机械零件的强度计算.

合集下载

第7章机械零件的疲劳强度计算.ppt

第7章机械零件的疲劳强度计算.ppt

图7.1~图7.3的载荷与时间坐标图称为载荷谱,可以用分析法 或实测法得出,在很多情况下,只能实测得出。为了计算方便, 常将载荷谱简化为简单的阶梯形状。

I—起动;II—匀速运动; III—制动 图7.4 旋转起重机的载荷谱
设计时,如果有载荷谱资料,所设计的机械其可靠性可大大 提高。
7.1.2 变应力的种类
上任意一点所对应的应力值代表了该循环次数下的疲劳
极限称为有限寿命疲劳极限(rN)。
到达D点后,曲线趋于
平缓。由于这时的循环次数
很多,因此试件的寿命非常 长。故D点以后的线段表示 试件无限寿命疲劳阶段,其 疲劳极限称为持久疲劳极限,
σmax
σB
A
B C
记为r。持久疲劳极限r∞
可通过疲劳试验测定。实际 上由于D点所对应的循环次
7.2 疲劳极限与极限应力线图
7.2.1 -N疲劳曲线与疲劳极限
由前可知,机械零件的强度准则为
ca≤[]=
lim
[S]
只要lim能确定,则强度准则可以
或:
建立。若零件在静应力条件下工作,
Sca
lim ca
[S]
则lim为强度极限B或屈服极限s。
式中,[S]-安全系数, lim-极限应力。
(b) 加速度常数
图7.2 不稳定循环载荷
在一个工作循环中,速度发生变化,载荷也随之 不稳定变化。
很多机械,如汽车、飞机、农业机械等,由于工作阻力变动、 冲击振动等的偶然性,载荷的频率和幅值随时间按随机曲线变化, 这种载荷称为随机变载荷。
F
图7.3 随机变载荷
t
突然作用且作用时间很短的载荷称为动载荷,例如冲击载荷、 机械起动和制动时的惯性载荷、振动载荷等。动载荷也可以是循 环作用的,例如多次冲击载荷。

机械零件的强度计算

机械零件的强度计算

(1) 对于大多数黑色金属及其 合金,当应力循环次数N高于 某一数值N0后,疲劳曲线呈现 为水平直线。
m rN
N
C
r
(2) 而对有色合金和高硬度合 O
金钢,无论N值多大,疲劳曲
线也不存在水平部分。
rN
N0称为应力循环基数,它 随材料不同而有不同的数值。
通 常 , 对 HBS≤350 的 钢 ,
N0≈107 ; 对 HBS>350 的 钢 , N0 ≈ 25×107 。
应力集中的影响
有效应力集中系数——材料、尺寸和受载情况都 相同的一个无应力集中试样与一个有应力集中试
样的疲劳极限的比值: k 1 /( 1 )k
绝对尺寸的影响
绝对尺寸系数——直径为d的试样的疲劳极限与
直径d0(=6~110)md m/(的 试1 )样d0的疲劳极限的比值:
表面状态的影响
表面状态系数——试样在某种表面状态下的疲劳 极限与精抛光试样(未经强化处理)的疲劳极限
• 有限寿命计算
材料疲劳极限应力 =材料的疲劳限*寿命系数 > 寿命系数,计算指数m(取决于材料和应力的种类) > N=102-104时,属低循环疲劳破坏 > N<102时, 按静强度处理
材料的极限应力线图及其简化
• 材料的极限应力线图
> 不同r 时试验所得的各极限应力表示在平均应力和 应力幅的坐标系中。
O
N0
N
m rN
N
C
N
有明显水平部分的疲劳曲线可以分 rN
为两个区域:
有限寿命区——N<N0 的部分
无限寿命区——N≥N0的部分
有限寿命区应力循环次数和疲劳极限之
间的关系:

第三章 机械零件的疲劳强度计算

第三章 机械零件的疲劳强度计算

m

max min
2

200 100 2

50
a

max min
2

200 100 2
150

200
a
50
0
-100
min
max
m
t
机械设计 第三章 机械零件的疲劳强度计算
机械设计
3.2 材料的疲劳特性
3.2.1 材料的疲劳曲线
表示N次循环和疲劳极限间的关系曲线,称为疲劳曲线。
机械设计
曲线的BC段,随着循环次数的增加, 使材料疲劳破坏的最大应力不断下降。 C点相应的循环次数大约为104。把这一 阶段的疲劳现象称为应变疲劳。由于 应力循环次数相对很少,所以也叫低 周疲劳。
机械设计 第三章 机械零件的疲劳强度计算
机械设计
当N≥104时,称为高周循环疲劳。曲
线CD代表有限疲劳阶段。D点对应的 疲劳极限ND称为循环基数,用N0表示。 曲线CD段上任何一点所代表的疲劳极 限,称为有限寿命疲劳极限。
机械设计
1.稳定循环变应力
1) 对称循环变应力
最大应力σmax和最小应力σmin的
绝对值相等而符号相反
即σmax=-σmin
例如,转动的轴上作用一方向 不变的径向力,则轴上各点的弯曲 应力都属于对称循环变应力
机械设计 第三章 机械零件的疲劳强度计算
机械设计
2) 脉动循环变应力 脉动循环变应力中
σmin=0
劳极限。连接A′、D′得
直线A′D′
机械设计 第三章 机械零件的疲劳强度计算
机械设计
取C点的坐标值等于材料的 屈服极限σS,并自C点作一直 线与直线CO成45°的夹角, 交A′D′的延长线于 G′, 则CG′上的任何一

03_疲劳强度计算

03_疲劳强度计算

m
1 N0
n
m i
n
i
i 1
Sca
1 e
S
2. 当量循环次数Ne计算法:
取不稳定循环诸变应力中数值最大的应力或循环次
数最多的应力(对疲劳损伤影响最大的那个应力),
作为计算基准应力,而将诸变应力i所对应的循环次
数ni转化为当量循环次数Ne,使得应力循环Ne次后,
对材料所造成的损伤与诸应力i各自循环ni次对材料所
lim m ax ae m e s
按静应力计算:
M m e, ae M m, a
Sca
lim
m ax max
s m a
S
N
N
H
工作应力分布在: OAGH :疲劳强度计算 HGC :静强度计算
3.变应力的最小应力保持不变,即 min C(如受轴向变载荷的紧螺栓)
4)计算安全系数:Sca
lim
m ax max
S
零件的极限应力
lim m ax m e ae
零件的极限应力点的确定:
按零件的载荷变化规律不同分:
• 变应力的应力比保持不变,即:r = C • 变应力的平均应力保持不变,即:m = C • 变应力的最小应力保持不变,即:min = C
M m e, ae M m, a
1)如果此线与AG线交于M( me ,ae ),则有:
m e m
,
ae
1
m
K
lim m ax ae m e 1
K
K
m
Sca
lim
m ax max
1
K
K m m a
S
2)如果此线与GC线交于N( me ,ae ),则有:

机械零件疲劳强度计算例题

机械零件疲劳强度计算例题
max
M
max

200000
min
W M min

32
25
3
MPa 130 . 4 MPa

100000
a max min / 2 130 . 4 65 . 2 2 MPa 32 . 6 MPa
32
W

25
3
MPa 65 . 2 MPa
S K N 1 K a m 1 . 29 441 2 . 34 60 0 . 2 60 3 . 73 S 2 . 5
2用图解法计算疲劳强度安全系数 1)画极限应力简图
1 e 0e
2 K N 1 K K N 0 2 K 1 . 29 441 2 . 34 1 . 29 735 2 2 . 34 MPa 202 . 6 MPa MPa 243 . 2 MPa
解:应力的循环特性
r
min max

31 . 2 130
0 . 24
应力幅σa和平均应力σm
a max min
2 130 31 . 2 2 130 31 . 2 2 MPa 80 . 6 MPa
m
max min
2
1用解析法计算疲劳强度安全系数1确定材料性能mpampa7352计算疲劳强度安全系数计算寿命系数k计算疲劳强度安全系数2用图解法计算疲劳强度安全系数1画极限应力简图mpampa601201010603444129mpampa2433444129mpampa20234735293计算疲劳强度安全系数图解法计算结果与解析法计算结果相近

03-02 机械零件的疲劳强度计算讲解

03-02 机械零件的疲劳强度计算讲解

• 尽可能地减小或消除零件表面可能发生的初始裂纹的尺
寸,对于延长零件的疲劳寿命有着比提高材料性能更为
显著的作用。
(3)双向稳定变应力时零件的疲劳强度计算
3. 计算安全系数
4. 不对称循环的变应力
(4)提高机械零件疲劳强度的措施
• 尽可能降低零件上的应力集中的影响
• 可采用减荷槽来降低应力集中的作用;
(4)提高机械零件疲劳强度的措施
• 选用疲劳强度高的材料;
• 提高材料疲劳强度的热处理方法及强化工艺;
• 提高零件的表面质量;
3-2 机械零件的疲劳强度计算
(0)零件的极限应力线图 (1)单向稳定变应力时机械零件的疲劳强度计算 (2)单向不稳定变应力时机械零件的疲劳强度计算 (3)双向稳定变应力时机械零件的疲劳强度计算 (4)提高机械零件疲劳强度的措施
(0)零件的极限应力线图
1. 材料的极限应力线图 2. 零件的极限应力线图
(1)单向稳定变应力时机械零件的疲劳强度计算
计算零件疲劳强度的基本方法: • 零件危险截面上的σmax和σmin;
• 平均应力σm和应力幅σa
• 标出工作应力点M;
• 找出和工作应力 点相对应的疲劳 强度极限; • 计算零件工作的 安全系数。
(1)单向稳定变应力时机械零件的疲劳强度计算
1. 变应力的循环特性保持不变(r = C )
3. 变应力的最小应力保持不变(σmin = C )劳极限,分母看成是 一个与原来作用的不对称循环变应力等效的对称循环变应力。
• 应力的等效转化 :
• 计算安全系数为:
(2)单向不稳定变应力时零件的疲劳强度计算
• 不稳定变应力可分为非规律性的和规律性的两大类。 • 疲劳损伤累积假说:Miner法 则

机械设计 第03章 强度

机械设计 第03章  强度

m rN
N
C ( N C
N
ND)
疲劳曲线2
D点以后——无限寿命疲劳阶段
rN r (N N D )
σr∞ 称为持久疲劳
-N疲劳曲线
由于ND很大,所以在作疲劳试验时,常规定一个循环次数 N0(称为循环基数),用N0及其相对应的疲劳极限σr来近似代表ND
和 σr∞ ,于是有:
有限寿命区间内循环次数N与疲劳极限rN的关系为:
D′点: σm = σa = σ0/2,为脉动循环点。
σa A'(0, 1 )
D'(20
,
0
2
)
G
' m
' a
r
2
0
2
45° O
45°
σm
C( S , 0) B
则A′D′G′C即为简化极限应力图。
返回目录
前一页
后一页
退出
3、材料极限应力图的画法
已知: σ-1,σ0, σs;
σa A'(0, 1) D'( 0 , 0 )
即 σa=cσm 同理σa′=cσm ′
C值取决于应力比r
所以,极限应力点为经过坐标原点O点和工作点M的直线上。
σa
A
计算安全系数:
M'( m e , ae )
Sca lim
' max
' ae
' me
max
max
a m
极限应力点M′的坐标值可以用图解
M( m , a )
G 和解析两种方法求解。 解析法:联立AG和OM两条直线的方
M(σm,σa)
2)如果工作点M在AB范围外,则工作点处于不安全工作 区,材料在该应力作用下会发生破坏。

机械设计中的强度计算方法

机械设计中的强度计算方法

机械设计中的强度计算方法机械设计是一门综合性很强的学科,强度计算是其中的重要内容之一。

在机械设计中,强度计算的目的是确保设计的零件能够承受各种静态和动态载荷,并保持其结构完整。

本文将介绍机械设计中常用的强度计算方法。

一、静态强度计算方法静态强度计算是指对设计零件在静态载荷下的强度进行评估和计算。

常用的静态强度计算方法包括材料的强度学理论、挤压、拉伸和剪切等。

1. 材料的强度学理论材料的强度学理论是静态强度计算的基础。

常用的理论有最大应力理论、最大应变理论和能量方法等。

最大应力理论认为当材料受力时,其应力不能超过材料的屈服极限;最大应变理论认为当材料的应变超过其屈服点时,材料将发生破坏;能量方法根据材料在受力时的应力和应变关系来计算强度。

2. 挤压、拉伸和剪切挤压、拉伸和剪切是常见的静态强度计算方法。

挤压计算主要用于轴上的零件,其计算原则是在轴上施加的载荷与零件的强度进行匹配;拉伸计算主要用于拉杆、螺栓等零件,其计算原则是在零件上施加的拉力与零件的抗拉强度进行匹配;剪切计算主要用于薄板、焊缝等零件,其计算原则是在零件上施加的剪力与零件的剪切强度进行匹配。

动态强度计算是指对设计零件在动态载荷下的强度进行评估和计算。

常用的动态强度计算方法包括疲劳寿命计算、冲击载荷计算和振动计算等。

1. 疲劳寿命计算疲劳寿命计算用于评估设计零件在长期循环加载下的寿命。

常用的疲劳寿命计算方法有Wöhler曲线法和应力寿命法。

Wöhler曲线法建立了材料的应力与寿命关系曲线,通过对应力幅与平均应力的比值进行计算;应力寿命法通过疲劳试验获取材料的应力寿命曲线,并根据实际应力进行计算。

2. 冲击载荷计算冲击载荷计算用于评估设计零件在瞬态载荷下的强度。

常用的冲击载荷计算方法有冲击动力学分析法和能量法。

冲击动力学分析法通过分析冲击过程中的应力、应变和位移等参数,以及材料的冲击性能来计算强度;能量法基于能量守恒定律,将冲击能量与零件吸收能量进行比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 机械零件的强度计算
第0节 强度计算中的基本定义 一. 载荷
1. 按载荷性质分类:
1) 静载荷:大小方向不随时间变化或变化缓
慢的载荷。

2) 变载荷:大小和(或)方向随时间变化的
载荷。

2. 按使用情况分:
1)
公称载荷(名义载荷): 按原动机或工作机的额定功率计算出的载荷。

2) 计算载荷:设计零件时所用到的载荷。

计算载荷与公称载荷的关系:
F ca =kF n M ca =kM n T ca =kT n
3) 载荷系数:设计计算时,将额定载荷放大
的系数。

由原动机、工作机等条件确定。

二. 应力
2.按强度计算使用分
1) 工作应力:由计算载荷按力学公式求得的应力。

2) 计算应力:由强度理论求得的应力。

3) 极限应力:根据强度准则
、材料性质和
应力种类所选择的机械性能极限值σlim 。

4) 许用应力:等效应力允许达到的最大值。

[σ]=
σlim /[s σ]
稳定变应力 非稳定变应力
对称循环变应力
脉动应力 规律性非稳定变应力
随机性非稳定变应力 静应力 对称循环变应力 脉动应力
σ周期变应力
第1节 材料的疲劳特性
一. 疲劳曲线 1. 疲劳曲线
给定循环特征γ=σlim /σmax ,表示应力循 环次数N 与疲劳极限σγ的关系曲线称为疲 劳曲线(或σ-N )。

2. 疲劳曲线方程
1) 方程中参数说明
a) 低硬度≤350HB ,N 0=107 高硬度>350HB ,N 0=25×107
b) 指数m :
c) 不同γ,σ-N 不同;γ越大,σ也越大。


二、 限应力线图
1) 定义:同一材料,对于不同的循环特征进行试验,
求得疲劳极限,并将其绘在σm -σa
坐标系上,所得的曲线称为极限应力线图。

C
N N m m N ==0γγσσr N N k m
N
N σσσγγ==0
m
N
N k N 0=整理:
即:
其中:
N 0--循环基数
σγ--N 0时的疲劳极限
k N --寿命系数
用线性坐标表示的
疲劳曲线
N
D
2)简化曲线
3)σ-N与σm-σa关系
a) σ-N曲线:同一循环特征下、不同循环次数。

b) σm-σa:不同循环特征、相同循环次数。

第二节机械零件的疲劳强度计算
一、影响疲劳强度的因素
影响机械零件疲劳强度的主要因素有:应力集中、尺寸大小、表面质量等。

它们零件疲劳极限的影响用综合影响系数Kσ=σ-1/σ-1e、Kτ=τ-1/τ-1e来表示。

它与应力集中关系为:
Kσ=(kσ/εσ+1/βσ-1)/βq
Kτ=(kτ/ετ+1/βτ-1)/βq
其中:
kσ、kσ---零件有效应力集中系数
kσ=1+qσ(ασ-1)
kτ=1+qτ(ατ-1)
qσ、qτ---材料的敏感系数
ασ、ατ---理论应力集中系数
εσ、εσ---零件的尺寸系数
βσ、βτ---表面状态系数
βq---表面强化系数
二、考虑应力综合影响系数时极限应力线图
三、向稳定变应力下的机械零件疲劳强度
何谓单向..、复杂..、稳定变应力..?、
s=σlim/σmax>[sσ]
1.作应力的增长规律
1)应力循环特征为常数γ=C例:只受弯矩的转动轴。

2)平均应力为常数常数σm=C例:弹簧。

3)最小应力为常数σmin=C例:螺纹联结
σ)




寿





C
C σ
)D)
σ
)D)
2. 循环特征为常数时的强度计算 1)求极限应力:
σm /σa = ( σmax -σmin )/( σmax +σmin )= ( 1-γ)/( 1+γ)= 常数 因为 γ常数
联解AD 和OC 得零件极限应力:
σa '= k N σ-1σa /σae σm '= k N σ-1σm
/ σae
其中: σae =k σσa +ψσσm
ψσ=(2σ-1-σ0)/σ0
2) 强度计算
(1)按应力幅计算安全系数C'在A'E'上
s σa =σa '/ σa =k N σ-1/ [k σσa +ψσσm ]= k N σ-1/ σae
σae --等效应力幅
ψσ---平均应力折合为应力幅的等效系数 (2)按静强度计算C'在E'S 上
s σ=σs /(σa +σm )
第4节 械零件的接触强度
机械零件的表面强度分:表面接触强度、表面挤压强度、表面磨损强度
1. 表面接触强度的计算
1) 接触应力的概念
两零件构成高副接触,接触处形成较小的接触面积,产生很大的应力,该应力称为接触应力。

2) 接触应力的计算
接触应力按弹性力学中赫兹公式计算
b 点接触
0/2k σ) m
A
H G
M
L
O
32
2
2121max
21116⎪⎪⎪⎪⎪⎭

⎝⎛-+-=E E F H μμρσ
为综合曲率半径
ρρρρ
2
1
±
=
两接触体材料的泊松比

两接触体材料的弹性模、、----2121μμE E ⎪⎪⎪⎪⎪⎭


⎛-+-=2
1112
212
1max
E E b
F H μμρπσ。

相关文档
最新文档