能源监控系统技术方案设计
新能源集控系统规划及建设方案设计

新能源集控系统规划及建设方案设计文|张国珍,付正宁,斛晋璇,王其乐由于新能源场站分散部署、地理位置相对偏僻且数量逐渐增多,对场站进行单独管理呈现效率降低、成本升高的趋势。
此外,现场工作重心主要集中在设备检修和运维方面,而监控管理工作又需要人员24小时值守,不便于人力资源的合理分配。
因此,新能源集控系统的建设已成为各新能源企业未来发展的方向。
通过集控系统的建设,可以为新能源场站智能化发展提供坚实的技术支撑,并提高新能源场站的专业化管理水平。
本文根据新能源场站的实际情况以及过去的规划理念,结合网络安全等级保护要求,设计了新能源集控系统的整体框架和建设方案,提出了一种业务中心规划、功能开放互通、软件分层部署、网络安全分区的集控系统架构。
基于该架构,详细规划了通信系统建设方案,并对集控系统提出了详细的功能设计要求。
集控系统框架设计目前,相关企业对集控中心专业功能的需求逐步增强,涉及系统众多,若采用分散布置模式,将需要建设多个独立的系统,需要在各系统间采取点对点接口方式进行数据交互。
而且由于各系统数据独立,不便于开发新的应用功能。
而在标准、通用的软硬件基础平台上构建一体化主站系统,具有可靠性高、经济性好、扩展性强等优势,是未来自动化集控主站系统的发展趋势。
因此,集控中心的设计原则是以一体化平台构建为基础,以集控应用建设为核心,在统一的平台上建设集中监控、电能量采集等应用功能,通过一体化平台实现全方位的数据处理分析,同时对集控系统进行安全分区,明确各分区的安全要求,最终构建一套功能完善、全面开放、安全可靠的集控一体化主站系统。
由新能源场站分布特点,确定新能源集控系统为“一主多从”的部署模式。
将新能源集控系统依照不同角度分别划分为不同结构,划分方式如图1所示。
其中,场站监控层实现对现场的监控和数据上传;中心集控层实现远程集中监视和控制;上级监管层实现与电网调度和上级集团的协调沟通。
监控层采用集控中心远程SCADA值班管理模式;平台层采用大数据平台体系;应用层实现数据与业务的智能融合分析。
水电站监控系统的方案设计及实现

水电站监控系统的方案设计及实现水电站是一种重要的清洁能源发电方式。
为了确保水电站的安全稳定运行,需要实施有效的监控系统。
本文将介绍一种水电站监控系统的方案设计及实现。
一、监控系统需求分析1.实时性:监控系统需要实时获取水电站各种数据并及时反馈至操作员终端。
2.准确性:监控系统需要精确测量各项数据,如水位、流量等。
3.可靠性:监控系统必须能够为水电站的安全稳定运行提供保障。
4.易用性:监控系统应具备易于操作、易于维护等特性,以达到高效管理的目的。
二、监控系统设计1.数据采集模块数据采集模块是监控系统最为基础的组成部分,其任务是采集水电站各种数据。
在实现监控系统时,应尽可能选用成熟、可靠的数据采集器,并与水电站原有的传感器设备相兼容。
同时要考虑采集器的可靠性和抗干扰能力,确保其能够长期稳定运行。
2.数据处理模块数据处理模块是监控系统的核心,其任务是将采集到的数据进行处理,包括对各种数据进行分类、筛选和汇总,并通过可视化的方式呈现给操作员,以便进行实时监控和分析。
3.通信模块通信模块是连接各个子系统的纽带。
在设计通信模块时应综合考虑数据传输速度、传输距离、工作环境等因素,以保证数据及时、准确地传输到监控终端上,同时,为了保证通信稳定,通信线路的噪声、阻抗等参数也需要考虑。
常用的通信方式有串口通讯、RS485总线、以太网等。
4.人机交互模块人机交互模块是监控系统与人员之间的连接,其任务是为操作员提供一个友好、简单、高效的操作界面,并向操作员报告水电站的各种数据。
在实现时,应优化各种功能按钮、数据显示界面等,提高人机交互的体验感和效率。
5.报警模块报警模块的主要任务是对水电站各种异常和危机情况进行报警。
当水电站发生异常或者危机时,监控系统会自动触发报警机制,向操作员报告异常情况,并根据需要自动进行相应的处理。
三、监控系统实现在进行监控系统实现时,需要特别考虑以下几个方面:1.监控系统的可靠性和安全性:水电站是一种涉及到能源供应的重要工程,在实现监控系统时应充分考虑数据的安全性和防篡改性。
风力发电场监控设计方案

风力发电场监控设计方案一、引言随着能源需求的不断增长,新能源的开发和利用已经成为一种必然趋势。
风力发电作为清洁能源的代表之一,受到了越来越多的关注和重视。
而为了保证风力发电场的高效运行和安全性,监控系统的设计显得尤为重要。
二、风力发电场监控系统概述风力发电场监控系统是指通过多种监控手段对风力发电场的运行状态、生产数据、设备运行情况等进行远程实时监控和控制,以实现对风力发电场的全面监管。
监控系统包括硬件设备和软件系统两部分,通过这两者的有机结合,实现对整个风力发电场的监控。
三、硬件设备1. 监控摄像头:安装在风力发电机组和变电站等关键位置,用于实时监控设备运行情况和场地环境;2. 温度传感器和湿度传感器:监测发电设备的工作环境温湿度,及时发现异常情况;3. 风速风向仪:用于监测风力发电场的风速和风向,以便合理调整发电机组叶片角度;4. 电力仪表:监测发电设备的电力输出情况,及时掌握风力发电量;5. 无人机:定期巡检风力发电场,发现潜在问题,并对异常情况进行诊断和分析。
四、软件系统1. 数据采集与传输系统:实时采集风力发电场各个环节的数据,通过网络传输到监控中心;2. 监控平台:对数据进行整合、分析和展示,呈现给管理人员可视化的监控界面;3. 预警系统:建立异常报警机制,一旦发现异常情况,系统将自动发出预警信息;4. 远程控制系统:能够远程对风力发电设备进行调整和控制,提高运行效率;5. 数据分析与决策系统:通过数据分析,为管理人员提供风力发电场的管理决策支持。
五、监控系统运维1. 定期维护:按照设备的使用寿命和维护周期进行定期维护,确保监控系统的正常运行;2. 灾备和备份:建立监控系统的灾备和备份体系,保证数据的安全可靠;3. 人员培训:对监控系统的操作人员进行培训,提高其操作技能和应急处理能力;4. 升级改进:定期对监控系统进行升级和改进,适应新的技术和需求。
六、总结风力发电场监控设计方案是确保风力发电场安全稳定运行的关键之一,通过合理的硬件设备和软件系统的设计与运维,可以有效提高风力发电场的运行效率和管理水平,为清洁能源的开发和利用提供强有力的保障。
风电监控系统方案(2024)

引言概述:风电监控系统方案是为了实现对风力发电场的全面监控和管理而提出的一种方案。
随着风力发电在可再生能源领域的重要地位不断增强,对风电场的运行状态进行实时监控并及时采取相应措施成为了保障风力发电场稳定运行的关键。
为此,本文将从监控系统结构、监控内容、监控技术、数据分析和管理指标等五个大点来详细阐述风电监控系统方案的设计与实施。
正文内容:一、监控系统结构1.监控系统硬件组成:包括传感器、数据采集设备、通信设备等。
2.监控系统软件组成:包括监控平台软件、数据存储与处理软件等。
3.监控系统网络结构:建立稳定、安全、高效的网络环境,确保数据传输的稳定性和实时性。
4.监控系统分布式架构:采用分布式架构,实现数据的平衡分配和故障恢复等功能。
5.监控系统云平台:结合云计算技术,实现数据的集中存储和实时共享。
二、监控内容1.发电机组监控:包括机组的实时状态监测、故障诊断和维护管理等。
2.变频器监控:对变频器进行参数监测和故障诊断,及时采取措施防止故障对整个风电场的影响。
3.风速和风向监控:实时监测风速和风向,以了解风电场的风能资源情况。
4.温度和湿度监控:实时监测机组的温度和湿度,防止机组过热和腐蚀等问题。
5.周边环境监控:对风电场周边环境进行监测,确保风电场的运行对环境的影响符合相关法规和标准。
三、监控技术1.数据采集技术:通过传感器采集机组和环境参数的数据,提供实时数据支持。
2.远程监控技术:利用现代通信技术,实现对远程电站的实时监控和远程操作。
3.数据传输技术:确保数据的稳定传输和及时响应,采用安全加密机制确保数据的保密性。
4.数据分析技术:通过对监测数据进行分析和处理,提取有用信息,实现故障预测和优化调度等功能。
5.人机交互技术:设计友好的监控界面,便于操作人员对监控数据进行查看和分析。
四、数据分析1.故障预测分析:通过对监测数据的分析,提前预测机组的故障,及时采取措施避免功率损失。
2.故障诊断分析:对发生故障的机组进行诊断,确定故障原因和解决方案,快速恢复机组运行。
太阳能监控系统技术方案

太阳能4G监控系统技术方案目录太阳能4G监控系统 (1)技术方案 (1)第一章概述 (3)1.1应用背景 (3)1.2需求分析及总体目标 (3)1.3设计原则 (3)1.4设计依据 (4)第二章太阳能系统优势 (5)2.1太阳能供电系统技术简介 (5)2.1.1太阳能电池板阵列组件 (5)2.1.2蓄电池组 (6)2.2太阳能系统优势 (6)第三章太阳能4G无线视频监控系统概述 (7)3.1系统拓扑图及构架 (7)3.1.1系统拓扑图 (7)3.1.2系统构架图 (7)3.2 太阳能发电子系统 (10)3.3 数据4G无线传输子系统 (10)3.4 视频存储子系统 (11)3.5 其他子系统 (12)第四章施工完成案例 (13)4.1国家管网原油管道业务监控施工案例图 (13)4.2建筑工地施工案例图 (13)4.3农田水库施工案例图 (14)附件:清单 (15)第一章概述1.1应用背景当前农场种植的经济作物,经济价值比较高,时有偷盗的行为,当地农户农田放牧行为,无人管控。
如果安排专门的看护人员,成本比较高,传统的监控安防存在取电、网络布线比较困难,随着4G物联网的普及以及资费的下降,安装太阳能视频监控系统可以最大节省施工成本,应用成本以及农场看护人员的成本。
1.2需求分析及总体目标为了满足业主在农场管理上能做到实时监控有人进入农田放牧及偷盗行为做到语音喊话驱离的需求,本系统采用高清智能监控,远距离放大图像、语音喊话、无线4G传输、远程喊话等技术来实现农场管理需求。
本系统的总体建设目标是:1)建成统一的管理平台:过管理平台实现全网统一的安防资源管理,对视频监控、语音喊话系统进行统一管理,实现远程参数配置与远程控制等;通过管理平台实现全网统一的用户和权限管理,满足系统多用户的监控、管理需求,真正做到“坐阵指挥中心,掌控千里之外”。
2)建成高可靠性、高开放性的系统:通过采用业内成熟、主流的设备来提高系统可靠性,尤其是录像存储的稳定性。
BA系统及能源监控系统施工方案

BA系统及能源监控系统施工方案1. 引言本文档旨在提供关于BA系统及能源监控系统的施工方案。
BA 系统是指业务分析系统,它用于收集、分析和展示业务数据,以便帮助企业做出决策和优化业务流程。
能源监控系统是指用于监测和管理能源使用情况的系统,以实现能源消耗的有效控制和节约。
2. 施工方案概述施工方案分为以下几个步骤:2.1 需求分析在开始施工之前,我们需要对BA系统和能源监控系统的功能和需求进行详细分析。
这包括了解企业的业务流程、数据需求以及对能源消耗的监控要求。
通过需求分析,我们可以确定系统的具体功能和设计。
2.2 系统设计根据需求分析的结果,我们将进行系统设计。
这包括确定系统的结构、功能模块以及数据流程。
我们将根据业务流程和能源监控要求设计相应的界面和报表,以满足企业的需求。
2.3 数据采集和处理在系统设计完成后,我们将进行数据采集和处理的工作。
这包括从不同来源收集数据,并将其转化为可分析的格式。
我们将使用合适的数据处理工具和算法对数据进行清洗、整合和分析,以获得准确的结果。
2.4 系统开发与测试在数据采集和处理完成后,我们将进行系统开发和测试。
这包括开发系统的软件和硬件部分,并进行集成和测试。
我们将确保系统的稳定性和可靠性,以及满足用户需求。
2.5 系统部署和培训系统开发和测试完成后,我们将进行系统部署和培训的工作。
这包括将系统部署到企业的服务器或云平台上,并进行用户培训,使他们能够熟练使用BA系统和能源监控系统。
3. 关键里程碑在整个施工过程中,我们将设立以下关键里程碑:- 需求分析完成:预计完成时间为两周。
- 系统设计完成:预计完成时间为三周。
- 数据采集和处理完成:预计完成时间为四周。
- 系统开发和测试完成:预计完成时间为六周。
- 系统部署和培训完成:预计完成时间为一周。
4. 参与人员和沟通在施工过程中,将涉及以下参与人员:- 项目经理:负责协调和管理整个施工过程。
- 业务分析师:负责需求分析和系统设计。
风力发电场监控设计方案

风力发电场监控设计方案摘要:风力发电场监控设计方案旨在提供一个可靠的监控系统,用于确保风力发电场的安全运行和高效发电。
本文分析了风力发电场监控的重要性,介绍了监控系统的组成和功能模块,并详细描述了每个模块的设计原则和技术方案。
通过合理的监控设计和实施,可以实时监测风力发电机组状态、风场环境参数以及电网运行情况,减少故障发生和损失,并提高发电效率。
第一部分:引言随着对可再生能源的需求不断增加,风力发电作为一种清洁、可持续的能源形式在全球范围内得到广泛应用。
然而,由于风力发电场地处于户外恶劣环境,设备持续运行时间长,存在一定的安全隐患和故障风险。
因此,风力发电场监控至关重要,以确保设备正常运行、故障及时处理,并最大程度地提高发电效率。
第二部分:监控系统组成与功能模块1. 数据采集模块数据采集模块是风力发电场监控系统的核心部分,负责收集各个关键参数数据,例如风速、风向、温度、电量等。
采集设备应具备高精度、稳定性和可靠性,可以实时采集数据,并通过网络传输至监控中心。
2. 风机状态监测模块风机状态监测模块主要用于实时监测风机的工作状态,包括转速、转矩、温度、电流等数据。
监测模块应能够及时发现风机故障,并生成报警信号,以便维护人员进行及时处理。
3. 环境监测模块环境监测模块用于监测风场环境参数,包括风向、风速、湿度、温度等。
这些参数的实时监测可以帮助运营人员了解当前风场的气象条件,从而做出相应的调度决策。
4. 电网监控模块电网监控模块用于监测并记录当地电网的功率、频率、电压等参数,以确保风力发电场的并网运行稳定。
同时,监控系统可以通过与电网交互,实现对电网的控制和调节。
第三部分:监控系统设计原则与技术方案1. 可靠性设计原则监控系统应具备高可靠性,确保系统24小时不间断运行。
采用冗余设计、备份设备和可靠的数据传输路径,以应对设备故障和通信中断的情况。
2. 数据存储与分析技术方案监控系统应具备大容量的数据存储和在线分析能力,以记录历史数据和分析发电效率。
智慧楼宇能源监测系统方案-v1

智慧楼宇能源监测系统方案-v11. 引言本文档旨在介绍智慧楼宇能源监测系统方案。
该方案旨在通过利用先进的技术监测楼宇的能源使用情况,以便优化能源消耗,降低能源浪费,并提供合理的建议和决策支持,从而实现能源效率的提升。
2. 方案概述智慧楼宇能源监测系统采用各种传感器设备和数据采集器,将楼宇内部各个子系统的能源使用情况实时汇总和监测。
系统通过无线传输技术将数据传输到中央控制台,并进行数据分析和处理。
3. 主要功能智慧楼宇能源监测系统的主要功能包括:- 实时能源数据采集与分析:通过传感器设备对楼宇内部的能源使用情况进行实时监测和采集,并对数据进行分析,以获得楼宇能源的使用情况和趋势。
- 能源消耗告警与优化:系统能够根据设定的能源消耗标准和预设模型,对能源消耗进行实时监控,并在能源消耗超出预期范围时发出告警,以支持能源消耗的优化和节约。
- 数据可视化和报告生成:系统能够将分析得到的数据以可视化的形式展示,并生成详细的报告,以便楼宇管理员和决策者更好地了解能源使用情况,并作出相应的调整和决策。
4. 系统架构智慧楼宇能源监测系统的整体架构包括以下几个部分:- 传感器设备:安装在楼宇内的各个重要位置以及各个子系统中,用于采集能源使用数据。
- 数据采集器:负责实时采集传感器设备采集到的数据,并通过无线传输技术将数据传输到中央控制台。
- 中央控制台:接收和存储来自数据采集器的数据,并进行数据分析和处理,同时支持用户界面的展示和操作。
- 数据分析与决策支持系统:负责对采集到的数据进行分析,提供能源消耗的实时状态和趋势,并给出合理的建议和决策支持。
5. 实施步骤智慧楼宇能源监测系统的实施步骤包括以下几个阶段:1. 系统需求分析和设计:根据具体楼宇的需求,进行系统需求分析,并设计相应的系统架构和功能模块。
2. 传感器设备和数据采集器的安装与配置:根据系统设计,安装和配置传感器设备和数据采集器,并确保其能够正常运行和与中央控制台进行通信。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xxxx公司能源监测系统技术方案有限责任公司2015年5月目录1、概述 (3)2、现状分析 (3)3、需求分析 (3)4、建设目标 (4)5、设计依据 (4)6、设计原则 (6)7、方案设计 (7)7.1系统结构 (7)7.1.1设备层 (7)7.1.2网络层/传输层 (7)7.1.3.能耗管理中心 (8)7.2系统功能 (9)7.2.1数据采集 (9)1、概述总部位于上海。
作为中国三大航空公司之一,xxxx运营着由500余架客货运飞机组成的现代化机队,平均机龄不到7年。
xxxx的航线网络通达全球177个、1052个目的地,每年为全球近8000万旅客提供服务,旅客运输量位列全球前十。
2、现状分析xxxx公司建筑数量多,分布分散,建筑新旧程度不同,区域分散用电、用水点位多,目前主要依靠人工采集能耗数据,不能同时刻收集所有数据,以致不能有效的进行能源消耗管理。
3、需求分析能源管理系统(简称EMS)是企业信息化系统的一个重要组成部分,数字化的能耗采集系统,通过前端智能化采集设备的安装,网络化传输到中心平台,通过EMS系统平台以实时数据库系统为核心可以从数据采集、联网、能源数据海量存储、统计分析、查询等提供一个能EMS的整体解决方案,达到xxxx公司调度管理人员在能源管控中心实时对系统的动态平衡进行直接控制和调整,达到节能降耗的目的。
4、建设目标项目建成后,能够实现对xxxx分公司水、电等能耗实时动态的分布式监控与集中管理。
用以掌握xxxx分公司建筑能耗的实时数据、对xxxx分公司各种能源系统进行分布式监控与集中管理。
通过能耗监测平台可实现xxxx分公司用能的实时在线分类、分项、分户监测和计量,能耗数据自动采集与存贮、数据统计与分析、数据远程传输、数据显示和打印、数据显示发布等,方便xxxx分公司能源管理部门对能源系统进行有效的监测与管理,对已实施节能改造的建筑提供节能效果真实数据,为xxxx分公司节能降耗降低运行成本提供基础数据。
5、设计依据《中华人民国节约能源法》国务院令第531《公共机构节能条例》《机关办公建筑和大型公共建筑能源审计导则》《机关办公建筑及大型公共建筑分项能耗数据采集技术导则》《机关办公建筑及大型公共建筑分项能耗数据传输技术导则》《机关办公建筑和大型公共建筑能耗监测系统楼宇分项计量设计安装技术导则》《机关办公建筑和大型公共建筑能耗监测系统数据中心建设与维护技术导则》《机关办公建筑和大型公共建筑能耗监测系统建设、验收与运行管理规》《机关办公建筑和大型公共建筑能耗动态监测系统软件开发指导说明书》《智能变电站智能控制柜技术规》DL/T 698.1-2009第1部分:总则DL/T 698.2-2010第2部分:主站技术规DL/T 698.31-2010第3.1部分:电能信息采集终端技术规-通用要求DL/T 698.35-2010第3-5部分:电能信息采集终端技术规-低压集中抄表终端特殊要求DL/T 698.41-2010第4-1部分:通信协议-主站与电能信息采集终端通信DL/T 698.42-2010第4-2部分:通讯协议-集中器下行通信协议GB 50189-2005 《公共建筑节能设计标准》GB 15316-2009 《节能监测技术通则》GB 17167-2006 《用能单位能源计量器具配备和管理导则》GB 50034-2004 《建筑照明设计标准》GB/T 13462-2008 《电力变压器经济运行》IEEE 802.3,IEEE802.3z(千兆以太网标准)GB8566-88 计算机软件开发规GB8567-88 计算机产品开发文件编制指南IEC1000-4-2/3/4—1995 电磁兼容GB2423.1/2/3 电工电子产品基本环境试验规程IEC1107(直接本地)IEC1142(本地总线)GB50052-2009 供配电系统设计规GB50054-2011 低压配电设计规IEC 61587 电子设备机械结构系列DL/T 698 电能信息采集与管理系统DL/T/814-2002 配电自动化系统功能规GB/T/3047.1 面板、架和柜的基本尺寸系列GB2887 计算站场地技术条件GB50189-2005 《公共建筑节能设计标准》JGJ176-2009 《公共建筑节能改造技术规》(行业规)6、设计原则整个项目的实施过程中,我们将严格遵循以下原则进行整个系统的规划、设计、开发和实施可靠性:确保系统的高度可靠性和可用性。
安全性:确保系统管理者在授权围使用设备和信息,形成一个完整、可靠的安全体系;对硬件设备的操作也要设置相应的密码防体制。
先进性:在系统建设中应尽可能地利用一些成熟的、先进的技术手段,使系统具有更强的生命力。
易用性:系统应方便使用和维护,具有友好的环境界面,促使能源管理工作的效率提升,降低运行成本。
可扩展性:系统的网络结构、软件平台选择、网络通信容量和硬件具体配置等方面留有扩展的余地。
7、方案设计7.1系统结构建筑能耗监测系统是通过在建筑物安装分类和分项能耗计量装置,采用远程传输等手段及时采集能耗数据,按照各地要求汇总、编码能耗数据,数据经加密后上传至上级能耗监测中心,实现建筑能耗的在线监测、数据处理及数据远程传输和动态分析的功能的硬件、网络和软件系统的统称。
整个系统分为三层结构:7.1.1设备层◆设备层的能耗计量装置负责采集现场的能耗数据,同时等待上位机或数据采集器的查询命令,将能耗数据远程传输至采集服务器存储。
◆常见的能耗计量装置有普通电能表、多功能电力仪表、三相电力分析仪表、数字水表、热水表、流量表(超声波、涡尖)、能量表、煤气表以及辅助计量装置(互感器、积算仪、协议转换器)等。
7.1.2网络层/传输层◆网络层由数据采集装置、组网设备、中继设备、隔离设备以及通信线缆组成。
◆计量装置和数据采集器之间采用主-从结构的半双工通信方式,采用符合各相关行业标准的通信接口(RS485)及通信协议(MODBUS、645规约)。
◆计量装置和数据采集器之间传输距离较远时可增加中继设备,通过环网交换机组成光纤环网增加传输的可靠性和安全性。
◆当能耗监测系统没有设置本地能耗监测管理系统时,传输层的智能数据采集器完成能耗数据的采集、分类分项、编码、加密、数据上传等功能,数据可透传,不再购置上位机及系统软件。
7.1.3.能耗管理中心◆接收、处理本建筑(建筑群或小区)各能耗计量点发来的能耗数据及计量、采集、传输装置状态信息,将处理后的能耗信息分类、分项存储,并分别发送至上级数据中心和相关管理部门的管理室,可根据实际情况设置或不设置,上海都没有设置。
◆应用软件符合《机关办公建筑和大型公共建筑能耗监测系统软件开发指导说明书》中对软件功能框架的描述和对软件功能的要求。
◆在线检测个计量装置和传输设备的通信状态,灵活设置个采集设备的数据采集周期。
◆对需要人工采集的能耗数据提供人工录入功能。
◆实现各分类分项能耗和单位面积能耗逐日、逐月、逐年汇总,并以坐标曲线、柱状图、报表等形式显示、查询和打印,为用户提供个性化报表和分析模板。
◆对各分类分项能耗和单位面积能耗进行按月、按年同比或环比分析。
◆可将本建筑各分类分项能耗按各地建筑能耗监测系统的要求上传至上级数据中心。
建筑能耗监测系统是通过在建筑物安装分类和分项能耗计量装置,采用远程传输等手段及时采集能耗数据,按照各地要求汇总、编码能耗数据,数据经加密后上传至上级能耗监测中心,实现建筑能耗的在线监测、数据处理及数据远程传输和动态分析的功能的硬件、网络和软件系统的统称。
7.2系统功能xxxx能耗管理系统通过对建筑安装电能表计及远传式自来水表,利用xxxx 网资源,采用远程传输等手段及时采集能耗数据,实现地块建筑能耗的在线监测和动态分析功能的智能化管理系统。
该系统具有以下功能:7.2.1数据采集传统的建筑能耗计量方式是安装普通计量仪表,通过人工抄表的方式,定期查抄各类仪表来统计建筑能耗,抄表周期一般分为周、月,采集的数据为建筑各分类能耗的累积能耗量。
由于不可能准确的控制抄表时间,就使得到的能耗结果很难反映建筑在某周期的实际能耗量,例如原则上是每月抄一次表,实际查看电表的时间早几天或晚几天,就造成上一个月的能耗数据实际上是二十几天的能耗量,后一个月的能耗数据是三十多天的能耗量,在能耗数据同期对比或环比时,数据已经很难使用。
要得到短期的(例如一天或一小时)的能耗数据,需要实现建筑能耗的在线计量,即通过数据采集软件与自动计量仪表的实时通信,以分钟或小时为采集周期,连续采集某一个用能支路的实时能耗数据。
本项目使用的电能表计及远传式自来水表均能提供RS485通讯接口,完全可以满足数据采集的实时性需求。
7.2.2数据显示xxxx能耗管理系统需要将实时采集、汇总、分析、对比的能耗结果,通过图表的方式显示给建筑管理者、用能用户、能耗管理部门等各类用户。
数据展示的容包括建筑的基本信息,能耗监测情况,各监测支路的实时读数、各监测支路的每小时、日、月、年能耗值及建筑分类分项能耗情况,各单体建筑各类能耗指标与相同功能类型的标准建筑(如标杆值、平均值等)的比较结果、各分类建筑的能耗指标、建筑整体能耗指标等。
能耗数据容以曲线图、柱状图及列表方式展示,图表展示方式可以直观反映和对比各项采集数据和能耗统计数据的数值、趋势和分布情况。
7.2.3分类统计要实现建筑节能,首先要了解建筑的运行能耗是多少,到底消耗在什么用途上,但是建筑功能复杂,用能种类繁多,要详细了解建筑每小时、天、月、年的电量、集中供热、燃气、煤能耗量和自来水、生活热水、中水等水量,需要安装相应的智能计量仪表以实现对建筑的这些分类能耗进行在线计量。
建筑中最常用的能耗为电耗,通过传统的每个建筑装一块总表的计量方式,很难分清建筑各用电支路的实际用电量状况,无法了解总用电的去向及各能耗系统占总用电的比例,从而也无法有效地管理和指导具体的节能工作。
如表所示,平台中将建筑用电按照用电性质分为照明与插座用电、暖通空调用电、动力设备用电、特殊用电等,其中照明与插座用电又可细分为照明用电、插座设备用电、电开水器用电等二级分项用电,暖通空调分为分散空调用电和集中空调用电等,动力用电分为电梯用电和给排水系统用电等,特殊用电分为信息中心用电、厨房设备用电、特殊用途设备用电等。
因此,xxxx能耗监测平台方案设计时需要对重点用电系统实现独立的分项计量,为建筑节能工作提供有效的数据依据。
7.2.4能耗分析能耗管理系统运行时,每天会有大量的监测数据实时上传至数据库服务器,如何及时地将实时监测的海量数据转化为用户关心的每小时、天、月、年的能耗数据是系统实现在线能耗计量的关键。
监测系统的能耗汇总分析功能主要是实现单体建筑、分类建筑、地块建筑整体能耗的在线统计,同时可以将能耗统计结果进行汇总,以便用户查询。