(完整版)视频目标检测与跟踪算法综述
《2024年目标跟踪算法综述》范文

《目标跟踪算法综述》篇一一、引言目标跟踪是计算机视觉领域的重要研究方向之一,其应用广泛,包括视频监控、人机交互、自动驾驶等领域。
目标跟踪算法的主要任务是在视频序列中,对特定目标进行定位和跟踪。
本文旨在全面综述目标跟踪算法的研究现状、基本原理、技术方法以及发展趋势。
二、目标跟踪算法的基本原理目标跟踪算法的基本原理是通过提取目标特征,在视频序列中寻找与该特征相似的区域,从而实现目标的定位和跟踪。
根据特征提取的方式,目标跟踪算法可以分为基于特征的方法、基于模型的方法和基于深度学习的方法。
1. 基于特征的方法:该方法主要通过提取目标的颜色、形状、纹理等特征,利用这些特征在视频序列中进行匹配和跟踪。
其优点是计算复杂度低,实时性好,但容易受到光照、遮挡等因素的影响。
2. 基于模型的方法:该方法通过建立目标的模型,如形状模型、外观模型等,在视频序列中进行模型的匹配和更新。
其优点是能够处理部分遮挡和姿态变化等问题,但模型的建立和更新较为复杂。
3. 基于深度学习的方法:近年来,深度学习在目标跟踪领域取得了显著的成果。
该方法主要通过训练深度神经网络来提取目标的特征,并利用这些特征进行跟踪。
其优点是能够处理复杂的背景和目标变化,但需要大量的训练数据和计算资源。
三、目标跟踪算法的技术方法根据不同的应用场景和需求,目标跟踪算法可以采用不同的技术方法。
常见的技术方法包括基于滤波的方法、基于相关性的方法和基于孪生网络的方法等。
1. 基于滤波的方法:该方法主要通过设计滤波器来对目标的运动进行预测和跟踪。
常见的滤波方法包括卡尔曼滤波、光流法等。
2. 基于相关性的方法:该方法通过计算目标与周围区域的相关性来实现跟踪。
常见的相关性方法包括基于均值漂移的算法、基于最大熵的算法等。
3. 基于孪生网络的方法:近年来,基于孪生网络的跟踪算法在准确性和实时性方面取得了显著的进步。
该方法通过训练孪生网络来提取目标和背景的特征,并利用这些特征进行跟踪。
视频目标对象检测与跟踪方法概述

采用基于帧间图像强度守衡的梯
通过特征匹配求得特征点处的光流
度算法来计算光流
10
视频目标检测方法-背景减除法
背景减除法是将视频帧与背景模型进行比较,通过判定灰度等特征的变化,或用直方图等统计 信息的变化来判断异常情况的发生和分割出运动目标。如果当前图像的象素点和背景图像的象 素点灰度值差别很大,就认为此象素点有目标存在;相反,如果当前图像的象素点和背景图像 的象素点灰度值差别较小,在一定的阈值范围内,就认为此象素点为背景象素点。
质心跟踪法
边缘跟踪法
场景锁定法
组合跟踪法
这种跟踪方式主要用 于跟踪有界目标,如 飞机,目标和背景的 差异较大。目标完全 在视频画面内,跟踪 时,常常需要用一些 图像预处理算法,如 对比度增强、图像去 噪、双极性增强等。
当要跟踪的目标有一 个或多个边缘并且同 时具有不确定的边缘 ,此时边缘跟踪的效 果最好。典型的跟踪 对象是发射中的火箭 ,它有很好的前边缘 ,但是尾部边缘却由 于喷气而不确定。
场景。
18
04 总结与展望
总结与展望
视频运动目标的检测和跟踪主要用于获取运动目标的位置、姿态、轨迹等基本运动信息, 是理解服务对象或对目标实施控制的前提和基础。在场景较固定、环境较简单时, 通常采 用基于背景建模的方法, 就能够很好地进行运动目标的检测与跟踪任务。在动态背景下, 环境较复杂时, 一般需要对运动目标进行表观建模, 实现其检测与跟踪任务。
初始化提取 运动目标特
征
特征搜索阶 段
决策阶段
粒子重采样
15
视频目标跟踪方法-基于轮廓的目标跟踪
视频目标跟踪算法综述

视频目标跟踪算法综述目标跟踪算法可以分为两类:基于模型的跟踪和基于特征的跟踪。
基于模型的跟踪算法通常通过建立目标的动态模型来预测目标的位置,而基于特征的跟踪算法则通过提取目标的特征信息来跟踪目标。
基于模型的跟踪算法中,最常见且经典的算法是卡尔曼滤波器算法。
该算法通过对目标位置进行状态预测,并融合传感器测量数据来更新目标的状态估计。
卡尔曼滤波器算法在目标运动较稳定且传感器测量误差较小的情况下表现良好,但在目标运动不规律或传感器测量误差较大的情况下容易出现跟踪丢失的问题。
基于特征的跟踪算法则通过提取目标的外观特征信息来跟踪目标。
常见的特征包括颜色、纹理、形状等。
其中,颜色特征是最常用的特征之一,因为它对光照变化具有一定的鲁棒性。
常见的颜色特征提取算法有颜色直方图、颜色模型等。
此外,还有一些基于纹理的特征提取算法,如Gabor滤波器、局部二值模式(LBP)等。
除了上述传统的目标跟踪算法,近年来深度学习技术的发展为目标跟踪带来了新的突破。
通过使用深度神经网络进行特征提取和目标分类,深度学习方法在目标跟踪任务上取得了很好的效果。
其中,基于卷积神经网络(CNN)的跟踪算法在目标检测和特征提取方面表现出色。
基于深度学习的目标跟踪算法通常采用两种方式进行训练:有监督学习和无监督学习。
有监督学习通过标注好的训练数据进行模型训练,而无监督学习则通过对未标注的视频序列进行训练。
近年来,基于深度学习的目标跟踪算法取得了显著的进展,并在各种跟踪性能评估指标上取得了优秀的结果。
然而,由于深度学习方法通常需要大量的数据和计算资源进行训练,因此在一些实际应用中仍然存在一定的局限性。
综上所述,视频目标跟踪是计算机视觉中的一个重要研究方向。
传统的基于模型和基于特征的跟踪算法以及近年来兴起的基于深度学习的跟踪算法为视频目标跟踪提供了不同的解决方案。
未来随着技术的不断进步,视频目标跟踪算法将不断发展,并在各种实际场景中得到更广泛的应用。
视频监控系统中的目标跟踪算法综述

视频监控系统中的目标跟踪算法综述视频监控系统在现代社会中扮演着至关重要的角色,用于维护公共安全和保护财产。
其中,目标跟踪算法作为视频监控系统中的关键技术,承担着实时、准确、自动跟踪目标的任务。
本文将对视频监控系统中的目标跟踪算法进行综述,并探讨其应用和未来发展趋势。
目标跟踪算法是指通过分析连续帧图像中目标的位置和运动信息,准确定位、识别并跟踪目标在时间序列中的位置。
根据跟踪方法的不同,目标跟踪算法可以分为基于模型的方法、基于特征的方法和混合方法。
首先,基于模型的目标跟踪算法通过构建和更新目标模型来实现跟踪。
其中,粒子滤波算法是一种经典的基于模型的目标跟踪方法,通过采用概率分布来估计目标位置和速度。
该算法可以通过对粒子进行加权更新来实现准确的目标跟踪,但对目标外观模型的选择和更新策略的设计要求高。
其次,基于特征的目标跟踪算法利用目标的边缘、颜色、纹理等特征信息来进行跟踪。
其中,卡尔曼滤波算法是一种常用的基于特征的目标跟踪方法,通过结合运动模型和观测模型来估计目标的位置和速度。
然而,该算法在目标存在非线性运动或者观测误差较大时容易产生跟踪漂移。
最后,混合方法是将基于模型和基于特征的目标跟踪算法相结合,以融合两者的优势。
例如,以卡尔曼滤波算法为基础的条件随机场目标跟踪方法,通过引入马尔可夫链来建模目标的状态转移,同时考虑目标的空间邻接关系,从而实现更准确的目标跟踪。
然而,在实际应用中,视频监控系统面临着许多挑战。
其中包括复杂的场景背景、光照变化、目标遮挡等问题。
为了克服这些挑战,研究者们提出了许多改进的目标跟踪算法。
一种常用的改进方法是引入深度学习技术。
深度学习可以自动学习目标的特征表示,通过卷积神经网络等深度学习模型来实现目标跟踪。
例如,基于深度学习的Siamese网络目标跟踪方法通过将目标和背景分别表示为两个共享网络,来实现更加准确的目标跟踪。
另一种改进方法是引入多目标跟踪技术。
多目标跟踪算法可以同时跟踪多个目标,并考虑目标之间的相互关系和交互作用。
《2024年目标跟踪算法综述》范文

《目标跟踪算法综述》篇一一、引言目标跟踪作为计算机视觉领域中的一项关键技术,近年来在安防、无人驾驶、医疗影像处理等领域得到了广泛的应用。
其目的是通过一系列的图像处理和计算方法,实时准确地检测并跟踪特定目标。
本文将对当前主流的目标跟踪算法进行全面而详细的综述。
二、目标跟踪算法的发展历程早期的目标跟踪算法主要是基于滤波的跟踪算法,如均值漂移法等。
这些算法简单易行,但难以应对复杂多变的场景。
随着计算机技术的进步,基于特征匹配的跟踪算法逐渐兴起,如光流法、特征点匹配法等。
这些算法通过提取目标的特征信息,进行特征匹配以实现跟踪。
近年来,随着深度学习技术的发展,基于深度学习的目标跟踪算法成为了研究热点。
三、目标跟踪算法的主要分类与原理1. 基于滤波的跟踪算法:该类算法主要利用目标在连续帧之间的运动信息进行跟踪。
常见的算法如均值漂移法,通过计算当前帧与模板之间的差异来寻找目标位置。
2. 基于特征匹配的跟踪算法:该类算法通过提取目标的特征信息,在连续帧之间进行特征匹配以实现跟踪。
如光流法,根据相邻帧之间像素运动的光流信息来计算目标的运动轨迹。
3. 基于深度学习的跟踪算法:该类算法利用深度学习技术,通过大量的训练数据学习目标的特征信息,以实现准确的跟踪。
常见的算法如基于孪生网络的跟踪算法,通过学习目标与背景的差异来区分目标。
四、主流目标跟踪算法的优缺点分析1. 优点:基于深度学习的目标跟踪算法能够学习到目标的复杂特征信息,具有较高的准确性和鲁棒性。
同时,随着深度学习技术的发展,该类算法的跟踪性能不断提升。
2. 缺点:深度学习算法需要大量的训练数据和计算资源,且在实时性方面存在一定的挑战。
此外,当目标与背景相似度较高时,容易出现误跟或丢失的情况。
五、目标跟踪算法的应用领域及前景目标跟踪技术在安防、无人驾驶、医疗影像处理等领域具有广泛的应用前景。
例如,在安防领域,可以通过目标跟踪技术实现对可疑目标的实时监控;在无人驾驶领域,可以通过目标跟踪技术实现车辆的自主导航和避障;在医疗影像处理领域,可以通过目标跟踪技术实现对病灶的实时监测和诊断。
视频目标跟踪算法综述

信 息 技 术14科技资讯 SCIENCE & TECHNOLOGY INFORMATIONDOI:10.16661/ki.1672-3791.2018.02.014视频目标跟踪算法综述①杨亚男1 付春玲2(1.河南大学计算机与信息工程学院 河南开封 475001;2.河南大学物理与电子学院 河南开封 475001)摘 要:本文介绍了视频目标跟踪算法及其研究进展。
首先给出了视频目标跟踪技术的定义和特点;然后将其分为生成式跟踪算法和判别式跟踪算法两大类,进而简单评析了两大类算法中的经典方法;最后进行了总结和展望。
关键词:目标跟踪 生成式跟踪算法 判别式跟踪算法中图分类号:TP391 文献标识码:A 文章编号:1672-3791(2018)01(b)-0014-02①基金项目:河南大学第十五批教学改革项目“《嵌入式系统原理与开发》课程教学改革研究”,河南大学民生学院教育教学 改革研究项目“《计算机控制技术》课程教学改革研究”,河南大学第十六批教学改革项目”自动化专业课程体系 与教学内容改革研究”项目编号:HDXJJG2016-011。
视频目标跟踪是对视频序列中特定的目标进行检测,以获取其位置、运动轨迹等信息,从而进行后续深入的处理与分析[1]。
视频目标跟踪算法按照跟踪过程是否包含对目标的检测,可分为生成式跟踪算法与判别式跟踪算法[2]。
生成式跟踪算法首先进行目标检测,进而对前景目标进行表观建模,然后按照一定的跟踪策略估计跟踪视频中目标的最优位置;判别式跟踪算法则对视频中每一帧图像进行检测以获取目标状态,因此该方法又被称为基于检测的跟踪方法。
1 生成式跟踪算法生成式跟踪算法按照表观模型的建立形式分为基于核的算法、基于子空间的算法以及基于稀疏表示的算法[2]。
基于核的算法首先对目标进行表观建模,进而确定相似性度量策略以实现对目标的定位。
该算法适用于非刚体目标跟踪,利用目标色彩信息的概率密度函数进行表观建模,通过Mean Shift理论对运动目标位置进行估计,该方法又称为Mean Shift跟踪。
视频检测和运动目标跟踪方法总结

视频检测和运动目标跟踪方法总结目前常用的视频检测方法可分为如下几类:光流法,时域差分法,背景消减法,边缘检测法,运动矢量检测法[2]。
一、光流法光流法[1]是一种以灰度梯度基本不变或亮度恒定的约束假设为基础对运动目标进行检测的有效方法。
光流是指图像中灰度模式运动的速度,它是景物中可见的三维速度矢量在成像平面上的投影,表示了景物表面点在图像中位置的瞬时变化,一般情况下,可以认为光流和运动场没有太大区别,因此就可以根据图像运动来估计相对运动。
优点:光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够检测独立运动的对象,不需要预先知道场景的任何信息,并且能够适用于静止背景和运动背景两种环境。
缺点:当目标与背景图像的对比度太小,或图像存在噪音时,单纯地从图像灰度强度出发来探测目标的光流场方法将会导致很高的虚警率。
且计算复杂耗时,需要特殊的硬件支持。
二、时域差分法时域差分法分为帧差法和改进的三帧双差分法。
1.帧差法帧差法[8]是在图像序列中的相邻帧采用基于像素点的时间差分, 然后阈值化来提取出运动区域。
视频流的场景具有连续性,在环境亮度变化不大的情况下,图像中若没有物体运动,帧差值会很小;反之若有物体运动则会引起显著的差值。
优点:时域相邻帧差法算法简单,易于实现,对背景或者光线的缓慢变化不太敏感,具有较强的适应性,能够快速有效地从背景中检测出运动目标。
缺点:它不能完全提取运动目标所有相关像素点,在运动实体内部不容易产生空洞现象。
而且在运动方向上被拉伸,包含了当前帧中由于运动引起的背景显露部分,这样提取的目标信息并不准确。
2.三帧双差分法三帧双差分法与相邻帧差法基本思想类似,但检测运动目标的判决条件上有所不同。
三帧双差分较两帧差分提取的运动目标位置更为准确。
三、背景消减法背景消减法[4]是将当前帧与背景帧相减,用阈值T判断得到当前时刻图像中偏离背景模型值较大的点,若差值大于T则认为是前景点(目标);反之,认为是背景点,从而完整的分割出目标物体。
基于深度学习的视频目标检测与跟踪算法研究

基于深度学习的视频目标检测与跟踪算法研究一、引言随着计算机视觉技术的飞速发展,视频目标检测与跟踪在许多领域中发挥着重要作用,如智能监控、自动驾驶、虚拟现实等。
基于深度学习的视频目标检测与跟踪算法,通过深度神经网络的训练与优化,能够在复杂场景中准确地检测出目标物体并进行实时跟踪,具有很高的实用价值。
本文将针对基于深度学习的视频目标检测与跟踪算法进行研究。
二、视频目标检测1.传统方法的不足在传统的视频目标检测算法中,主要采用的是基于特征工程的方法,需要人工提取出适合目标检测的特征并设计相应的分类器。
然而,这种方法存在着特征提取难、特征选择不准确等问题,限制了检测算法的性能。
在大量数据训练的情况下,特征工程的成本也很高。
2.基于深度学习的视频目标检测算法深度学习在计算机视觉领域中的应用逐渐兴起,特别是卷积神经网络(CNN)的兴起使得目标检测算法得到了极大的改善。
基于深度学习的视频目标检测算法主要通过训练一个深度神经网络,使其能够自动学习出目标物体的特征表示,并通过后续的分类器对目标进行识别与定位。
首先,深度神经网络通常包含多个卷积层和池化层,用于提取图像中不同层次的特征。
然后,通过全连接层将提取到的特征与标签进行匹配,训练网络模型。
最后,通过对新的图像样本进行前向传播,得到目标物体的识别和定位结果。
基于深度学习的视频目标检测算法相较于传统方法具有很多优势。
首先,深度神经网络能够自动学习出适用于目标检测的特征表达,避免了人工特征工程的复杂性。
其次,通过大规模数据的训练,深度学习模型能够提高目标检测的准确性和泛化能力。
此外,深度学习算法还能够处理大规模数据集,使得算法具备更好的实时性。
三、视频目标跟踪1.传统方法的不足传统的视频目标跟踪算法通常基于目标的运动模型或者外观模型,但是它们在面对复杂场景时往往表现不佳。
这是因为传统方法无法有效地应对目标形变、光照变化、遮挡等问题,且对复杂背景下的目标无法准确跟踪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视频目标检测与跟踪算法综述1、引言运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在视频编码、智能交通、监控、图像检测等众多领域中。
本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。
2、视频监控图像的运动目标检测方法运动目标检测的目的是把运动目标从背景图像中分割出来。
运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。
目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。
背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。
所有这些特点使得运动目标的检测成为一项相当困难的事情。
目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。
2.1帧差法帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设f k(x, y)和f(k i)(x, y)分别为图像序列中的第k帧和第k+1帧中象素点(x,y)的象素值,则这两帧图像的差值图像就如公式2-1所示:Diff ki f k(x, y) f(k 1)(x, y)(2-1)2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。
利用此原理便可以提取出目标。
下图给出了帧差法的基本流程:1、首先利用2-1式得到第k帧和第k+1帧的差值图像Diff k 1;2、对所得到的差值图像Diff k 1二值化(如式子2-2示)得到Qk+1 ;3、为消除微小噪声的干扰,使得到的运动目标更准确,对Q k 1进行必要的滤波和去噪处理,后处理结果为M k 1。
1255,if ,Diff k 1(x,y) T(T为阈值)(2-2)0,if ,Diff k1(x,y) T1从结果看在简单背景下帧差法基本可检测到运动目标所在的位置, 而且计算简单,复杂度低。
当图像采样间隔较小时, 帧差法对图像场景变化不敏感,这是 帧差法的优点,但同时目标部分漏检的可能性增大了, 容易使检测到的目标出现 空洞。
在实际应用中,由于帧差法的简易性,帧差法经常作为某些改进算法的基 础。
2.2光流法光流的概念[30,31]是由Gibson 在1950年首先提出的,光流理论在计算机 视觉,三维运动分析中有着非常广泛的作用。
外界物体由于运动在人的视网膜上 产生一系列连续变化的信息,这些信息就如同是光的流一样不断从眼中流过, 故 此称之为光流。
1981年Horn 和Schunek 创造性的将二维速度场和我们通常所 说的图像的灰度联系在一起,提出了光流约束方程,从而使得光流的计算有了最 基本的方法。
随后光流法不断发展,按照理论基础分为:微分法,快匹配法,基 于能量的方法,基于相位的方法,其中尤以微分法最为常用,该方法主要是基于 下面两种假设:1、 强度不变假设,即在一组连续的二维图像序列中,某个 目标的运动轨迹在各帧中对应的像素点具有相同的灰度值。
2、 全局平滑假设,即物体的运动矢量是局部平滑的或只有缓慢变化。
特别 是刚体运动,各相邻像素点具有相同的运动速度,即速度平滑。
这时,光流矢量 梯度的模值的平方应该最小,用 x 和y 分量的拉普拉斯算子的平方和来表征光 流场的平滑程度。
假如给定一个图像上m 点坐标为(x ,y),且它在t 时刻的象素值为I (x, y,t)在 t d t 时刻该点运动到(x d x ,y d y ),象素值为:I(x d x ,y d y ,t d 」则在强度不变的假设下:I (x d x , y d y ,t d t ) I (x, y,t) 公式2-3即为光流约束方程,将式2-3泰勒展开,并令d t 趋于0,我们可以得到:I x U I y V I t0 (2-3)(2-4)帧差流程图其中I x I. x,|y I;y,I t p t,u d xj d t,v d y.. d t,(u,v)即为像素点在图像平面运动产生的瞬时速度场也即光流场。
光流法的主要任务就是通过求解光流约束方程求出U、V,但是由于只有一个方程,并不能唯一确定U和V,这就用到了第二个假设,在该假设下就是要使得:E ((I x U I y V I t)2 a2((」)2(亠)2(」)2(」)2))d x d y min (2-5)x y x y其中a是个权重系数,一般取0.5,这样联合(2-4)式和(2-5)式即可得到:n 1 n n nt 2 2 2..u u I x[I x U I y V I ];[a I x I y ]n 1 n n n t 2 2 2 (3-6)V V I y[I x U I y V I ],[a I x I y ]从推导的过程看,光流法的计算非常复杂,难于满足实时性的要求,且在目标提取时对噪声很敏感,所以此算法还难以直接在实际中推广使用。
2.3背景减除法背景减除法是将视频帧与背景模型进行比较,通过判定灰度等特征的变化,或用直方图等统计信息的变化来判断异常情况的发生和分割出运动目标。
基于背景差的方法,概念非常清晰。
该方法与帧差法相比,可以检测出短时间静止的目标,如短时间静止的车辆(长时间静止的车辆可以归为背景),且不受车速快慢的限制;与光流法相比,背景差法可以通过简化算法,降低计算量,满足视频检测的实时性要求。
但随着研究的不断深人,算法的复杂性也在不断提高,特别是对较复杂场景下的前景(运动目标)检测,如针对光照变化场景下的目标检测(室外的环境光、室内的灯光等),针对含有高噪声场景区域的目标检测(场景中含有树木、水面、旗帜等物体的反复运动),针对场景频繁发生改变(车辆停止、背景中物体搬动等)情况下的目标检测等问题,使得算法的复杂性大大提高。
用背景减除法进行运动目标检测的主要过程包括预处理、背景建模、前景检测和运动区域后处理等。
背景建模是背景减除法的核心环节,目前主要方法有:基于背景的时间差分法、中值滤波法、W4方法、线性预测法、非参数模型法(又称内核密度估计法)、混合Gauss法、隐马尔科夫模型法(HMM)、本征法、基于均值替换的背景估计法、码本方法等。
目前用无参的核密度估计方法对复杂场景的背景建模正成为背景差方法研究的热点,该方法特别针对具有微小重复运动的场合,如含有摇动的树叶、晃动的灌木丛、旋转的风扇、海面波涛、雨雪天气、光线反射等运动的场合。
由于基于无参的核密度估计的背景建模是对一段视频的统计分析,在对视频图像中的背景进行建模时,计算量很大,这势必会影响算法的实时性,因此需要在提高背景建模的速度与准确率上做大量的研究工作,同时改进模型的适应性。
另外,背景更新策略方面,如何判断是否需要更新背景模型,如何及时的更新背景模型都是现阶段困扰研究人员的问题。
基于无参方法的背景差法主要分为四个步骤:1、利用无参法对背景进行建模,2、核函数带宽选择,3.对背景模型进行更新,4、运动目标的提取。
对于以上三种运动目标的检测方法,帧差法实现最为简单,但目标提取效果较差,该方法通常可以作为某种改进算法的基础。
光流法相对准确,但计算复杂,实时性很差,且对多目标提取困难。
背景差法可以较好的提取目标轮廓,但该方法涉及对背景的建模,建模过程比较复杂。
这些早期提出的移动目标检测方法大都单独地处理各个像素的灰度值或颜色而没有考虑较大尺度上的特征,故可称它们为基于像素的方法。
典型的方法包括均值-阈限方法、高斯混合模型、非参数模型等。
由于这些方法没有充分利用局部像素之间的关系信息,很多有效的图像特征无法得到表示,从而导致移动目标检测精度及效度都受到影响。
后期大量的检测方法都不同程度地利用了局部区域层次的信息,称为基于区域的方法。
典型的基于区域的方法包括纹理方法直方图方法等。
针对移动目标检测的各种像素级、区域级特征不断被提出,它们各有各的优缺点。
如何能够设计一种特征将这些特征统一地结合在一起,从而充分利用各自的优势显得非常有意义。
一种简单的思路是用几种特征组成特征向量,并利用该向量作为各个像素的特征:f k [x, y, LBP(x,y),|l x(x,y) , I y(x, y),……]3、视频目标跟踪算法运动目标跟踪是在目标检测的基础上,对检测到的目标进行有效跟踪。
目前, 在视频监控、人机交互及某些高级的视频系统中,对感兴趣目标的跟踪是其中必不可少的重要环节,它为后面更高级的视觉应用提供有价值的信息。
通常影响跟踪的因素主要有四个:目标模板的表示,候选目标的表示,相似度的衡量和搜索的策略。
衡量跟踪算法优劣的条件有两个,即实时性和鲁棒性,所以一个好的跟踪算法应满足:1. 实时性好:算法要费时少,至少要比视频采集系统的采集速率快,否则将无法实现对目标的正常跟踪。
如果跟踪系统还涉及到其他的图像处理环节,那么就要预留较多的时间给图像处理部分,所以实时性至关重要。
2. 鲁棒性强:实际的观测环境,图像的背景可能很复杂。
光照、图像噪音及随时可能出现的目标遮挡,均使目标的跟踪变得非常困难。
因此算法的鲁棒性对跟踪效果的好坏起着重要的作用。
以上提到的两条很难在系统中同时得以满足,往往需要某种折中,以期得到较好的综合性能。
通常运动目标的跟踪可以分为运动目标检测、运动目标的特征选取和目标的后续跟踪三个阶段。
由此可见跟踪算法远比单纯的目标检测算法复杂的多。
根据被跟踪目标信息使用情况的不同,可将视觉跟踪算法分为:基于对比度分析的目标跟踪、基于匹配的目标跟踪和基于运动检测的目标跟踪。
基于对比度分析的跟踪算法主要利用目标和背景的对比度差异,实现目标的检测和跟踪。
基于匹配的跟踪主要通过前后帧之间的特征匹配实现目标的定位。
基于运动检测的跟踪主要根据目标运动和背景运动之间的差异实现目标的检测和跟踪。
前两类方法都是对单帧图像进行处理。
基于匹配的跟踪方法需要在帧与帧之间传递目标信息。
对比度跟踪不需要在帧与帧之间传递目标信息。
基于运动检测的跟踪需要对多帧图像进行处理。
除此之外,还有一些算法不易归类到以上 3 类,如多目标跟踪算法或其他一些综合算法。
3.1 基于对比度分析的目标跟踪算法基于对比度分析的目标跟踪算法利用目标与背景在对比度上的差异来提取、识别和跟踪目标。
这类算法按照跟踪参考点的不同可以分为边缘跟踪、形心跟踪和质心跟踪等。
这类算法不适合复杂背景中的目标跟踪,但在空中背景下的目标跟踪中非常有效。
边缘跟踪的优点是脱靶量计算简单、响应快,在某些场合(如要求跟踪目标的左上角或右下角等)有其独到之处。
缺点是跟踪点易受干扰,跟踪随机误差大。
重心跟踪算法计算简便,精度较高,但容易受到目标的剧烈运动或目标被遮挡的影响。