG 曲线,其纵坐标为质量变化速率dt dw ,自上向下表示减小,横坐标通常表示为温度T 或时间t ,自左向右增大。

● 差热分析(Differential Thermal Analysis, DTA )是在程序控制温度下,测量物质与参比物之间温度差与温度关系的一种技术。

所记录的是差热分析(DTA )曲线,以温度差(△T )为纵坐标,放热效应向上,吸热效应向下,以温度或时间为横坐标,自左向右增加。

. ● 仪器测量原理WCT-2微机差热天平为DTA —TG —DTG 联用热分析仪器,可对微量试样同时进行差热分析、热重测量及热重微分测量。

实验九综合热分析--实验十热分析应用

实验九综合热分析--实验十热分析应用

实验九综合热分析一、目的要求1、学习综合热分析的仪器装置及实验技术。

2、掌握综合热分析的特点及分析方法。

二、基本原理与方法综合热分析是指几种单一的热分析法相互结合成多元的热分析法。

也就是将各种单功能的热分析仪相互组合在一起变成多功能的综合热分析仪。

如差热(DTA)-热重(TG)、差示扫描(DSC)-热重(TG)、差热(DTA)-热重(TG)-微商热重(DTG)、差热(DTA)-热机械分析(TMA)等等。

这种多功能综合热分析的特点是在完全相同的实验条件下,也就是在一次实验中可同时获得样品的各种热变化信息。

因此,综合热分析具有极大的优越性而被广泛采用。

在无机非金属材料中,综合热分析技术使用得最多的是DTA-TG。

由综合热分析的基本原理可知,综合热分析曲线就是各单功能热分析曲线测绘在同一张记录纸上。

因此,综合热分析曲线上的每一单一曲线的分析与解释与单功能仪器所作曲线完全一样,各种单功能标准曲线都可作为综合热分析曲线的标准,分析解释时可作参考。

另外,在解释综合热分析曲线时,下面一些基本规律值得注意:(1)有吸热效应,伴有失重时,为脱水或分解过程,有放热效应伴有增重时,为氧化过程。

(2)有吸热效应,无质量变化时为多晶转变过程,有吸热并伴有胀缩时也可能是多晶转变过程。

(3)有放热效应,伴有收缩现象,表示有新物质形成。

例如图9-1示出了某种粘土的综合热分析曲线,它包括加热曲线、差热曲线、失重曲线和收缩曲线。

根据DTA曲线可知,该粘土的主要峰形与高岭土相符,其矿物组成应以高岭土(Al2O3、2SiO2·2H2O)为主。

DTA曲线上两个显著的吸热峰,第一个吸热峰从200℃以下开始发生至260℃达峰值,TG曲线上对应着这一过程的质量损失达3.7%,而收缩曲线表明这一过程体积变化不大,所以这一吸热峰对应的是高岭土失去层间吸附水的过程。

第二吸热峰从540℃开始至640℃达峰值,这一过程对应质量损失10.31%,而体积收缩1.4%。

实验报告一-热重分析

实验报告一-热重分析

南昌大学实验报告学生姓名:学号:专业班级:实验类型:■演示□验证□综合□设计□创新实验日期:实验成绩:实验一热重分析一、实验目的1. 了解热重分析的仪器装置及实验技术。

2. 测绘矿物的热重曲线,解释曲线变化的原因。

二、实验基本原理物质受热时,发生化学反应,质量也就随之改变,测定物质质量的变化就可研究其变化过程。

热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。

热重法实验得到的曲线称为热重曲线(即TG曲线)。

TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)为横坐标,自左至右表示温度(或时间)增加。

热重法的主要特点是定量性强,能准确地测量物质的变化及变化的速率。

热重法的实验结果与实验条件有关。

但在相同的实验条件下,同种样品的热重数据是重现的。

温控热电偶图1 热重分析原理图图2 TG曲线三、主要仪器设备及耗材主要设备:综合热分析仪1套。

试剂与耗材:CaC2O4·H2O(A.R.)、CuSO4·5H2O(A.R.)等四、实验步骤(1) 调整天平的空称零位;(2) 将坩埚在天平上称量,记下质量数值P 1,然后将待测试样放入已称坩埚中称量,并记下试样的初始质量;(3) 将称好的样品坩埚放入加热炉中吊盘内;(4) 调整炉温,选择好升温速率(若为自动记录,应同时选择好走纸速度,开启记录仪);(5) 开启冷却水,通入惰性气体;(6) 启动电炉电源,使电源按给定速度升温;(7) 观察测温表,每隔一定时间开启天平一次,读取并记录质量数值(若为自动记录,则定时观察TG 曲线,并标记质量和温度值);(8) 测试完毕,切断电源,待炉温降至100℃时切断冷却水。

五、实验数据及处理结果1. 根据得到的TG 曲线,读出试样质量发生变化前后的值及其所对应的温度,计算出其变化值。

2. 根据公式%样品原来的质量样品质量的变化值失重100(%)⨯= 可以计算出,样品的失重。

3. 分析曲线上质量变化的原因。

草酸钙的热重-差热分析

草酸钙的热重-差热分析

综合热分析法测定草酸钙【实验目的】(1)掌握热重-差热分析原理和ZCT-A型综合热分析仪的操作方法,了解其应用范围。

(2)对草酸钙进行热重及差热分析,测量化学分解反应过程中的分解温度。

(3)测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。

【实验原理】热分析是物理化学分析的基本方法之一。

综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。

热分析技术种类很多,比较常用的方法有(1)差热法(DTA),(2)热重法(TG)[包括微分热重(DTG)],(3)差示扫描量热法(DSC)。

(1)热重分析热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。

热重法实验得到的曲线称为热重(TG)曲线。

TG曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。

这些变化表征了试样在不同温度范围内发生的挥发组分的挥发,以及在不同温度范围内发生的分解产物的挥发。

如图1、图2 CaC2O4·H2O的热重曲线,有三个非常明显的失重阶段。

第一个阶段表示水分子的失去,第二个阶段表示CaC2O4分解为CaCO3,第三个阶段表示CaCO3分解为CaO。

当然,CaC2O4·H2O的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。

这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线[图1也现示出了CaC2O4·H2O的微分热重曲线(DTG)]。

微分热重曲线能很好地显示这些速率地变化。

图1 CaC2O4·H2O的TG-DSC曲线(文献图)图2 CaC2O4·H2O的TG曲线(文献图)(2)差热分析(DTA)和差示扫描量热分析(DSC)差热分析(DTA)是在试样与参比物处于控制速率下进行加热或冷却地环境中,在相同地温度条件时,记录两者之间地温度差随时间或温度地变化。

实验六差热分析草酸钙的热分解过程

实验六差热分析草酸钙的热分解过程

实验六差热分析草酸钙的热分解过程一、实验目的1. 掌握差热分析法的基本原理.2. 了解热分析仪的结构,掌握仪器的基本操作.3. 利用差热分析技术研究草酸钙的热分解过程.二、实验原理热分析是在程序控制温度下测量物质的物理性质与温度关系的一类技术.程序控制温度一般是指线性升温或线性降温,也包括恒温、循环或非线性升温、降温.物质性质包括质量、温度、热焓变化、尺寸、机械特性、声学特性、电学和磁学特性等等.在热分析技术中,热重法是指在程序控制温度下,测量物质质量与温度关系的一种技术,被测参数为质量通常为重量,检测装置为“热天平”,热重法测试得到的曲线称为热重曲线TG.热重曲线以质量作为纵坐标,可以用重量、总重量减少的百分数、重量剩余百分数或分解分数表示.曲线从上往下表示质量减少,以温度或时间作横坐标,从左向右表示温度或时间增加,所得到的重量变化对温度的关系曲线则称之为热重曲线.热重法的主要特点是定量性强,能准确地测量物质质量变化及变化的速率.在正常的情况下,热重曲线的水平部分看作是恒定重量的特征,变化最陡峭的部分,可以给出重量变化的斜率,曲线的形状和解析取决于试验条件的稳定性.热重曲线开始偏离水平部分的温度为反应的起始温度,测量物质的质量是在加热情况下测量试样随温度的变化,如含水和化合物的脱水,无机和有机化合物的热分解.物质在加热过程中与周围气氛的作用,固体或液体物质的升华和蒸发等,都是在加热过程中伴随有重量的变化.从热重法派生出微商热重法DTG和二阶微商法DDTG,前者是TG曲线对温度或时间的一阶导数,后者是TG 曲线的二阶导数.差热分析DTA是在程序控制温度下,测量物质与参比物之间的温度差与温度函数关系的一种技术,只要被测物质在所用的温度范围内具有热活性,则热效应联系着物理或化学变化,在所记录的差热曲线上呈现一系列的热效应峰,峰的位置由物质的化学组成的晶体结构所决定,而峰的面积则与发生反应时所放出的能量有关.差热分析曲线DTA曲线是描述样品与参比物之间的温度随时间或温度的变化关系.样品温度的变化是由于相转变或反应的吸热或放热效应引起的,比如:相转变、熔化、结晶结构的转变、沸腾、升华、蒸发、脱氢反应、断裂或分解反应、氧化或还原反应、晶格结构的破坏和其他化学反应.一般说来,相转变、脱氢还原和一些分解反应产生吸热效应,而结晶、氧化和一些分解反应产生放热效应.这些化学或物理变化过程所引起的温度变化可通过差示技术检测.如果样品和参比物的温度分别为Ts和Tr,那么温度差Ts-Tr就是DTA曲线的纵坐标.由于检测的是温差,所用的热电偶彼此是反向串接的,所以Ts和Tr之间的微小差值可以通过适当的电压放大装置检测,也即可用少量样品进行测试.差示扫描量热法DSC是在程序控制温度下,测量输送被测物质和参比物质的能量差与温度关系的一种技术.定量性和重复性都很好.其仪器和方法发展都很快,DSC仪器分为两大类,一类为功率补式,另一类称热流式.差热分析与差示扫描量热法比较,差热分析体系承受样品和参比物质在程序控温下的温度差,样品温度明显地增加或减少,归因于发生在样品中能量的放出放热或能量的吸收吸热,差示扫描量热体系是在相同温度下测量样品和参比物回路之间的能量差,当吸热变化产时能量被样品吸收,以增加能量来补偿、输出给样品,使温度保持平衡.因为这个能量的输入平衡了被吸收的能量,在量热计上产生了一个能量的转变.DSC对热分析的贡献就在于它能直接定量测量物质的转变能量.热分析仪器,主要由样品支持器、能量转变放大系统、程序温度控制系统、记录显示系统,气氛控制系统及数据处理系统组成.由于电子技术的发展,集成电路和微电子学,以及先进的热测量技术,大大提高了热分析仪器的灵敏度和重现性,计算机的应用使热分析仪器的操作和数据处理完全自动化.三、实验仪器与试剂1. 仪器热分析仪;电子天平;氧化铝坩埚;镊子;小勺.2. 试剂待测样品CaC2O4·H2O,差热参比物Al2O3.四、实验步骤1. 通水:提前3h接通冷却循环水,按下温控开关保持水温高于室温10℃.2. 通气:将气瓶出口压力调节至~,提前半小时开启使气流畅通.调节气体流量,使吹扫气/样品气为20~30mL/min;天平保护气为10~20mL/min.3. 开机:依次打开稳压电源开关、热分析仪开关、工作站开关,同时开启计算机和打印机.4. 称量:用电子天平准确称取已装入约占坩埚1/3~1/2高度的样品5mg,另准确称取放入适量参比物的坩埚.试样为无机物时,试样与参比物1:1;试样为有机物时,试样与参比物为1:2,.将两只坩埚轻轻敲打颠实.5. 放样:按热分析仪面板控制按键,炉子升起,将样品托板拨至炉子磁体端口.为避免操作失误导致杂物调入加热炉中,在打开炉子操作时,一定要将样品托板拨至热电偶下.用镊子取一只空坩埚放入白金样品吊篮内,将试样坩埚放在检测支持器前皿,将参比物坩埚放在后皿,移开样品托板,按键放下炉子.待天平稳定后,仪器自动扣除坩埚自重.6. 参数设定:进入操作软件界面,依次输入测量序号、样品名称、样品质量、坩埚质量、气氛、操作者姓名等.打开温度校正文件和灵敏度校正文件,设定初始温度、终止温度和升温速率,采样速率.打开气体阀门开关.7. 测量:在对话界面,依次点击初始化、清零、开始.当试样达到预设的终止温度时,测量自动停止.8. 关机:待炉温降下来后再依次关闭工作站开关、电脑开关、稳压电源开关,关闭冷却水,关闭气瓶.为了保护仪器,炉温在500℃以上时不得关闭仪器主机电源.9. 数据分析:进入仪器分析软件界面,打开测试文件夹,对原始TG 和DTA 记录曲线进行适当处理,可对其求导,得到DTG 曲线.选定每个台阶或峰的起止位置,算出各个反应阶段的TG 失重百分比、失重始温、终温、失重速率最大点温度等.DTA 又可选择项目进行分析,如切线求反应外推起始点、峰值、峰高、峰面积等.最后数据保存,打印曲线图.CaC 2O 4·H 2O 的TG 和DTA 曲线五、注意事项1. 差热分析是一种动态技术,吸热和放热曲线峰的形状、位置、数目是重要的.改善实验条件,如升温速率或炉子气氛,不但峰的位置会改变,也许峰的数目也会改变,从氮气氛改变成氧气氛,可能产生另外的放热峰.2. 试样用量、粒度、气氛、容器、装样的紧密程度对热分析实验结果的影响.六、数据处理1. 由所测DTA 曲线,求出各峰的起始温度,将数据列表记录,求出所测样品的失重率.CaC 2O 4·H 2O 的热分析过程:第一阶段 脱水: CaC 2O 4·H 2O 固 CaC 2H 4固+ H 2O 气第二阶段 脱CO : CaC 2H 4 CaCO 3固+ CO 气+ O 2第三阶段 脱CO 2: CaCO 3 CaO 固+ CO 2气① 失重量 %w =14618×%100=%3.12 ② 草酸钙分解 %w =14628×%100=%2.19 ③ 碳酸钙分解 %w =14644×%100=%1.30 总失重∑%w =%2. 依据所测TG 和DTG 曲线,由失重百分比推断反应方程式.七、问题与讨论1. 影响差热分析结果的主要因素有哪些2. 用CaC 2O 44H 2O 化学式量计算理论失重率,与实测值比较.如有差异,试讨论原因. 附型热分析仪基本操作方法:。

热分析法测定草酸钙热分解机理及反应级数和活化实验报告

热分析法测定草酸钙热分解机理及反应级数和活化实验报告

热分析法测定草酸钙热分解机理及反应级数和活化能刘金河一、前言随着热分析仪器的智能化和精确度的提高,热分析技术在许多领域得到广泛应用,在石油石化领域的应用也日益增多。

因此,化学化工类专业的学生有必要了解热分析技术。

本实验的目的是通过实验使同学们了解热分析技术的基本原理,掌握热分析技术用于反应动力学研究的基本原理和确定固体物质热分解反应的分解机理。

二、实验原理热分析是指在程序控制温度下测量物质的物理性质与温度关系的一类技术,是研究物质在加热或冷却过程中,所发生的物理或化学变化的一种较简便又直观的研究方法。

程序控制温度一般是指线形的升温、降温,也包括恒温和非线形的升、降温过程。

物理性质是指质量、热量、温度、力学性质、电学性质等等。

本实验所用的热分析仪为WCT —2微机差热天平,可同时记录T 、TG 、DTA 三条曲线,通过对TG 曲线的微分可得DTG 曲线。

● 热重法(Thermogravimetry,TG ):在程序控温下,测量物质的质量与温度的关系的技术,测得的记录曲线称为热重曲线(TG ),其纵坐标为试样的质量,由上向下减少;横坐标为试样的温度或时间,由左向右增加。

● 微商热重法(Derivative Thermogravimetry, DTG )是热重曲线对时间或温度一阶微商的方法,即质量变化速率作为温度或时间的函数被连续地记录下来,即dT dw =f(T)或dt dw =f(t),测得的曲线为DTG 曲线,其纵坐标为质量变化速率dt dw ,自上向下表示减小,横坐标通常表示为温度T 或时间t ,自左向右增大。

● 差热分析(Differential Thermal Analysis, DTA )是在程序控制温度下,测量物质与参比物之间温度差与温度关系的一种技术。

所记录的是差热分析(DTA )曲线,以温度差(△T )为纵坐标,放热效应向上,吸热效应向下,以温度或时间为横坐标,自左向右增加。

. ● 仪器测量原理WCT-2微机差热天平为DTA —TG —DTG 联用热分析仪器,可对微量试样同时进行差热分析、热重测量及热重微分测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合热分析法测定CaC2O4·H2O的脱水、分解曲线以及用非等温方法计算各步反应的活化能
摘要:热分析是在程序控温下测定物质的物理性质与温度关系的一类技术。

由于物理化学过程都伴随有热效应,而且固-气体系在反应过程中又可出现固相或液相的质量变化。

因此,可借于对其热效应或质量的测定来了解过程的变化,从而解决研究中的一些问题。

这种方的特点是由简单的实验曲线可以了解体系的变化过程和计算出物理化学参数,给研究者带来很大的方便。

近年来随着电子技术的发展使这个方法向微量、快速等方面发展,使用领域也逐渐扩大。

本实验主要是了解差热和热重分析法的基本原理及方法,用同步热分析仪来测定差热和热重曲线并求出各步反应活化能。

关键词:差热分析示差扫描量热分析 CaC2O4·H2O 活化能
引言:
热分析是研究物质随温度变化所发生的物理化学过程以及相应产生的性质状态变化的一种方法,这种分析方法应用广泛的一类技术。

热分析技术种类很多,化学工作者比较常用的方法有(1)差热法(DTA),(2)热重法(TG)(包括微分热重(DTG)),(3)差示扫描量热法(DSC)。

(1)热重分析
热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。

热重法实验得到的曲线称为热重(TG)曲线。

TG 曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。

这些变化表征了试样在不同温度范围内发生的挥发组分的挥发,以及在不同温度范围内发生的分解产物的挥发。

如图10.1
CaC2O4·H2O 的热重曲线,有三个非常明显的失重阶段。

第一个阶段表示水分子的失去,第二个阶段表示CaC2O4 分解为CaCO3,第三个阶段表示CaCO3 分解为CaO。

当然,CaC2O4·H2O 的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。

这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线(图10.1 也现示出了CaC2O4·H2O 的微分热重曲线(DTG))。

微分热重曲线能很好地显示这些速率地变化。

(2)差热分析(DTA)和差示扫描量热分析(DSC)
差热分析(DTA)是在试样与参比物处于控制速率下进行加热或冷却地环境中,在相同地温度条件时,记录两者之间地温度差随时间或温度地变化。

差示扫描量热分析(DSC)记录地则是在二者之间建立零温度差所需地能量随时间或温度地变化。

差热分析和差示扫描量热分析所得到的谱图或曲线常画成在恒定加热或冷却的速率下随时间或温度变化的形式,其横坐标相应于时间或温度,作差热分析测量时,纵坐标为试样与参比物之温差,而作差示扫描量热分析时,纵坐标为试样池与参比池之功率差(dΔC/dt)。

从图10.1 可以看出,CaC2O4·H2O 的DSC 曲线(DTA 曲线与DSC 曲线相似)有三个向上的峰,分别表示
CaC2O4·H2O 热分解时发生了三个吸热反应。

所以DSC(或DTA)反映的是所测试样在不同的温度范围内发生的一系列伴随着热现象的物理或化学变化。

换言之,凡是有热量变化的物理和化学现象都可以借助于差热分析或差示扫描热分析的方法来进行精确的分析,并能定量地加以描述。

(3)草酸钙CaC2O4·H2O 的热分解过程有如下三步
一、实验部分
㈠仪器与试剂
STA 449F3 同步热分析仪 CaC2O4·H2O
㈡具体操作方法
⑴打开电源,开机预热20min,同时打开电脑的操作系统。

⑵设置天平放大单元,微分量程以及差热放大单元,并将各参数输入程序中。

⑶调零.拧开热电偶外罩,用镊子将坩埚轻放在平板热电偶上,套上热电偶外罩,用电减码调零。

⑷称取样品:调零结束后,先取出放试样的坩埚, 取一定量的CaC2O4·H2O放入坩埚,均匀铺
平,并捣实样品。

将试样在轻轻放在平板热电偶上,注意观察接口单元TG挡电压值不得超过5 V.被测样品的质量由程序读出。

⑸打开氮气,保护气体流量为20mL/min;载气气体流量为60mL/min。

在加热的同时打开风扇散热。

⑹编排升温程序:①以2K/min的速度程序升温至35℃②在35℃保温30min ③以10K/min的速度程序升温至1000
⑺在软件中输入待测样品的信息,设置采样温度,开始采样。

⑻采样结束后,存盘返回,并停止加热。

⑼数据处理。

⑽待电炉降温至室温,关闭所有开关,关闭电源,盖上外罩。

㈢实验注意事项
1.调零和称取样品时,坩埚一定要轻拿轻放,防止将银丝拉断
2.样品要均匀平铺在坩埚中,保证待测样品受热均匀
3.开始升温时,先按下∨,使显示Run,观察电压表,若电压急剧上升,应立刻按下∨,使显示Hold,仪表进入等待,当电压降至一稳定状态时,再按∨,此时开始程序升温,打开电炉电源。

4.仪器没有记忆功能,因此在采样过程中,不能关闭程序
5.升温度结束时,先按下stop,再停止电炉
二、实验数据及处理
在实验软件中得到四条曲线,分别为热重曲线(绿色TG)、微分热重曲线(蓝色DTG)、差热曲线(紫色DTA)和升温曲线(红色T)。

按前面所述的DTA曲线测量法和TG曲线测量法,找出脱水、分解温度和各步化学反应的百分失重。

在处理数据图中得到如下两条曲线:上面一条为TG曲线,下面一条为DSC曲线
1.按TG曲线测定重量的方法,计算出脱水及分解各步反应所失重百分数,并与理论值比较:
化学反应过程百分失重测量值
/% 百分失重理论值
/%
11.22 12.32
18.08 19.23
29.17 30.15
由上面各组数据可得:在实验结果基本在实验误差内,反应按以上步骤进行反应。

2.按DSC曲线测定温度的要求,计算各步的反应焓,数据如下表:
化学反应过程积分面积 KJ/mol 文献值 KJ/mol
58.85 136.9
-23.50 300.2
89.04 275.5
由上表数据可得:理论上三步反应都市放热反应,但实际上第二步却是吸热反应,并且热量变化与实验值相差差较大。

三、实验讨论
1.在TG曲线上,物质未发生变化前TG线理论上应该为水平,但实际上是一条向上斜的线,原因是:N2在升温过程中密度减小,那么天平本在的N2环境中所受的浮力减小,进而反应在样品质量的增加,曲线上斜。

但是曲线在TG校正下还是有点上斜,那可能是仪器本身原因,要求仪器要重新校准。

2.在理论和通常情况下,DSC曲线的三个峰都是向上的,而本实验的中的第二个峰却是向下的,原因是在实验前N2更换有少量的空气进入载气管,而在第二步CaC2O4分解中会产生CO,而后与O2反应,这个反应为吸热反应,所以第二个DSC峰为向下的倒峰。

3.影响TG和DSC曲线的还有其他的因素:
①坩埚的影响:
热分析用的坩埚材质,要求对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性,也不能有催化活性。

本实验用的是石英坩埚,其熔点1750℃,反应活性低。

②挥发物再冷凝的影响:
试样热分析过程逸出的挥发物有可能在热天平其它部分再冷凝,这不但污染了仪器,而且还使测得的失重量偏低,待温度进一步上升后,这些冷凝物可能再次挥发产生假失重,使TG曲线变形,使测定不准,也不能重复。

所以通过通入载气使产生气体挥发。

③升温速率的影响:
这是对TG测定影响最大的因素。

升温速率越大温度滞后越严重,开始分解温度Ti及终止分解温度Tf都越高。

温度区间也越宽。

本实验在不同的阶段采用不同的升温程序,以减小误差。

④气氛的影响:
在流动气氛中进行TG测定时,流速大小、气氛纯度、进气温度等是否稳定,对TG曲线都有影响。

一般,气流速度大,对传热和逸出气体扩散都有利。

使热分解温度降低。

对于真空和高压热天平,气氛压力对TG也有很大影响。

⑤试样用量、粒度和装填情况的影响:
试样用量多时,要过较长时间内部才能达到分解温度。

试样粒度对TG曲线的影响与用量的影响相似,粒度越小,反应面积越大,反应更易进行,反应也越快,使TG曲线的Ti 和Tf都低,反应区间也窄。

试样装填情况首先要求颗粒均匀,必要时要过筛。

参考文献
1. 张仲礼,黄兆铭,李选培编,热学式分析仪器,机械工业出版社,1984.
2. 陈镜泓,李传儒编,热分析及其应用,科学出版社,1985.
3. 神户博太郎著,刘振海等译,热分析,化学工业出版社
4 徐国华,袁靖宇编,常用热分析仪器,上海科技出版社
5 李余增主编,热分析导论,化学工业出版社
6.于铂龄.姜胶东关于DTA曲线方程及反应终点判断方法的讨论 1991.
7.任宁.张建军热分析动力学数据处理方法的研究进展[期刊论文]-化学进展2006(4)
8.分析技术在材料研究中的应用.。

相关文档
最新文档