(完整版)全等三角形经典例题

(完整版)全等三角形经典例题
(完整版)全等三角形经典例题

全等三角形经典例题

(全等三角形的概念和性质)

类型一、全等形和全等三角形的概念

1、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A,及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,下列各组合同三角形中,是镜面合同三角形的是( )

(答案)B ;提示:抓住关键语句,两个镜面合同三角形要重合,则必须将其中一个翻转180°,B 答案

中的两个三角形经过翻转180°就可以重合,故选B ;其它三个选项都需要通过平移或旋转使

它们重合.

类型二、全等三角形的对应边,对应角 类型三、全等三角形性质

3、如图,将长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=?,那么DAE

∠等于( ).A.60° B.45° C.30° D.15°

(答案)D ;(解析)因为△AFE 是由△ADE 折叠形成的,所以△AFE ≌△ADE ,所以∠FAE =∠DAE ,又因

为60BAF ∠=?,所以∠FAE =∠DAE =90602

?-?

=15°.

(点评)折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.

举一反三:(变式)如图,在长方形ABCD 中,将△BCD 沿其对角线BD 翻折得到△BED ,若∠1=35°,则∠2=________.

(答案)35°;提示:将△BCD 沿其对角线BD 翻折得到△BED ,所以∠2=∠CBD ,又因为AD ∥BC ,所以∠1=∠CBD ,所以∠2=35°.

4、 如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的,若

∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.

(答案)∠α=80°(解析)∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x ,∠2=5x ,∠3=3x ,

∴28x +5x +3x =36x =180°,x =5° 即∠1=140°,∠2=25°,∠3=15°

∵△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的, ∴△ABE ≌△ADC ≌△ABC ∴∠2=∠ABE ,∠3=∠ACD

∴∠α=∠EBC +∠BCD =2∠2+2∠3=50°+30°=80°

(点评)此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应

角相等的性质来解决问题.见“比例”设未知数x 是比较常用的解题思路. 举一反三:(变式)如图,在△ABC 中,∠A :∠ABC:∠BCA =3:5:10,又

△MNC≌△ABC,则∠BCM:∠BCN 等于( )A .1:2 B .1:3 C .2:3 D .1:4

(答案)D ;提示:设∠A=3x ,∠ABC =5x ,∠BCA=10x ,则3x +5x +10x =18x =180°,x =10°.

又因为△MNC≌△ABC,所以∠N =∠B =50°,CN =CB ,所以∠N =∠CBN =50°,∠ACB =∠MCN =100°,∠BCN =180°-50°-50°=80°,所以∠BCM:∠BCN=20°:80°=1:4.

(全等三角形判定一(SSS ,SAS ))

类型一、全等三角形的判定1——“边边边”

1、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.

(答案与解析)

证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =??

=??=?

∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).

(点评)把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角

形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.

举一反三:

(变式)已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.

(答案)证明:连接DC , 在△ACD 与△BDC 中

()AD BC AC BD

CD DC ?=?

=??=?

公共边

∴△ACD≌△BDC(SSS )

∴∠CAD =∠DBC (全等三角形对应角相等)

类型二、全等三角形的判定2——“边角边”

2、

3、

举一反三:

(变式)已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且

AE =1

2

(AB +AD ),求证:∠B +∠D =180°.

(答案)证明:在线段AE 上,截取EF =EB ,连接FC ,

∵CE ⊥AB ,∴∠CEB =∠CEF =90°

在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =??

∠=∠???

∴△CBE 和△CFE (SAS )∴∠B =∠CFE

∵AE =1

2

(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB

∵AE =AF +EF ,

∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF

在△AFC 和△ADC 中(AF AD FAC DAC AC AC =??

∠=∠??=?

角平分线定义)

∴△AFC ≌△ADC (SAS )∴∠AFC =∠D

∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形判定的实际应用

4、如图,公园里有一条“Z 字形道路ABCD ,其中AB ∥CD ,在AB ,BC ,CD 三段路旁各有一个小石凳

E ,M ,

F ,且BE =CF ,M 在BC 的中点.试判断三个石凳E ,M ,F 是否恰好在一条直线上?Why ?

(答案与解析)三个小石凳在一条直线上

证明:∵AB 平行CD (已知)∴∠B =∠C (两直线平行,内错角相等)

∵M 在BC 的中点(已知)∴BM =CM (中点定义)

在△BME 和△CMF 中BE CF B D BM M C =??

∠=∠??=?

∴△BME ≌△CMF (SAS )∴∠EMB =∠FMC (全等三角形的对应角相等)

∴∠EMF =∠EMB +∠BMF =∠FMC +∠BMF =∠BMC =180°(等式的性质)∴E ,M ,F 在同一直线上

(点评)对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 由已知易证△BME ≌

△CMF ,可得∠EMB =∠FMC ,再由∠EMF =∠EMB +∠BMF =∠FMC +∠BMF =∠BMC =180°得到E ,M ,F 在同一直线上.

(全等三角形判定二(ASA ,AAS ))

类型一、全等三角形的判定3——“角边角”

1、如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然

后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.

(答案与解析)

证明:∵AD∥BC,∴∠DAC=∠C

∵BF 平分∠ABC ∴∠ABC=2∠CBF ∵∠ABC =2∠ADG ∴∠CBF=∠ADG

在△DAE 与△BCF 中??

?

??∠=∠=∠=∠C DAC BC AD CBF ADG

∴△DAE≌△BCF(ASA )∴DE=BF

(点评)利用全等三角形证明线段(角)相等的一般方法和步骤如下: (1)找到以待证角(线段)为内角(边)的两个三角形; (2)证明这两个三角形全等;

(3)由全等三角形的性质得出所要证的角(线段)相等.

(变式)已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .

求证:HN =PM.

(答案)

证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°, 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2

在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠??

=??∠=∠?

∴△MPQ ≌△NHQ (ASA ) ∴PM =HN

类型二、全等三角形的判定4——“角角边”

2、已知:如图,90ACB ∠=?,AC BC =,CD 是经过点C 的一条直线,过

点A 、B 分别作AE CD ⊥、BF CD ⊥,垂足为E 、F ,求证:CE BF =. (答案与解析)证明:∵ CD AE ⊥,CD BF ⊥ ∴?=∠=∠90BFC AEC

∴?=∠+∠90B BCF

∵,90?=∠ACB ∴?=∠+∠90ACF BCF ∴B ACF ∠=∠

在BCF ?和CAE ?中??

?

??=∠=∠∠=∠BC AC B ACE BFC AEC ∴BCF ?≌CAE ?(AAS )∴BF CE =

(点评)要证BF CE =,只需证含有这两个线段的BCF ?≌CAE ?.同角的余角相等是找角等的好方法. 3、平面内有一等腰直角三角板(∠ACB =90°)和一直线MN .过点C 作CE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F .当点E 与点A 重合时(如图1),易证:AF +BF =2CE .当三角板绕点A 顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF 、BF 、CE 之间又有怎样的数量关系,请直接写出你的猜想,不需证明.

(答案与解析)解:图2,AF +BF =2CE 仍成立, 证明:过B 作BH ⊥CE 于点H ,

∵∠CBH +∠BCH =∠ACE +∠BCH =90°∴∠CBH =∠ACE

在△ACE 与△CBH 中, 90ACH CBH AEC CHB AC BC ∠=∠??

∠=∠=???=?

∴△ACE ≌△CBH .(AAS )∴CH =AE ,BF =HE ,CE =EF , ∴AF +BF =AE +EF +BF =CH +EF +HE =CE +EF =2EC .

(点评)过B 作BH ⊥CE 与点H ,易证△ACH ≌△CBH ,根据全等三角形的对应边相等,即可证得AF +BF =

2CE .正确作出垂线,构造全等三角形是解决本题的关键. 举一反三:

(变式)错误!未找到引用源。已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证1

2

DEF CEF ABC S S S +=

△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.

(答案)

解:图2成立; 证明图2:过点D 作DM AC DN BC ⊥⊥, 则90DME DNF MDN ∠=∠=∠=°

在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠???

∠=∠??=?

∴△AMD ≌△DNB (AAS )∴DM =DN

∵∠MDE +∠EDN =∠NDF +∠EDN =90°,∴∠ MDE =∠NDF

在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=???

=??∠=∠?

∴△DME ≌△DNF (ASA )∴DME DNF S S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形

可知ABC DMCN 1S =S 2△四边形,∴1

2

DEF CEF ABC S S S +=△△△

类型三、全等三角形判定的实际应用

4、在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉敌军的碉堡,要知道碉堡与我军阵地

的距离.在不能过河测量又没有任何测量工具的情况下,一名战士想出了这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转身向后,保持刚才的姿态,这时视线落在了自己这岸的某一点上.接着,他用步测的办法量出了自己与该点的距离,这个距离就是他与碉堡的距离.这名战士的方法有道理吗?请画图并结合图形说明理由.

(答案与解析)

设战士的身高为AB ,点C 是碉堡的底部,点D 是被观测到的我军阵地岸上的点,由在观察过程中视线与帽檐的夹角不变,可知∠BAD =∠BAC ,∠ABD =∠ABC =90°.

在△ABD 和△ABC 中,ABD ABC AB AB BAD BAC ∠=∠??

=??∠=∠?

∴△ABD 和△ABC (ASA )∴BD =BC.这名战士的方法有道理.

(点评)解决本题的关键是结合图形说明那名战士测出的距离就是阵地与碉堡的距离,可以先画出示意

图,然后利用全等三角形进行说明.解决本题的关键是建立数学模型,将实际问题转化为数学问

题并运用数学知识来分析和解决.

直角三角形全等判定

类型一、直角三角形全等的判定——“HL”

1、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:

(1)一个锐角和这个角的对边对应相等;()

(2)一个锐角和斜边对应相等;()

(3)两直角边对应相等;()

(4)一条直角边和斜边对应相等.()

(答案)(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.

(解析)理解题意,画出图形,根据全等三角形的判定来判断.

(点评)直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.

举一反三:(变式)下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.

(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()

(2)有两边和其中一边上的高对应相等的两个三角形全等.()

(3)有两边和第三边上的高对应相等的两个三角形全等.()

(答案)(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF (3)×. 在△ABC和△ABD中,AB=AB,AD

=AC ,AH为第三边上的高,

2、已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.

(答案与解析)证明:∵DE⊥AC,BF⊥AC,∴在Rt △ADE与Rt△CBF中

.

AD BC

DE BF

?

?

?

=,

∴Rt△ADE≌Rt△CBF (HL)∴AE=CF,DE=BF

∴AE+EF=CF+EF,即AF=CE

在Rt△CDE与Rt△ABF中,

DE BF

DEC BFA

EC FA

=

?

?

∠=∠

?

?=

?

∴Rt△CDE≌Rt△ABF(SAS)∴∠DCE=∠BAF ∴AB∥DC.

(点评)从已知条件只能先证出Rt△ADE≌Rt△CBF,从结论又需证Rt△CDE ≌Rt△ABF.我们可以从已知和结论向中间推进,证出题目.

3、举一反三:(变式)

4、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,

垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC

=12cm,求BD的长.

(答案与解析)(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.

∴∠D =∠AEC .

又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD .

(2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =1

2

AC ,且AC =12.

∴BD =6cm .

(点评)三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,

先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.

角的平分线的性质

知识点四、三角形角平分线的性质

三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.

三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等. (典型例题)

类型一、角的平分线的性质及判定

1、已知:如图,在ABC ?中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F. 求证:AE =AF . (答案与解析)

证明:∵AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F. ∴DE =DF (角平分线上的点到角两边的距离相等) 90AED AFD ∠=∠=?(垂直定义) 在Rt AED ?和Rt AFD ?中 DE DF

AD AD =??

=?

∴Rt AED ?≌Rt AFD ?(HL )∴AE AF =

(点评)先由角平分线的性质得出DE =DF ,再证Rt AED ?≌Rt AFD ?,即可得

出AE =AF.分析已知,寻找条件,顺次证明.

举一反三:(变式)如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC.求证:BE =CF.

(答案)证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线, ∴DE =DF ,∠BED =∠DFC =90°

在Rt △BDE 与Rt △CDF 中,DB DC

DE DF

=??=?,∴Rt △BDE ≌Rt △CDF (HL ) ∴BE =CF

2、

3、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .

(答案与解析)

证明:作PM ⊥OA 于M ,PN ⊥OB 于N

12PAC S AC PM =g △∵,1

2PBD S BD PN =g △,且PAC S =△PBD S △

∴ 12AC PM g 1

2

BD PN =g

又∵AC =BD ∴PM =PN

又∵PM ⊥OA ,PN ⊥OB ∴OP 平分∠AOB

(点评)观察已知条件中提到的三角形△PAC 与△PBD ,显然与全等无

关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定定理可得.跟三角形的高结合的题目,有时候用面积会取得意想不到的效果.

4、

举一反三:(变式)如图,DC∥AB,∠BAD 和∠ADC 的平分线相交于E ,过E 的直线分别交DC 、AB 于C 、B 两点. 求证:AD =AB +DC. (答案) 证明:在线段AD 上取AF =AB ,连接EF , ∵AE 是∠BAD 的角平分线,∴∠1=∠2,

∵AF =AB AE =AE ,∴△ABE ≌△AFE ,∴∠B =∠AFE 由CD ∥AB 又可得∠C +∠

B =180°,∴∠AFE +∠

C =180°, 又∵∠DFE +∠AFE =180°,∴∠C =∠DFE , ∵DE 是∠ADC 的平分线,∴∠3=∠4, 又∵DE =DE ,∴△CDE ≌△FDE ,∴DF =DC , ∵A

D =DF +AF ,∴AD =AB

+DC .

全等三角形全章复习与巩固

类型一、巧引辅助线构造全等三角形 (1).倍长中线法:

1、已知,如图,△ABC 中,D 是BC 中点,DE⊥DF,试判断BE +CF 与EF 的大小关系,并证明你的结论.

F

E

B

A

(答案与解析)BE +CF >EF ;

证明:延长FD 到G ,使DG =DF,连结BG 、EG

∵D 是BC 中点∴BD=CD 又∵DE⊥DF

在△EDG 和△EDF 中ED ED EDG EDF DG DF =??

∠=∠??=?

∴△EDG ≌△EDF (SAS )∴EG=EF

在△FDC 与△GDB 中??

?

??=∠=∠=DG DF BD CD 21

∴△FDC≌△GDB(SAS)∴CF=BG ∵BG+BE >EG∴BE+CF >EF

(点评)因为D 是BC 的中点,按倍长中线法,倍长过中点的线段DF ,使DG =DF,证明△EDG ≌△EDF ,

△FDC≌△GDB,这样就把BE 、CF 与EF 线段转化到了△BEG 中,利用两边之和大于第三边可证.有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).

举一反三:(变式)已知:如图所示,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB =∠ABC .

求证:CD =2CE .

(答案)证明: 延长CE 至F 使EF =CE ,连接BF . ∵ EC 为中线,∴ AE =BE .

在△AEC 与△BEF 中,,,,AE BE AEC BEF CE EF =??

∠=∠??=?

∴ △AEC ≌△BEF (SAS ).

∴ AC =BF ,∠A =∠FBE .(全等三角形对应边、角相等)

又∵ ∠ACB =∠ABC ,∠DBC =∠ACB +∠A ,∠FBC =∠ABC +∠A . ∴ AC =AB ,∠DBC =∠FBC .∴ AB =BF .

又∵ BC 为△ADC 的中线,∴ AB =BD .即BF =BD .

在△FCB 与△DCB 中,,,,BF BD FBC DBC BC BC =??

∠=∠??=?

∴ △FCB ≌△DCB (SAS ).∴ CF =CD .即CD =2CE .

(2).作以角平分线为对称轴的翻折变换构造全等三角形

2、已知:如图所示,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB =AC +CD .

(答案与解析)证明:在AB 上截取AE =AC .

在△AED 与△ACD 中,()12()()AE AC AD AD =??

∠=∠??=?

已作,已知,公用边,∴ △AED ≌△ACD (SAS ).

∴ ∠AED =∠C(全等三角形对应边、角相等). 又∵ ∠C =2∠B ∴∠AED =2∠B .

由图可知:∠AED =∠B +∠EDB ,∴ 2∠B =∠B +∠EDB .∴ ∠B =∠EDB . ∴ BE =ED .即BE =CD .∴ AB =AE +BE =AC +CD(等量代换).

(点评)本题图形简单,结论复杂,看似无从下手,结合图形发现AB >AC .故用

截长补短法.在AB 上截取AE =AC .这样AB 就变成了AE +BE ,而AE =

AC .只需证BE =CD 即可.从而把AB =AC +CD 转化为证两线段相等的问题. 举一反三:(变式)如图,AD 是ABC ?的角平分线,H ,G 分别在AC ,AB 上,且HD =BD.

(1)求证:∠B 与∠AHD 互补;

(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明

.

(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.

∵ ∠CAD=∠BAD, AD=AD, ∴ △AHD≌△AMD. ∴ HD=MD, ∠AHD=∠AMD. ∵ HD=DB, ∴ DB= MD. ∴ ∠DMB=∠B.

∵ ∠AMD+∠DMB =180?,∴ ∠AHD+∠B=180?. 即 ∠B 与∠AHD 互补. (2)由(1)∠AHD=∠AMD, HD=MD, ∠AHD+∠B=180?.

∵ ∠B+2∠DGA =180?,∴ ∠AHD=2∠DGA. ∴ ∠AMD=2∠DGM.

∵ ∠AMD=∠DGM+∠GDM. ∴ 2∠DGM=∠DGM+∠GDM.

∴ ∠DGM=∠GDM. ∴ MD=MG.

∴ HD = MG.∵ AG= AM +MG, ∴ AG= AH +HD. (3).利用截长(或补短)法作构造全等三角形:

3、如图所示,已知△ABC 中AB >AC ,AD 是∠BAC 的平分线,M 是AD 上任意一点, 求证:MB -MC <AB -AC .

M

G H

D

C B

A

(答案与解析)证明:因为AB >AC ,则在AB 上截取AE =AC ,连接ME .

在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).

在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =??

∠=∠??=?

所作,

角平分线的定义,公共边,

∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等). 又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .

(点评)因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,

显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.充分利用角平分线的对称性,截长补短是关键. 举一反三:(变式)如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC (答案)

证明:在AB 上截取AE =AC,连结DE

∵AD 是△ABC 的角平分线,∴∠BAD=∠CAD

在△AED 与△ACD 中??

?

??=∠=∠=AD AD CAD BAD AC AE

∴△AED≌△ADC(SAS )∴DE=DC 在△BED 中,BE >BD -DC

即AB -AE >BD -DC ∴AB-AC >BD -DC

(4).在角的平分线上取一点向角的两边作垂线段.

4、如图所示,已知E 为正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE =∠FAE .

求证:AF =AD +CF .

(答案与解析)

证明: 作ME ⊥AF 于M ,连接EF .

∵ 四边形ABCD 为正方形,∴ ∠C =∠D =∠EMA =90°. 又∵ ∠DAE =∠FAE ,∴ AE 为∠FAD 的平分线,∴ ME =DE .

在Rt △AME 与Rt △ADE 中,()()AE AE DE ME =??=?公用边,

已证,

∴ Rt △AME ≌Rt △ADE(HL).∴ AD =AM(全等三角形对应边相等). 又∵ E 为CD 中点,∴ DE =EC .∴ ME =EC .

在Rt △EMF 与Rt △ECF 中,()(ME CE EF EF =??=?已证,

公用边),

E D

C

B

A

∴ Rt△EMF≌Rt△ECF(HL).∴ MF=FC(全等三角形对应边相等).

由图可知:AF=AM+MF,∴ AF=AD+FC(等量代换).

(点评)与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD的

距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE

=AE.Rt△AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图

知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条

线段相等的问题.

5、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD

的延长线于E,

1

2

AE BD

,求证:BD是∠ABC的平分线.

(答案与解析)

证明:延长AE和BC,交于点F,

∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.

在Rt△ACF和Rt△BCD中.

所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角

∵AE=BD,∴AE=形对应边相等).

AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF

(SAS).

所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.

(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.

类型二、全等三角形动态型问题

6、在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,

垂足分别为E,F。

(1)如图1当直线l不与底边AB相交时,求证:EF=AE+BF。

(2)将直线l绕点C顺时针旋转,使l与底边AB相交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系,①AD>BD;②AD=BD;③AD<BD.

(答案与解析)证明:(1)∵AE⊥l,BF⊥l,∴∠AEC=∠CFB=90°,∠1+∠2=90°

∵∠ACB =90°,∴∠2+∠3=90°∴∠1=∠3。

∵在△ACE 和△CBF 中,13AEC CFB AC BC ∠=∠??

∠=∠??=?

∴△ACE ≌△CBF (AAS )∴AE =CF ,CE =BF ∵EF =CE +CF ,∴EF =AE +BF 。 (2)①EF =AE -BF ,理由如下:

∵AE ⊥l ,BF ⊥l ,∴∠AEC =∠CFB =90°,∠1+∠2=90° ∵∠ACB =90°,∴∠2+∠3=90°,∴∠1=∠3。

∵在△ACE 和△CBF 中13AEC CFB AC BC ∠=∠??

∠=∠??=?

∴△ACE ≌△CBF (AAS )∴AE =CF ,CE =BF

∵EF =CF -CE ,∴EF =AE ―BF 。 ②EF =AE ―BF ③EF =BF ―AE 证明同①. (点评)解决动态几何问题时要善于抓住以下几点:

(1) 变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用; (2) 图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段 之间、角之间的位置与数量关系是否还存在是解题的关键;

(3) 几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程, 其结论有时变化,有时不发生变化.

举一反三:(变式)已知:在△ABC 中,∠BAC =90°,AB =AC ,点D 为射线BC 上一动点,连结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .

(1)当点D 在线段BC 上时(与点B 不重合),如图1,求证:CF =BD

(2)当点D 运动到线段BC 的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由

.

(答案)证明:(1)∵正方形ADEF ∴AD =AF ,∠DAF =90° ∴∠DAF -∠DAC =∠BAC -∠DAC ,即∠BAD =∠CAF

在△ABD 和△ACF 中,AB AC

BAD CAF AD AF =??

∠=∠??=?

∴△ABD ≌△ACF (SAS ) ∴BD =CF

(2)当点D 运动到线段BC 的延长线上时,仍有BD =CF 此时∠DAF +∠DAC =∠BAC +∠DAC ,即∠BAD =∠CAF

在△ABD 和△ACF 中,AB AC BAD CAF AD AF =??

∠=∠??=?

∴△ABD ≌△ACF (SAS ) ∴BD =CF

全等三角形全章复习与巩固(基础)

类型一、全等三角形的性质和判定

1、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直

线上,连结DC .

(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE .

(答案与解析)

解:(1)△BAE ≌△CAD 证明:

∠BAC =∠EAD =90°

∠BAC +∠CAE =∠EAD +∠CAE 即 ∠BAE =∠CAD

又AB =AC ,AE =AD , △ABE ≌△ACD (SAS )

(2)由(1)得∠BEA =∠CDA,又∠COE =∠AOD

∠BEA +∠COE =∠CDA +∠AOD =90°

则有∠DCE =180°- 90°=90°, 所以DC ⊥BE.

(点评)△ABE 与△ACD 中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE ≌△ACD ;通过全等三角形的性质,

通过导角可证垂直.我们可以试着从变换的角度看待△ABE 与△ACD ,后一个三角形是前一个三角形绕着A 点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC ⊥BE.

举一反三:(变式)如图,已知:AE ⊥AB ,AD ⊥AC ,AB =AC ,∠B =∠C ,求证:BD =

CE.

(答案)证明:∵AE ⊥AB ,AD ⊥AC , ∴∠EAB =∠DAC =90° ∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.

在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠??

=??∠=∠?

∴△DAB ≌△EAC (SAS ) ∴BD =CE.

类型二、巧引辅助线构造全等三角形 (1).作公共边可构造全等三角形:

2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠D. (答案与解析)证明:连接AC ,∵AD ∥CB ,AB ∥CD. ∴∠1=∠2,∠3=∠4

在△ABC 与△CDA 中1243AC CA ∠=∠??

=??∠=∠?

∴△ABC ≌△CDA (ASA )∴∠B =∠D

(点评)∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.添加公

共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.

举一反三:(变式)在ΔABC 中,AB =AC.求证:∠B =∠C (答案)证明:过点A 作AD ⊥BC 在Rt △ABD 与Rt △ACD 中AB AC

AD AD

=??

=?

∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.

(2).倍长中线法:

3、

(点评)用倍长中线法可将线段AC,2AD,AB转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.

举一反三:(变式)若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )

A.1 <x< 6

B.5 <x< 7

C.2 <x< 12

D.无法确定

(答案)A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.

(3).作以角平分线为对称轴的翻折变换构造全等三角形:

4、在ΔABC中,AB>AC.

求证:∠B<∠

C

(答案与解析)证明:作∠A的平分线,交BC于D,把△ADC沿着AD折叠,使C点与E点重合.

在△ADC与△ADE中

A C AE

CAD EAD

AD AD

=

?

?

∠=∠

?

?=

?

∴△ADC≌△ADE(SAS)∴∠AED=∠C

∵∠AED是△BED的外角,∴∠AED>∠B,即∠B<∠C.(点评)作以角平分线为对称轴的翻折变换构造全等三角形.

(4).利用截长(或补短)法构造全等三角形:

5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.

(答案与解析)

证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).

在△AMC和△AME中,

()

()

()

AC AE

CAM EAM

AM AM

=

?

?

∠=∠

?

?=

?

所作,

角平分线的定义,

公共边,

∴△AMC≌△AME(SAS).∴ MC=ME(全等三角形的对应边相等).

又∵ BE=AB-AE,∴ BE=AB-AC,∴ MB-MC<AB-AC.

(点评)因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME <

BE .这表明只要证明ME =MC ,则结论成立.充分利用角平分线的对称性,截长补短是关键.

类型三、全等三角形动态型问题

6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .

(1)试判断AC 与CE 的位置关系,并说明理由; (2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置

关系还成立吗?(注意字母的变化)

(答案与解析) 证明:(1)AC ⊥CE .理由如下:

在△ABC 和△CDE 中,,

90,,BC DE B D AB CD =??

∠=∠=???=?

∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .

又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .

(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°, ∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°, ∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.

(点评)变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就

会变;本质条件不变,仅仅是图形的位置变了。结论仍然不变.

举一反三:(变式)如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?

(答案)证明:∵∠BCA =∠ECD , ∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD

在△ADC 与△BEC 中ACD=BCE AC BC CD CE =??

∠∠??=?

∴△ADC ≌△BEC(SAS) ∴BE =AD .

若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS

证明△ADC ≌△BEC.

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

Sw.全等三角形——经典试题汇编 含答案

第 1 页 共 11 页 北京中考/一模之全等三角形试题精编 北京中考 16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,. 求证:BC ED =. 16、△BAC ≌△BCD (SAS ) 所以,BC =ED 海淀一模 15. 如图,AC //FE , 点F 、C 在BD 上,AC=DF , BC=EF . 求证:AB=DE . 15.证明:∵ AC //EF , ∴ ACB DFE ∠=∠. ………………………………………1分 在△ABC 和△DEF 中, ?? ? ??=∠=∠=,,, EF BC DFE ACB DF AC ∴ △ABC ≌△DEF . ………………………………4分 ∴ AB=DE . ……………………5分 东城一模 16. 如图,点B C F E 、、、在同一直线上,12∠=∠,BF EC =,要使ABC ?≌DEF ?, 还需添加的一个条件是 (只需写出一个即可),并加以证明. A B C D E F A B C D E F

第 2 页 共 11 页 16.(本小题满分5分) 解:可添加的条件为:AC DF B E A D =∠=∠∠=∠或或(写出其中一个即可). …1分 证明:∵ BF EC =, ∴ BF CF EC CF -=-. 即 BC EF = . -------2分 在△ABC 和△DEF 中, , 12,,AC DF BC EF =?? ∠=∠??=? ∴ △ABC ≌△DEF . --------5分 西城一模 15.如图,在△ABC 中,AB=CB ,∠ABC=90o,D 为AB 延长线 上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC . (1) 求证:△ABE ≌△CBD ; (2) 若∠CAE=30o,求∠BCD 的度数. 15.(1)证明:如图1. ∵ ∠ABC=90o,D 为AB 延长线上一点, ∴ ∠A BE=∠CBD=90o . …………………………………………………1分 在△ABE 和△CBD 中, ?? ? ??=∠=∠=,,,BD BE CBD ABE CB AB ∴ △ABE ≌△CBD. …………………… 2分 (2)解:∵ AB=CB ,∠ABC=90o, ∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30o, ∴ ∠BAE =15°. ……………………………………………………………4分 ∵ △ABE ≌△CBD , ∴ ∠BCD =∠BAE =15°. ……………………………………………………5分 图1

全等三角形的典型例题

全等三角形(1) 一.全等三角形的判定1:三边对应相等的两个三角形全等.简写成“边边边”或“SSS ” 几何符号语言:在ABC ?和DEF ?中 ∵?? ???===DF AC EF BC DE AB ∴ABC ?≌DEF ?(SSS ) 三.练习: 1.下列说法正确的是( ) A .全等三角形是指形状相同的两个三角形 B .全等三角形的周长和面积分别相等 C .全等三角形是指面积相等的两个三角形 D .所有等边三角形都全等. 2.如图,在ABC ?中,AC AB =,D 为BC 的中点,则下列结论中:①ABD ?≌ACD ?;②C B ∠=∠;③AD 平分BAC ∠;④BC AD ⊥,其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个 3.如图,若AC AB =,DC DB =,根据 可得ABD ?≌ACD ?. 5.如图,点B 、E 、C 、F 在同一直线上,CF BE =,DE AB =,DF AC =. 求证:D EGC ∠=∠ 6.在ABC ?中,?=∠90C ,D 、E 分别为AC 、AB 上的点, 且BD AD =,BC AE =,DC DE =. 求证:AB DE ⊥ 7.如图,点A 、C 、F 、D 在同一直线上,DC AF =,DE AB =,EF BC = 求证:DE AB // 四.强化练习: 1.如图,AD AB =,CD CB =,?=∠30B ,?=∠46BAD ,则ACD ∠的度数是( ) A .120° B .125° C .127° D .104° 2.如图,线段AD 与BC 交于点O ,且BD AC =,BC AD =,则下面的结论中不正确的是( ) A .ABC ?≌BAD ? B .DBA CAB ∠=∠ C .OC OB = D .D C ∠=∠ 3.在ABC ?和111C B A ?中,已知11B A AB =,11C B BC =,则补充条件____________,可得到ABC ?≌111C B A ?. 4.如图,CD AB =,DE BF =,E 、F 是AC 上两点,且CF AE =.欲证D B ∠=∠,可先运用等式的性质证明AF =________,再用“SSS ”证明________≌_________?得到结论. 5.如图,在四边形ABCD 中,CD AB =,BC AD =. 求证:①CD AB //;②BC AD //. 6.如图,已知CD AB =,BD AC =,求证:D A ∠=∠. 7.如图,AC 与BD 交于点O ,CB AD =,E 、F 是BD 上两点, 且CF AE =, BF DE =. 求证:⑴B D ∠=∠;⑵CF AE // 8.如图,已知DC AB =,DB AC =.求证:12∠=∠.

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

全等三角形证明经典试题50道

全等三角形证明经典试题50道 1.(已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B. 求证:AE=CF. 【答案】∵AD∥CB ∴∠A=∠C 又∵AD=CB,∠D=∠B ∴△ADF≌△CBE ∴AF=CE ∴AF+EF=CE+EF 即AE=CF 2. 已知:如图,∠ABC=∠DCB,BD、C A分别是∠ABC、∠DCB的平分线.求证:AB=DC 证明:在△ABC与△DCB中

(ABC DCB ACB DBC BC BC ∠=∠?? ∠=∠??=? 已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC ) ∴△ABC ≌△DCB ∴AB =DC 3. 如图,点D ,E 分别在AC ,AB 上. (1) 已知,BD =CE ,CD=BE ,求证:AB=AC ; (2) 分别将“BD=CE ”记为①,“CD=BE ” 记为②,“AB=AC ”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的 命题,命题2是 命题.(选择“真”或“假”填入空格). 【答案】 (1) 连结BC ,∵ BD=CE ,CD=BE ,BC=CB . ∴ △DBC ≌△ECB (SSS ) ∴ ∠DBC =∠ECB ∴ AB=AC (2) 逆, 假; 4. 如图,在□ABCD 中,分别延长BA ,DC 到点E ,使得AE=AB ,CH=CD ,连接EH ,分别交AD ,BC 于点F,G 。求证:△AEF ≌△CHG.

【答案】证明:∵□ABCD ∴ AB=CD,∠BAD=∠BCD AB∥CD ∴∠EAF=∠HCG ∠E=∠H ∵ AE=AB,CH=CD ∴ AE=CH ∴△AEF≌△CHG. 5. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求 证:BC∥EF. 【证明】∵AF=DC,∴AC=DF,又∠A=∠D , AB=DE,∴△ABC≌△DEF, ∴∠ACB=∠DFE,∴BC∥EF. 6. 两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF 的交点.不重叠的两部分△AOF与△DOC是否全等为什么

全等三角形经典题型50题含答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB , AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°, 求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF , CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则 ⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB//ED,AE//BD 推出AE=BD, C D B D C B A F E A B A C D F 2 1 E

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

全等三角形证明经典试题50道

全等三角形证明经典试题50道 1. (已知:如图,E,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B . 求证:AE =C F . 【答案】∵AD ∥CB ∴∠A=∠C 又∵AD=CB ,∠D=∠B ∴△ADF ≌△CBE ∴AF=CE ∴AF+EF=CE+EF 即AE=CF 2. 已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC 证明:在△ABC 与△DCB 中 (ABC DCB ACB DBC BC BC ∠=∠?? ∠=∠??=? 已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC ) ∴△ABC ≌△DCB ∴AB =DC 3. 如图,点D ,E 分别在AC ,AB 上. (1) 已知,BD =CE ,CD=BE ,求证:AB=AC ; (2) 分别将“BD=CE ”记为①,“CD=BE ” 记为②,“AB=AC ”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的 命题,命题2是 命题.(选择“真”或“假”填入空格).

【答案】 (1) 连结BC,∵BD=CE,CD=BE,BC=CB. ∴△DBC≌△ECB (SSS) ∴∠DBC =∠ECB ∴AB=AC (2) 逆,假; 4. 如图,在□ABCD中,分别延长BA,DC到点E,使得AE=AB,CH=CD,连接EH,分别交AD,BC于点F,G。求证:△AEF≌△CHG. 【答案】证明:∵□ABCD ∴ AB=CD,∠BAD=∠BCD AB∥CD ∴∠EAF=∠HCG ∠E=∠H ∵ AE=AB,CH=CD ∴ AE=CH ∴△AEF≌△CHG. 5. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求 证:BC∥EF.

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

全等三角形证明100题(经典)

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。 2:已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB :3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 :4:已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C B A C D F 2 1 E

5:已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE : 6:.:如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

9:已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 10:如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 11:如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBA : F A E D C B

12:如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置 时,其余条件不变,上述结论能否成 立?若成立请给予证明;若不成立请说 明理由. 13:已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明): 14:如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。 O E D C B A F E D C B A

全等三角形经典题型50题带答案知识讲解

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

证明:连接BF 和EF 。因为 BC=ED,CF=DF,∠BCF=∠EDF 。所以 三角形BCF 全等于三角形EDF(边角边)。所以 BF=EF,∠CBF=∠DEF 。连接BE 。在三角形BEF 中,BF=EF 。所以 ∠EBF=∠BEF 。又因为 ∠ABC=∠AED 。所以 ∠ABE=∠AEB 。所以 AB=AE 。在三角形ABF 和三角形AEF 中, AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。所以 三角形ABF 和三角形AEF 全等。所以 ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C C D B A B A C D F 2 1 E

全等三角形经典例题(含答案)

全等三角形证明题精选 一.解答题(共30小题) 1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长.

3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 4.如图,点O是线段AB和线段CD的中点. (1)求证:△AOD≌△BOC; (2)求证:AD∥BC.

5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.

7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.

11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N.

《全等三角形》典型例题课件.doc

全等三角形知识梳理一、知识网络 性质对应角相等对应边相等 边边边SSS 全等形全等三角形边角边SAS 应用 判定角边角ASA 角角边AAS 斜边、直角边HL 角平分线 作图 性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因 此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 1

3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 全等三角形的判定训练 1.已知AD 是⊿ABC 的中线,BE⊥AD,CF⊥AD,问BE= C F 吗?说明理由。 A F B C D E 2.已知AC= B D,AE =CF,BE=DF ,问AE∥CF 吗? E F A C B D 3.已知AB= C D,BE =DF,AE =CF ,问AB∥CD 吗? A B E F C D 4.已知AC=AB,AE= A D,∠1=∠2,问∠3=∠4 吗? A 1 2 E D 3 4 B C 5. 如图, 已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC请, 说明∠A=∠C. 2

最新全等三角形题型归纳(经典完整)

一,证明边或角相等 方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等; 如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2) 同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角 形全等,而且一般是在双垂直的图形中) 1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。 求证:HB=HC 。 2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF . A E D C B 654 32 1E D C B A F G E D C B A F B C A M N E 1234

E D C B A 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD) 证明两条线段和等于另一条线段,常常使用截长补短法。①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。 证明两条线段差等于另一条线段,只需把差化成和来解决即可。 1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求 证:AD +BC =AB . 2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ; 3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD P E D C B A

全等三角形综合测试题含答案经典试卷(供参考)

图4 C A D B E 图2 A B D C E F 图1 图 3 45321第十一章 全等三角形综合复习测试题 一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为【 】. (A )50 (B )80 (C )50或80 (D )40或65 2. 如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 【 】. (A )2平方厘米 (B )1平方厘米 (C ) 12平方厘米 (D )1 4 平方厘米 3. 已知一个三角形的两边长分别是2厘米和9厘米,且第三边为奇数,则第三边长为【 】. (A )5厘米 (B )7厘米 (C )9厘米 (D )11厘米 4. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】. (A )HL (B )SSS (C )SAS (D )ASA 5. 利用三角形全等所测距离叙述正确的是( ) A.绝对准确 B.误差很大,不可信 C.可能有误差,但误差不大,结果可信 D.如果有误差的话就想办法直接测量,不能用三角形全等的方法测距离 6. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】. (A )145° (B )180° (C )225° (D )270° 7. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′ (C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′ (D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长 8. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B )4 ( C )5 ( D )6 9. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 【 】. (A )45 (B )50 (C )60 (D )75

相关文档
最新文档