离子交换树脂的基本类型

合集下载

离子交换树脂的种类

离子交换树脂的种类

离子交换树脂的种类
一、强酸型树脂:
1.高强度硫酸型树脂:这是最常见的一种离子交换树脂,其含有大量的硫酸基团(-SO3H),用于去除水中的碱性金属离子和硝酸盐。

2.高强度氯酸型树脂:这类树脂中含有氯酸基团(-COOH),广泛应用于氯离子和硝酸盐的去除。

二、弱酸型树脂:
1.丙烯酸型树脂:这类树脂含有丙烯酸基团(-COONa),适用于去除水中的钙、镁离子。

2.磷酸型树脂:这类树脂含有磷酸基团(-PO3H2),能够去除水中的钙、镁离子和铁离子。

三、强碱型树脂:
1.强碱型丙烯酸树脂:这类树脂含有胺基团(-NR3),适用于去除水中的酸性离子(如硫酸根离子)。

2.纤维素型强碱型树脂:这类树脂适用于去除水中的有机物、色素和重金属离子。

四、弱碱型树脂:
1.弱碱型丙烯酸树脂:这类树脂含有氨基团(-NH2),能够去除水中的酸性离子和重金属离子。

2.氨基型树脂:这类树脂含有氨基团(-NH2),用于水处理中的去除和回收硫酸铵。

此外,根据交换基团的不同,离子交换树脂还可分为单质离子交换树脂和复质离子交换树脂。

其中,单质离子交换树脂是指只含有一种交换基团,而复质离子交换树脂则含有两种或两种以上的交换基团。

综上所述,离子交换树脂的种类繁多,根据不同的应用领域和水质需要选择适用的树脂类型,以达到最佳的净化和分离效果。

离子交换剂的类型

离子交换剂的类型

离子交换剂的类型
1.聚苯乙烯阳离子和阴离子交换树脂
这是最重要一类离子交换树脂,由苯乙烯和二乙烯苯的共聚物作为骨架,在引入所需要的酸性基或碱性基而成。

根据引入的可离解基团的性质又可分为下列两类离子交换树脂:1)聚苯乙烯阳离子交换树脂这类交换剂可再分为强酸型、中强酸型及弱酸性三种;2)聚苯乙烯阴离子交换树脂也可在分为强酸性、中强酸性及弱酸性三类。

2.聚丙烯酸阳离子交换树脂
是由甲基丙烯酸和二乙烯的聚合而成。

这类树脂具高度的交换量,每棵树脂可交换10毫克当量物质。

这种高度缔合的非离子化羧基使树脂的表面形成一个亲水平,对极性分子能起一种很有效的吸附作用。

3.其它离子交换剂
1)选择性离子交换剂是利用某些特殊的有机溶剂可与某些金属离子起选择性反应的原理而制备的。

如用含汞的树脂分离含巯基的化合物(辅酶A,半胱氨酸,谷胱甘肽)。

2)吸附树脂是一类有很大的表面积,吸附能力强,离子交换的能力很小的树脂。

主要用于脱色和除去蛋白质等,也成为"脱色树脂"。

3)电子交换树脂这类所交换的不是离子而是电子,交换反应是个氧化还原反应,也称"氧化还原树脂"。

阳离子交换树脂 类型

阳离子交换树脂 类型

阳离子交换树脂类型
阳离子交换树脂是一种高分子材料,通常用于水处理、化学反应和分离等领域。

根据不同的化学组成和功能特性,阳离子交换树脂可以分为多种类型。

以下是几种常见的阳离子交换树脂类型:
1. 强酸性阳离子交换树脂
强酸性阳离子交换树脂是一种高交联度的树脂,具有很强的酸性和离子交换能力。

它通常用于水处理和化学反应中,可以有效地去除水中的阳离子和阴离子,以及参与各种化学反应。

2. 弱酸性阳离子交换树脂
弱酸性阳离子交换树脂的酸性较弱,适用于处理一些具有较高酸碱性的溶液。

它通常用于化学分离和纯化领域,可以通过离子交换过程将目标离子从混合物中分离出来。

3. 苯乙烯二乙烯基苯树脂
苯乙烯二乙烯基苯树脂是一种高耐热性和高机械强度的树脂,通常用于高温高压环境下的分离和纯化过程。

它可以通过离子交换过程有效地去除溶液中的阳离子和阴离子。

4. 球形树脂
球形树脂是一种经过特殊加工的阳离子交换树脂,具有较大的比表面积和高效的离子交换能力。

它通常用于处理大规模的溶液或需要高效率的分离和纯化过程。

5. 丙烯酸基阳离子交换树脂
丙烯酸基阳离子交换树脂是一种具有高交联度和高弹性的树脂,适用于处理一些具有较高粘性和腐蚀性的溶液。

它通常用于化学反应和分离领域,可以通过离子交换过程将目标离子从混合物中分离出来。

离子交换树脂氢型和钠型

离子交换树脂氢型和钠型

离子交换树脂氢型和钠型1.引言1.1 概述概述:离子交换树脂是一种能够吸附和释放离子的高分子材料,广泛应用于水处理、化学合成、药物制备等领域。

其中,离子交换树脂氢型和钠型是其中常见的两种类型。

它们具有不同的特点和应用领域,在本文中将对其进行详细介绍和比较。

文章结构:本文共分为引言、正文和结论三个部分。

引言部分主要概述了本文的内容和目的,同时提供了对离子交换树脂氢型和钠型的简要介绍。

正文部分将分为离子交换树脂氢型和钠型两个小节,分别介绍其定义和特点以及应用领域。

最后,结论部分将对这两种类型进行总结,并对它们的应用领域进行比较和评析。

目的:本文旨在深入了解离子交换树脂氢型和钠型的特点和应用领域,通过比较两者的不同之处,探讨它们在不同领域的适用性。

通过本文的阅读,读者可以对离子交换树脂氢型和钠型有更深入的了解,为相关领域的应用提供参考和指导。

文章结构部分是为了让读者更好地理解和阅读整篇文章,因此在写作时要清晰明了地介绍文章的结构和内容安排。

下面是对于文章1.2文章结构部分的内容的建议:在本文中,我们将对离子交换树脂的氢型和钠型进行详细探讨。

为了帮助读者更好地理解这两种类型的离子交换树脂,本文将按照以下结构进行论述。

首先,在引言部分,我们将提供对整篇文章的概述。

我们将简要介绍离子交换树脂的概念以及氢型和钠型的定义。

然后,我们将明确本文的目的,即探讨这两种类型的离子交换树脂的特点和应用领域。

在正文部分,我们将分为两个章节,分别论述离子交换树脂的氢型和钠型。

在每个章节中,我们将首先给出这两种类型离子交换树脂的定义和特点的详细解释。

我们将讨论它们的化学性质、结构特征以及其在实际应用中的表现。

此外,我们还将探讨它们在不同领域中的应用,例如水处理、食品加工等。

我们将综合已有的研究和实践经验,提供一些具体的实例来支持我们的观点。

最后,在结论部分,我们将总结离子交换树脂的氢型和钠型的特点。

我们将强调它们在不同应用领域中的优势和局限性,并对其未来的发展进行展望。

离子交换树脂的类型及作用机理

离子交换树脂的类型及作用机理

离子交换树脂的类型及作用机理离子交换树脂是一种常用的固相萃取材料,广泛应用于水处理、制药、食品加工、化学分析等领域。

离子交换树脂根据其功能和结构特点,可以分为阴离子交换树脂和阳离子交换树脂。

1. 阴离子交换树脂:阴离子交换树脂通常具有正电荷的功能基团,如胺基或季铵基团。

它们能够吸附和交换阴离子,如硝酸根、氯离子、磷酸根等。

常见的阴离子交换树脂有强碱性树脂和弱碱性树脂。

强碱性树脂,它们具有高度碱性的功能基团,如季铵基团,能够吸附和交换大多数阴离子。

常用于水处理中去除硝酸盐、氯离子等。

弱碱性树脂,它们具有较低的碱性功能基团,如胺基团,适用于去除较弱的阴离子,如有机酸和某些无机酸。

2. 阳离子交换树脂:阳离子交换树脂通常具有负电荷的功能基团,如硫酸基团或磷酸基团。

它们能够吸附和交换阳离子,如钠离子、钙离子、铵离子等。

常见的阳离子交换树脂有强酸性树脂和弱酸性树脂。

强酸性树脂,它们具有高度酸性的功能基团,如硫酸基团,能够吸附和交换大多数阳离子。

常用于水处理中去除钠离子、钙离子等。

弱酸性树脂,它们具有较低的酸性功能基团,如磷酸基团,适用于去除较弱的阳离子,如铵离子和某些金属离子。

离子交换树脂的作用机理是通过功能基团与待去除离子之间的静电吸引力实现的。

当离子交换树脂与水或溶液接触时,树脂中的功能基团会与水中的离子发生交换,使树脂中的离子与水中的离子达到平衡。

这样,树脂就能够吸附和去除溶液中的目标离子。

当树脂吸附饱和后,可以通过用盐水或酸碱溶液进行再生,使树脂恢复吸附能力。

总的来说,离子交换树脂通过其特殊的功能基团与待去除离子之间的静电吸引力,实现了对阴离子或阳离子的吸附和去除。

不同类型的离子交换树脂适用于不同的离子去除需求,可以根据具体应用场景进行选择和调整。

离子交换分离树脂

离子交换分离树脂

离子交换树脂概述离子交换树脂有多种类型,其分类方法也没有统一的规定,主要有:按树脂骨架的主要成分可分为聚苯乙烯型树脂、聚丙烯酸型树脂、环氧氯丙烷型多乙烯多胺型树脂、酚一醛型树脂等;按聚合的化学反应分为共聚型树脂和缩聚型树脂;按骨架的物理结构常分为凝胶型树脂即微孔树脂、大网格树脂即大孔树脂,有的还有均孔树脂;按活性基团分为阳郭交换树脂和阴离子交换树脂等等。

其中常见是是按活性基团及骨架的物理结构的方法分类,因活性基团的种类决定了树脂的主要性质和类别;而骨架的物理结构在树脂的交换使用中影响较大。

按不同活性基团的种类进行分烃,主要的是阳离子和阴离子交换树指,其次也还有一些其他种类的树脂。

1、阳离子交换树脂阳离子交换树脂的活性基团能解离出阳离子,而其作为交换的离子可与溶液中的其他阳离子发生交换。

阳离子交换剂,相当于高分子的多元酸。

因活性基团的电离程度强弱不同又有强酸性和弱酸性阳离子交换树脂的区别。

强酸性阳离子交换树脂磺酸基团和次甲基磺酸基团都是强酸性基团,它们容易在溶液中离解出氢离子,故呈强酸性,且离解后的负电基团,能吸附结合溶液中的其他阳离子而发生交换反应。

这类树脂对酸、碱和各种溶剂都比较稳定,离子交换不受溶液PH值变化的影响,适用面广泛。

常用强酸进行再生处理,但强酸性树脂与氢离子的结合力较弱故再生成氢型树脂时比较困难且耗酸量较大。

强绝不能性树脂主要用于水处理和制药工业中。

弱酸性阳离子交换树脂带有羧酸基、氧乙酸基团的交换树脂,是常见的弱酸性阳离子交换树脂。

这种树脂的离解性即酸性较弱,在低PH下难以离解和进行离子交换,只在碱性、中性或微酸性溶液中发生交换反应。

其交换容量大,容易再生成氢型,但其交换能力弱,速度慢;化学和热稳定性差。

这类树脂亦是用酸进行再生,在制药工业中使用较多。

2、阴离子交换树脂阴离子交换树脂的活性基团能解离出阴离子,而其作为交换离子可与溶液中的其他阴离子发生交换。

阴离子交换剂,相当于高分子的多元碱。

离子交换树脂产品分类、命名及型号

离子交换树脂产品分类、命名及型号

离子交换树脂产品分类、命名及型号
离子交换树脂是一种用于水处理、化学分离和其他工业应用的重要材料。

根据其功能和化学特性,离子交换树脂可以分为几种不同的类型,具体如下:
1. 按功能分类:
软化树脂,用于去除水中的钙、镁等硬水离子,常用的软化树脂包括强酸型和强碱型。

脱盐树脂,用于去除水中的盐分和电导率,通常用于纯水生产和电子工业。

选择性树脂,根据其对特定离子的选择性吸附,分为氨基树脂、羟基树脂等,用于特定物质的分离和提纯。

2. 命名规则:
通常,离子交换树脂的命名包括树脂类型、功能和颗粒大小等信息。

例如,强酸型离子交换树脂可以被命名为"X-5型强酸树脂
",其中的"X-5"表示树脂类型和颗粒大小。

3. 型号分类:
不同厂家生产的离子交换树脂会有不同的型号,常见的型号包括001×7、201×7等,这些型号通常代表了树脂的具体化学结构和性能特点。

总的来说,离子交换树脂的分类、命名和型号是根据其功能和生产厂家的不同而有所差异。

在选择和应用离子交换树脂时,需要根据具体的水处理或化工需求,结合不同类型和型号的离子交换树脂的特性进行选择。

离子交换树脂原理及使用方法

离子交换树脂原理及使用方法

离子交换树脂原理及使用方法以离子交换树脂原理及使用方法为题,本文将介绍离子交换树脂的基本原理、分类、应用以及使用方法。

一、离子交换树脂的原理离子交换树脂是一种能够与溶液中的离子发生交换反应的高分子材料。

其原理基于离子交换反应,通过树脂中的功能基团与溶液中的离子发生化学反应,将溶液中的离子吸附到树脂上,并释放出与之相对应的离子。

离子交换树脂的功能基团可以是酸性基团或碱性基团,根据功能基团的不同,离子交换树脂可以分为阴离子交换树脂和阳离子交换树脂。

二、离子交换树脂的分类1. 阴离子交换树脂:阴离子交换树脂是具有具有碱性功能基团的树脂,能够吸附溶液中的阴离子。

常见的阴离子交换树脂有强碱性树脂和弱碱性树脂。

强碱性树脂通常是以季胺基或氨基作为功能基团,具有较高的离子交换容量和较强的吸附能力;弱碱性树脂则是以胺基或次胺基作为功能基团,离子交换容量和吸附能力较强碱性树脂较低。

2. 阳离子交换树脂:阳离子交换树脂是具有具有酸性功能基团的树脂,能够吸附溶液中的阳离子。

常见的阳离子交换树脂有强酸性树脂和弱酸性树脂。

强酸性树脂通常是以磺酸基或磷酸基作为功能基团,具有较高的离子交换容量和较强的吸附能力;弱酸性树脂则是以羧基或酚基作为功能基团,离子交换容量和吸附能力较强酸性树脂较低。

三、离子交换树脂的应用离子交换树脂在各个领域都有广泛的应用,主要包括水处理、制药、食品加工、环境保护等方面。

1. 水处理:离子交换树脂可用于去除水中的阳离子或阴离子,从而净化水质。

常见的应用包括软化水、去除重金属离子和放射性核素等。

2. 制药:离子交换树脂可用于药物的分离纯化、药物吸附和药物释放控制等方面。

在制药工业中,离子交换树脂广泛应用于药物的纯化和分离、药物固定化以及药物缓释等方面。

3. 食品加工:离子交换树脂可用于食品加工中的脱色、脱苦味、去除重金属离子等。

例如,可用于提取咖啡因、去除苦味物质和脱色等。

4. 环境保护:离子交换树脂可用于废水处理、废气治理和固体废物处理等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离子交换树脂的基本类型离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。

树脂中化学活性基团的种类决定了树脂的主要性质和类别。

首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。

阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。

(1) 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。

树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。

这两个反应使树脂中的H+与溶液中的阳离子互相交换。

强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。

树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。

如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。

树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。

这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。

这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。

(3) 强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。

这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。

这种树脂的离解性很强,在不同pH下都能正常工作。

它用强碱(如NaOH)进行再生。

(4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。

这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。

这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。

它只能在中性或酸性条件(如pH1~9)下工作。

它可用Na2CO3、NH4OH进行再生。

(5) 离子树脂的转型以上是树脂的四种基本类型。

在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。

例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。

工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。

反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。

这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。

又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。

氯型树脂也可转变为碳酸氢型(HCO3-)运行。

强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。

离子交换树脂的物理结构离子树脂常分为凝胶型和大孔型两类。

凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。

它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。

湿润树脂的平均孔径为2~4nm(2×10-6 ~4×10-6mm)。

这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3~0.6nm。

这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5~20nm,不能进入这类树脂的显微孔隙中。

大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量永久性的微孔,再导入交换基团制成。

它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100~500nm,其大小和数量都可以在制造时控制。

孔道的表面积可以增大到超过1000m2/g。

江苏色可赛思树脂有限公司整理这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力(van de Waals force)产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。

一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。

大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。

使用时的作用快、效率高,所需处理时间缩短。

大孔树脂还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。

离子交换树脂的离子交换容量离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。

它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。

1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。

2、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。

3、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。

通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。

在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。

现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。

离子树脂交换容量的测定一般以无机离子进行。

这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。

而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。

这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。

离子交换树脂的吸附选择性离子交换树脂对溶液中的不同离子有不同的亲和力,对它们的吸附有选择性。

各种离子受树脂交换吸附作用的强弱程度有一般的规律,但不同的树脂可能略有差异。

主要规律如下:(1) 对阳离子的吸附高价离子通常被优先吸附,而低价离子的吸附较弱。

在同价的同类离子中,直径较大的离子的被吸附较强。

一些阳离子被吸附的顺序如下:Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+(2) 对阴离子的吸附强碱性阴离子树脂对无机酸根的吸附的一般顺序为:SO42-> NO3-> Cl-> HCO3-> OH-弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:OH-> 柠檬酸根3-> SO42-> 酒石酸根2->草酸根2->PO43->NO2-> Cl->醋酸根-> HCO3-(3) 对有色物的吸附糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素的吸附较弱。

这被认为是由于前两者通常带负电,而焦糖的电荷很弱。

通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。

这种选择性在稀溶液中较大,在浓溶液中较小。

离子交换树脂分为阴阳两种类型,阳离子交换树脂又分为强酸性和弱酸性,阴离子交换树脂分为强碱性和弱碱性。

水通过阳离子交换树脂时变为酸性,再通过阴离子交换树脂变为中性后回到水族箱中,因此使用离子交换树脂时,要强酸性与强碱性、弱酸性与弱碱性配对使用,离子交换树脂依其听附对象的不同又分为H型,OH型CI型和NA型,水族箱适用NA型,(钠型)其目的是软化水质。

阳离子交换树脂的再生可用5%--10%盐酸、0.5%--5%硫酸、10%的食盐水或海水其中之一种,阴离子交换树脂的再生可用2%--10%氢氧化钠、2%--4%氨水或10%食盐水其中之一种,均浸泡24小时。

离子交换树脂也是一种化学滤材。

离子交换树脂的物理性质离子交换树脂的颗粒尺寸和有关的物理性质对它的工作和性能有很大影响。

(1) 树脂颗粒尺寸离子交换树脂通常制成珠状的小颗粒,它的尺寸也很重要。

树脂颗粒较细者,反应速度较大,但细颗粒对液体通过的阻力较大,需要较高的工作压力;特别是浓糖液粘度高,这种影响更显著。

因此,树脂颗粒的大小应选择适当。

如果树脂粒径在0.2mm(约为70目)以下,会明显增大流体通过的阻力,降低流量和生产能力。

树脂颗粒大小的测定通常用湿筛法,将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50……目筛网上的留存量,以90%粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。

多数通用的树脂产品的有效粒径在0.4~0.6mm之间。

树脂颗粒是否均匀以均匀系数表示。

它是在测定树脂的“有效粒径”坐标图上取累计留存量为40%粒子,相对应的筛孔直径与有效粒径的比例。

如一种树脂(IR-120)的有效粒径为0.4~0.6mm,它在20目筛、30目筛及40目筛上留存粒子分别为:18.3%、41.1%、及31.3%,则计算得均匀系数为2.0。

(2) 树脂的密度树脂在干燥时的密度称为真密度。

湿树脂每单位体积(连颗粒间空隙)的重量称为视密度。

树脂的密度与它的交联度和交换基团的性质有关。

通常,交联度高的树脂的密度较高,强酸性或强碱性树脂的密度高于弱酸或弱碱性者,而大孔型树脂的密度则较低。

江苏色可赛思树脂有限公司整理例如,苯乙烯系凝胶型强酸阳离子树脂的真密度为1.26g/mL,视密度为0.85g/mL;而丙烯酸系凝胶型弱酸阳离子树脂的真密度为1.19g/mL,视密度为0.75g/mL。

(3) 树脂的溶解性离子交换树脂应为不溶性物质。

但树脂在合成过程中夹杂的聚合度较低的物质,及树脂分解生成的物质,会在工作运行时溶解出来。

交联度较低和含活性基团多的树脂,溶解倾向较大。

(4) 膨胀度离子交换树脂含有大量亲水基团,与水接触即吸水膨胀。

当树脂中的离子变换时,如阳离子树脂由H+转为Na+,阴树脂由Cl-转为OH-,都因离子直径增大而发生膨胀,增大树脂的体积。

通常,交联度低的树脂的膨胀度较大。

在设计离子交换装置时,必须考虑树脂的膨胀度,以适应生产运行时树脂中的离子转换发生的树脂体积变化。

相关文档
最新文档