用光栅测量光的波长

合集下载

实验5-7 用光栅测量光的波长

实验5-7 用光栅测量光的波长

实验5-7 用光栅测量光的波长实验目的:1. 掌握用光栅测量光的波长的原理和方法;2. 通过实验验证波长的计算公式。

实验原理:1. 光栅的原理当入射平行光通过光栅时,会因为光栅上的等间距狭缝而发生衍射。

衍射的波前在各狭缝上振动,形成一系列新的次波前,这些次波前在远离光栅的地方再次重叠,形成有规则的干涉条纹。

通过观察干涉图案的条纹间距,可以计算出入射光的波长。

2. 计算公式nλ=d(sinα+sinβ)式中,n为干涉级次,λ为入射光的波长,d为光栅的线数每毫米数(即刻度尺数),α和β分别为入射和反射光的夹角。

实验仪器:光栅、汞灯、反射制作品、转动式平台、测角仪、显微镜、扩展光路。

实验步骤:1. 将反射式制作品固定在转动式平台上,并将光路调整好,使从汞灯发出的紫色光垂直射向反射制作品,并将反射制作品顺时针旋转至最大亮度位置。

2. 旋转平台,将光线沿指示线方向向反射式制作品发出,调整反射制作品至最大亮度位置。

3. 将显微镜放置在观测位置,观察干涉色条纹,并测量相邻两条纹的距离。

4. 记录干涉级次n,测量α和β的夹角,计算出波长λ。

实验数据:n=1,d=600栅数/毫米,α=(19.1±0.1)°,β=(16.5±0.1)°;两相邻条纹距离为(1.5±0.1)mm。

实验结果:根据计算公式,可得出计算公式的计算结果:λ=(4.75±0.45)×10^-7m(使用不确定度计算公式:δλ=λ×(δα/α+δβ/β+δd/d)= λ×(0.103))实验结论:通过本实验,我们学习了光栅测量光的波长的原理和方法,并通过实验验证了波长的计算公式。

实验结果表明,本实验具有一定的准确性和可靠性。

使用光栅测量光的波长的技巧与原理

使用光栅测量光的波长的技巧与原理

使用光栅测量光的波长的技巧与原理光是一种电磁波,具有波长和频率的特性。

在科学研究和工程应用中,准确测量光的波长是非常重要的。

光栅是一种常用的光学元件,可以通过光的干涉和衍射现象来测量光的波长。

本文将介绍使用光栅测量光的波长的技巧与原理。

光栅是一种具有规则周期性结构的透明或不透明介质,通常由许多平行的凸起或凹陷构成。

当入射光通过光栅时,会发生干涉和衍射现象。

光栅的周期性结构使得入射光发生干涉,形成一系列明暗相间的光条纹。

这些光条纹的间距与光栅的周期以及入射光的波长有关,因此可以通过测量光条纹的间距来确定光的波长。

在实际测量中,通常使用一个光源和一个光栅来进行测量。

光源可以是一束单色光或者是一束白光。

当使用单色光时,测量的结果更加准确,因为单色光只有一个特定的波长。

而当使用白光时,由于白光包含了多个波长的光,测量结果会有一定的误差。

测量光的波长的方法有很多种,其中一种常用的方法是通过测量光栅的衍射角度来计算光的波长。

当入射光通过光栅时,会发生衍射现象,形成一系列衍射角度。

这些衍射角度可以通过测量光条纹的位置来确定。

根据衍射理论,可以得到光的波长与衍射角度之间的关系。

通过测量光栅的衍射角度,可以计算出光的波长。

另一种常用的方法是通过测量光栅的衍射级数来计算光的波长。

光栅的衍射级数是指光栅上的某一条纹所对应的衍射级别。

光栅的衍射级数与光的波长和光栅的周期有关。

通过测量光栅的衍射级数,可以计算出光的波长。

除了以上两种方法,还有一种常用的方法是通过测量光栅的光谱条纹来计算光的波长。

光栅的光谱条纹是指光栅上的一系列明暗相间的光条纹。

这些光条纹的间距与光的波长和光栅的周期有关。

通过测量光栅的光谱条纹,可以计算出光的波长。

在实际测量中,需要使用一些光学仪器来进行测量。

例如,可以使用光学望远镜来观察光栅的衍射角度或光谱条纹;可以使用光电二极管来测量光的强度;可以使用电子计算机来进行数据处理和结果计算。

总之,使用光栅测量光的波长是一种常用的方法,通过测量光栅的干涉和衍射现象,可以准确测量光的波长。

光栅衍射测光的波长步骤

光栅衍射测光的波长步骤

光栅衍射测光的波长步骤
光栅衍射是一种测量光的波长的方法。

以下是光栅衍射测光的波长的步骤:
1. 准备实验装置:需要一个光源、一个光栅、一个屏幕和一个测量器具(例如尺子或显微镜)。

2. 将光源置于一定距离外,并确保光线垂直射向光栅。

3. 将光栅置于光线路径上,并确保光线通过光栅时是平行的。

4. 将屏幕放置在光栅后方,以接收通过光栅的光线。

5. 调整屏幕的位置,使得通过光栅的光线在屏幕上形成清晰的衍射条纹。

6. 使用测量器具测量衍射条纹之间的距离,即光栅条纹的间距。

7. 使用衍射公式计算光的波长。

光栅的衍射公式为:d·sinθ= m·λ,其中d为光栅的间距,θ为衍射角度,m为整数,λ为波长。

8. 将测得的衍射角度代入衍射公式,计算波长。

注意事项:
- 在实验过程中,确保光线的方向和光栅的位置是准确的,以获得准确的结果。

- 尽量使用单色光源,以便获得清晰的衍射条纹。

- 重复实验多次,取平均值以增加测量的准确性。

用透射光栅测光波波长

用透射光栅测光波波长

用透射光栅测光波波长在许多光学应用中,测量光波的波长是非常重要的。

测量光波波长的一种常用方法是使用透射光栅。

透射光栅是一种具有细微刻痕的光学元件,可以将光波分解成不同的频率或波长。

透射光栅通常由玻璃或塑料制成,具有非常高的精度和可重复性。

如果需要准确测量光波的波长,透射光栅是一个非常好的选择。

透射光栅的原理是根据光的干涉和衍射。

当光线通过透射光栅时,它会被分解成不同波长的光所组成的光谱。

透射光栅的表面通常具有许多细微刻痕,可以使光线在通过时发生干涉和衍射现象。

这些现象会导致不同波长的光经过光栅时发生不同的偏移,从而形成一个光谱。

为了测量光波的波长,需要将光线通过透射光栅。

通过传送和衍射现象,光线将分解成不同波长的光,从而形成一个光谱。

光谱上的不同峰值代表不同波长的光。

通过对这些峰值进行测量,可以推导出光波的波长。

为了实现这一目标,可以使用光谱仪。

光谱仪是一种非常精密的量测设备,可以将光谱数据转换为数字信号,从而提供高精度的波长测量。

使用光谱仪可以实现非常高的测量精度,并且可以同时测量多个波长的光,从而提高测试效率。

当测量光波波长时,需要考虑一些因素。

首先,必须确保透射光栅的精度和可重复性。

其次,必须保证测量环境光线的光谱和波长质量。

这通常需要在实验室内进行,以避免外部光照干扰。

最后,还需要根据要测量光的波长选择正确的透射光栅。

不同光波需要不同的光栅,以充分发挥其分光和分光效果。

如果使用不正确的透射光栅,测量结果可能会产生偏差。

总之,透射光栅是一种非常有用的工具,在测量光波的波长时得到广泛应用。

通过合理地选择透射光栅和测量设备,可以实现高精度和可重复的光波波长测量。

光栅特性及测定光波波长-实验报告

光栅特性及测定光波波长-实验报告
I. 调节光栅平面(即刻痕所在平面)与平行光管垂直:在调好望远镜后, 将光栅放置在载物台上,使光栅平面大致垂直于望远镜,再用自准直法调节光 栅平面,知道从光栅平面反射回来的亮“+”字像与分划板中心垂直线重合, 使光栅平面与平行光管光轴垂直。
II. 调节光栅使其刻痕与仪器转轴平行:松开望远镜的紧固螺丝,转动望远 镜,找到光栅的一级和二级衍射谱线,±1,±2,…级谱线分别位于 0 级谱线两 侧。调节各条谱线中点与分划板缘心重合,即使两边光谱等高。调好后,再返 回检查光栅平面是否与平行光管光轴垂直。,若有改变,则要反复调节,知道两 个条件均能满足。 2. 测定光栅常数(绿光的±1 级谱线)
+1 级
-1 级
Δϕ
246°12’ 276°32’ 15°10’
ϕ
15°11’
15°10’ 210°59’ 241°23’ 15°12’ 15°11’
15°15’ 218°34’ 248°53’ 15°10’ 15°13’
15°12’
15°11’ 15°12’
(2)黄 1:
第一次 第二次 第三次 平均
Δϕ
19°9’
+1 级
-1 级
Δϕ
186°11’ 224°28’ 19°9’
第二次 22°15’
60°30’
19°8’ 202°15“ 240°30’ 19°8’
第三次 35°46’
74°2’
19°8’ 215°50’ 254°5’ 19°8’
平均
19°8’
19°8’
δΔϕ

=
�0.00022
+
e2 3
左游标读数
+1 级
-1 级
25°58’

光栅测波长的原理的应用

光栅测波长的原理的应用

光栅测波长的原理的应用1. 引言光栅测波长是一种常见的光学测量方法,它利用光栅的光栅常数和光栅的光条之间的干涉现象来测量光的波长。

光栅测波长的原理被广泛应用于物理学、化学、材料科学、光学以及其他相关领域。

本文将详细介绍光栅测波长的原理以及其在实际应用中的一些典型示例。

2. 光栅测波长的原理光栅测波长的原理基于光的干涉现象和光栅的特性。

当平行光通过光栅时,光栅上的光条会发生干涉现象。

这是因为光栅上的光条会发生干涉现象。

根据光的干涉原理,当光通过光栅时,光束会分裂成多个光条,形成棱镜效应。

这些分裂的光条会发生干涉,形成明纹和暗纹的干涉图样。

3. 光栅测波长的应用光栅测波长的原理在实际应用中得到了广泛的应用。

以下是一些光栅测波长应用的典型示例:•光谱仪:光栅测波长的原理被广泛应用于光谱仪中。

光谱仪利用光栅的光栅常数和光栅的光条之间的干涉现象来分析光的频谱成分。

通过测量不同波长光的干涉图样,光谱仪可以确定光的波长,从而实现光谱分析。

•折射率测量:光栅测波长的原理可以应用于测量物质的折射率。

通过测量不同介质中光的干涉图样,可以计算出介质的折射率。

这在材料科学和光学研究中非常有用,可以帮助测量物质的光学性质。

•波长标定:光栅测波长的原理可以用于标定光源的波长。

通过将未知波长的光源与已知波长的光源进行干涉比较,可以准确测量出未知光源的波长。

这对于光学仪器的校准和准确性很重要。

•光通信:光栅测波长的原理也被应用于光通信领域。

光通信系统中,需要精确测量光信号的波长,以确保信号的传输和接收的准确性。

通过使用光栅测波长的原理,可以实现对光信号波长的精确测量。

•激光技术:光栅测波长的原理在激光技术中也得到了广泛应用。

光栅可以用来调节激光光束的波长,并实现光束的调谐。

这在激光器的设计和应用中非常重要,可以实现对激光光束波长的精确控制。

4. 结论光栅测波长的原理是一种基于干涉现象和光栅特性的光学测量方法。

它被广泛应用于物理学、化学、材料科学、光学以及其他相关领域。

光栅测定光波波长实验要求

光栅测定光波波长实验要求
光栅测定光波波长实验要求如下:
1. 实验原理:使用光栅原理来测定光波的波长。

光栅是一种有大量平行光栅线的透明介质,当光通过光栅时,会发生衍射现象,形成多个亮度不同的衍射光束。

根据衍射现象和光栅的特性,可以通过测量衍射光束的角度和光栅线数来计算光波的波长。

2. 实验仪器:光源、准直镜、透镜、光栅、平行光管、光电管、测量仪器等。

3. 实验步骤:
- 构建实验装置:将光源放置在准直镜前方,通过透镜将光线准直,使光线平行射向光栅。

将光栅安装在平行光管内,并调整角度使得光线垂直射向光栅。

- 对光栅进行调节:调整光栅的位置和角度,使得衍射的一级亮点清晰可见。

- 测量衍射角度:使用测量仪器测量衍射光束的角度。

可以通过测量衍射光束与水平方向的夹角来确定衍射角度。

- 计算波长:根据光栅的特性和测得的衍射角度,使用光栅公式进行计算,得到光波的波长。

4. 实验注意事项:
- 实验环境应保持暗室或低光强环境,以减少背景杂散光的干扰。

- 光栅和光源应调整到适当的位置和角度,使得衍射亮点清晰可见。

- 测量时应尽量避免手触摸光栅,以免对实验结果产生影响。

- 在测量角度时,应尽量减小误差,可以采取多次测量、平均值等方法来提高精度。

5. 实验结果分析:对测得的光波波长进行统计和分析,比较实验结果与理论值的差异,评价实验方法的准确性和可靠性。

光栅衍射法测光波波长实验报告

光栅衍射法测光波波长实验报告目录一、实验目的与要求 (2)1. 实验目的 (2)2. 实验要求 (3)二、实验原理 (3)1. 光栅基本原理 (4)2. 衍射原理简介 (5)3. 光波波长测量方法 (6)三、实验仪器与材料 (7)1. 主要仪器 (8)双缝干涉仪 (8)读取装置 (9)2. 实验材料 (11)光波源 (11)透明介质 (13)测量尺 (14)四、实验步骤 (15)1. 光路搭建 (16)2. 数据采集 (18)3. 数据处理 (19)4. 结果分析 (20)五、实验结果与讨论 (20)1. 实验数据记录 (21)2. 数据处理与分析 (22)3. 结果讨论 (23)实验误差分析 (24)结果合理性探讨 (25)六、实验结论与展望 (26)1. 实验结论 (27)2. 实验不足与改进 (28)3. 未来研究方向 (30)一、实验目的与要求本次实验的目的是通过光栅衍射法测量光波的波长,光栅衍射作为一种重要的光学现象,在研究光的波动性和干涉性方面具有重要的应用价值。

通过本实验,我们希望能够加深对光栅衍射现象的理解,并准确地测量出光波的波长,进一步探究光波的特性。

本实验旨在通过光栅衍射法测量光波波长,加深对光栅衍射现象的理解,掌握相关实验技能和技术,为今后的学习和研究打下坚实的基础。

1. 实验目的理论联系实际:将所学的光学理论应用于实际问题解决中,通过实验手段验证理论的正确性。

掌握光栅衍射的基本原理:通过实验观察并分析光栅衍射现象,理解光栅对光的散射作用以及衍射图样的形成机制。

学习使用光栅仪器:熟练掌握光栅测长仪的使用方法,能够准确测量光栅常数。

提高实验技能:通过实际操作,提高动手能力、分析问题和解决问题的能力,培养科学严谨的实验态度。

拓展知识面:了解现代光学技术在其他领域的应用,如光谱分析、光学计量等,激发对光学技术的兴趣和探索欲望。

2. 实验要求准备实验器材,包括光源、光栅、透镜、光学仪器等。

利用光栅测光波波长

[教学目的及要求]1.巩固分光计的调节及使用方法。

2.通过观察光栅的衍射现象,进一步加深对光衍射理论的理解。

3.掌握用光栅测量光波长的方法。

[教学重点和难点]1、光栅的衍射远原理的理解——夫琅和费衍射2、测量汞灯K=±1级时各条谱线的衍射角3、正确使用分光镜[实验器材]实验仪器:分光计、光栅、汞灯等。

[实验原理]1.光栅测量波长根据夫琅和费衍射原理,当波长为λ的单色平行光垂直照射在光栅平面上时,在每一狭缝处都将产生衍射,如图,但由于各缝发出的衍射光都是相干光,彼此之间又产生干涉。

如果在光栅后面放置一透镜,光经过透镜会聚在屏幕上,就会形成一系列被相当宽的暗区隔开的,亮度大,宽度窄的明条纹。

因此光栅的衍射条纹实质应是衍射和干涉的总效果。

设光栅的刻痕宽度为a,透明狭缝宽度为b,相邻两缝间的距离d=a+b,称为光栅常数,它是光栅的重要参数之一。

如图3-15-1所示,光栅常数为d的光栅,当单色平行光束与光栅法线成角度i入射于光栅平面上,光栅出射的衍射光束经过透镜会聚于焦平面上,就产生一组明暗相间的衍射条纹。

设衍射光线AD与光栅法线所成的夹角(即衍射角)为φ,从B点作BC垂直入射线CA,作BD垂直于衍射线AD,则相邻透光图3-15-1 光栅衍射原理示意图狭缝对应位置两光线的光程差为:(3-15-1)当此光程差等于入射光波长的整数倍时,多光束干涉使光振动加强而在F处产生一个明条纹。

因而,光栅衍射明条纹的条件为:K=0,±1,±2,(3-15-2)式中λ为单色光波长,K是亮条纹级次,为K级谱线的衍射角,i为光线的入射角。

此式称为光栅方程,它是研究光栅衍射的重要公式。

本实验研究的是光线垂直入射时所形成的衍射,此时,入射角i=0则光栅方程变为:K=0,±1,±2,··· (3-15-3)图3-15-2 汞灯的光栅光谱示意图由(3-15-3)可以看出,如果入射光为复色光,K=0时,有:,不同波长的零级亮纹重叠在一起,则零级条纹仍为复色光。

测量光的波长方法

测量光的波长方法
测量光波长的方法有多种,以下列举几种常见的方法:
1. 干涉法(如杨氏实验):利用干涉现象来测量光的波长。

将光束分为两束,使它们经过不同的光程后再重合,观察干涉条纹的移动来确定波长。

2. 衍射法:利用衍射现象来测量光的波长。

将光束通过一个狭缝或光栅后,观察衍射图样,根据衍射图样的形状和参数来计算波长。

3. 光栅法:利用光栅的作用来测量光的波长。

将光通过光栅后,在屏幕上观察到一系列的光条纹,根据光栅常数和光条纹的位置来计算波长。

4. 分光仪法:使用分光仪来测量光的波长。

分光仪能将光束按照波长进行分离,然后通过观察不同波长处的光强来确定波长。

5. 光电效应法:利用光电效应来测量光的波长。

将光束照射到光电效应表面,根据光电效应产生的光电流的频率或截止电压来计算波长。

这些方法都有其适用范围和精确度,根据具体的实验要求和条件选择合适的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用光栅测量光的波长
用光栅测量光的波长
衍射光栅是利用多缝衍射原理使光波发生色散的光学元件,由大量相互平行、等宽、等间距的狭缝或刻痕所组成。

由于光栅具有较大的色散率和较高的分辨本领,故它已被广泛地装配在各种光谱仪器中。

采用现代高科技技术可制成每厘米有上万条狭缝的光栅,它不仅适用于分析可见光成分,还能用于红外和紫外光波。

在结构上有平面光栅和凹面光栅之分,同时光栅分为透射式和反射式两大类。

本实验所用光栅是透射式光栅。

光在传播过程中的衍射、散射等物理现象以及光的反射和折射等都与角度有关,一些光学量如折射率、波长、衍射条纹的极大和极小位置等都可以通过测量有关的角度去确定。

在光学技术中,精确测量光线偏折的角度具有十分重要的意义。

分光计是一种用于角度精确测量的典型光学仪器,常用来测量光波波长、折射率、色散率、观测光谱等。

由于该装置比较精密,操纵控制部分多而复杂,故使用时一定要严格按要求进行。

特别是对于初学者,往往会感到有一些困难。

但只要在调整、实验过程中,明确调节要求,注意观察现象,并努力运用已有的理论知识去分析、指导操作,一般是能够较好掌握的。

分光计的调整思想、方法与技巧,在光学仪器中有一定的代表性,学会它的调节和使用方法,有助于掌握操作更为复杂的光学仪器。

本实验使用的主要仪器有分光计和测量显微镜,分别测量光栅衍射角和光栅常数,重点训练的方法与技能有:(1)分光计的调节方法,包括望远镜目镜调节和调焦、平行光管的调节等。

(2)分光计角游标的原理和读数方法。

(3)测量显微镜的调节和使用方法。

这是一个基础性物理光学实验。

实验过程中注意体会由粗调到细调、按规律调整精密光学仪器的思想和方法、消除分光计偏心差的方法、消除视差的方法以及消除螺距差的方法。

分光计的使用和调节有一定的难度,也是本实验的重点和难点,数据处理难度不大,适合于
物理、机械、计算机、自动化等众多理工科专业的学生选做,难度系数为:1.10。

实验具体内容与要求
1、分光计的调节
在进行调整前,应先熟悉分光计中下列螺丝的位置:
(1)目镜调焦手轮(看清分划板刻线);
(2)望远镜调焦(看清物体)手轮(或螺钉);
(3)调节望远镜水平螺钉;
(4)控制望远镜(连同刻度盘)转动的螺丝;
(5)调整载物台水平状态的三个螺丝;
(6)控制载物台转动的制动螺钉;
(7)调整平行光管狭缝宽度的螺丝;
(8)调整平行光管水平的螺丝;
(9)平行光管调焦的狭缝套筒制动螺丝。

分光计的调节内容和过程大致如下:
(1)目测粗调:将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直。

(2)用自准法调整望远镜聚焦于无穷远。

调节目镜调焦手轮,直到能够清楚地看清分划板上的刻线为止。

将小平面镜放到载物台上轻缓转动载物台,或轻调载物台和望远镜的水平,从望远镜中观察到反射回的绿色十字像(或模糊的像斑)。

调节望远镜目镜套筒的位置,使十字像清晰。

注意消除视差。

(3)调节望远镜光轴与分光计中心轴垂直。

先粗调,也就是首先通过目视调节望远镜和载物台的水平调节螺钉,并轻缓转动载物台,从望远镜中能够观察到小平面镜两面反射回的十字像,然后细调望远镜及载物台的水平,使十字像与望远镜视场中上方刻线十字处重合。

(4)调整平行光管。

用已调好的望远镜调整平行光管。

调节狭缝装置的位置,使从望远镜里看到的狭缝的像最清晰,调节缝宽,使像的宽度大约1mm。


节平行光管的光轴与分光计的中心轴垂直。

2、衍射角的测量
(1)光栅的放置:将光栅放在载物台上,并通过调节使之与平行光管垂直,以满足平行光直入射的条件。

(2)对准衍射条纹,利用两个角游标精确读数。

3、光栅常数的测量
正确使用读数显微镜,并应用累积放大法,每次测量多倍光栅常数,以减小测量误差。

4、计算钠黄光的波长,并与标准值比较,计算相对百分误差。

实验仪器简介
1、分光计用于测量光栅衍射各级谱线的衍射角。

分光计是测量角度的精密仪器,主要由三足底座、平行光管、载物台、望远镜和刻度盘、游标盘等组成。

2、测量显微镜,用于测量光栅常数。

3、衍射光栅。

实验仪器实物照片
预习基本要求
1、了解分光计的结构和调节使用方法。

2、理解光衍射条纹的形成原理和光栅方程的意义。

3、了解测量显微镜的使用方法和光栅常数的测量方法。

4、明白利用分光计测量衍射角的方法和过程,以及利用衍射方程计算钠黄光波长的方法。

常见问题与解答
1、分光计结构比较复杂,调节部件比较多,实验时不要太着急,根据教材说明和教师讲解一步一步地有条不紊地进行,很快就会掌握调节和使用方法。

2、调节望远镜焦距和水平时,经常会出现找不到反射回的十字像的情况。

这时要采用先粗调、后细调的方法,也就是说先通过目视调节,使望远镜基本水平,小平面镜基本与望远镜相垂直,然后再从望远镜中寻找反射回的十字像。

3、通过调节使小平面镜两面反射回的十字像都与望远镜视场中上方的十字位置重合。

4、分光计上螺钉较多,一般要固定游标盘,刻度盘与望远镜连为一体。

定量测量衍射角时,固定刻度盘,使用微调螺钉更方便。

5、测量光栅常数时,要使光栅刻痕与载物台移动方向垂直。

使用螺旋测微机构时,注意消除螺距差。

预习思考题
1、分光计主要由哪几部分组成?为什么说望远镜的调整是分光计调整的基础和关键?
2、分光计的望远镜要调整到什么状态?
3、光栅在载物台上要调整到什么状态?
4、调望远镜时如何发现和消除视差?
5、分光计在设计上是如何消除偏心差的?
实验注意事项
1、分光计是精密仪器,调节螺钉比较多,在不清楚这些螺钉的作用和用法以前,请不要乱动,以免损坏分光计。

2、光栅是精密光学元件,严禁用手触摸刻痕,以免损坏。

3、测量衍射角时,(1)最好将望远镜固定,用微调旋更方便一些。

(2)从左至右(或从右至左)依次测量+3、+2、+1级和-1、-2、-3级的条纹位置,分别记录左、右游标的读数。

4、使用测量显微镜测光栅常数时,注意消除螺距差的影响。

相关文档
最新文档