薄膜的结构特征和缺陷

合集下载

薄膜的结构特征和缺陷

薄膜的结构特征和缺陷

高分子薄膜
如聚乙烯膜、聚丙烯膜等, 具有良好的柔韧性和加工 性,广泛应用于包装、印 刷等领域。
PART 02
薄膜结构特征分析
表面形貌与粗糙度
表面形貌
薄膜表面通常呈现出不同的形貌特征,如平滑、粗糙、颗粒状等。这些形貌特 征受到制备工艺、材料性质等因素的影响。
粗糙度
粗糙度是描述薄膜表面不平整程度的参数,常用算术平均粗糙度(Ra)或均方 根粗糙度(Rq)来表示。粗糙度对薄膜的光学、电学等性能有重要影响。
WENKU
REPORTING
https://
度、湿度和化学物质等,导致结构和性能的不稳定。
缺陷控制难题
02
薄膜中常常存在各种缺陷,如空位、杂质、位错等,这些缺陷
对薄膜的性能产生严重影响,而控制缺陷的难度较大。
大面积制备技术瓶颈
03
目前薄膜的制备技术难以实现大面积、高质量薄膜的制备,限
制了薄膜材料在实际应用中的推广。
未来发展趋势预测
新型薄膜材料的开发
01
晶界
不同晶粒之间的界面,由于晶粒取向不同而形成面缺陷。晶界可能是由
于晶体生长过程中的形核、长大等因素导致。
02
相界
不同相之间的界面,由于相结构或化学成分不同而形成面缺陷。相界可
能是由于薄膜制备过程中的成分偏析、热处理等因素造成。
03
面缺陷对薄膜性能的影响
可能导致薄膜力学性能降低、耐腐蚀性变差等。
2
精确控制沉积速率、温度、压力等关键工艺参数, 以确保薄膜具有所需的结构和性能。
3
采用先进的工艺控制技术,如实时监测与反馈调 整,确保制备过程的稳定性和可重复性。
优化原材料质量和纯度
选用高纯度、高质量的原材料, 以减少杂质和缺陷的引入。

薄膜材料物理-薄膜的力学性质

薄膜材料物理-薄膜的力学性质

塑性变形机制
屈服强度是描述材料抵抗塑性变形能力的物理量,当外力达到屈服强度时,材料开始发生不可逆的塑性变形。
应力-应变曲线是描述材料在受力过程中应力与应变关系的曲线,通过该曲线可以确定材料的弹性模量和屈服强度等力学性能参数。
屈服强度与应力-应变曲线
应力-应变曲线
屈服强度
塑性形变对薄膜物理性能的影响
断裂表面形貌与机理
温度对薄膜的力学性能产生影响,低温下材料脆性增大,高温下材料韧性增强。
温度
湿度
加载速率
湿度对薄膜材料的力学性能产生影响,湿度过高可能导致材料吸湿膨胀,降低力学性能。
加载速率越快,材料吸收的能量越少,断裂强度越低。
03
02
01
பைடு நூலகம்
环境因素对薄膜断裂性质的影响
05
薄膜的疲劳性质
薄膜在循环应力作用下,经过一段时间后发生断裂的现象。
屈服强度
断裂强度是描述材料在受到外力作用时发生断裂行为的应力值,对于薄膜材料,其断裂强度也是衡量其力学性能的重要参数之一。
断裂强度
薄膜的力学性能参数
02
薄膜的弹性性质
弹性模量
是指材料在受到外力作用时,单位面积上产生的正应力与应变之比,是衡量材料抵抗弹性变形能力的物理量。对于薄膜材料,其弹性模量决定了材料在受力时的刚度和变形程度。
疲劳现象
循环应力导致薄膜内部产生微裂纹,裂纹逐渐扩展导致薄膜断裂。
疲劳机理
循环应力的幅值、频率、温度、薄膜材料的性质等。
影响因素
疲劳现象与机理
疲劳寿命预测与实验验证
疲劳寿命预测
基于疲劳裂纹扩展速率和应力强度因子幅值,预测薄膜的疲劳寿命。
实验验证
通过实验测试薄膜的疲劳寿命,与预测结果进行对比,评估预测模型的准确性。

薄膜的结构与缺陷

薄膜的结构与缺陷

总结词
薄膜在电子器件领域的应用广泛,包括集成电路、显示器、 太阳能电池等。
详细描述
薄膜材料具有优异的电学、光学和机械性能,能够提高电子 器件的效率、稳定性和可靠性。例如,在集成电路中,薄膜 可以作为导电层、绝缘层和介质层,实现高速、低功耗的电 路传输。
光学器件领域
总结词
薄膜在光学器件领域的应用主要涉及反射、折射、滤光等功能。
点缺陷
定义
点缺陷是指薄膜中仅有一个或几个原子尺度的缺陷。
形成原因
在薄膜制备过程中,由于原子或分子的迁移率低,导致某些位置上 的原子或分子无法到达预期位置,从而形成点缺陷。
影响
点缺陷的存在会影响薄膜的物理和化学性质,如导电性、光学性能 等。
线缺陷
定义
线缺陷是指沿某一特定方向延伸的缺陷,如位错、晶界等。
THANKS FOR WATCHING
感谢您的观看
薄膜的结构与缺陷
目录
• 薄膜的简介 • 薄膜的结构 • 薄膜的缺陷 • 薄膜的制备方法 • 薄膜的检测与表征 • 薄膜的应用与展望
01
薄膜的简介
薄膜的定义
薄膜是指在固体表面上的一个薄层, 其厚度通常在纳米到微米级别。
薄膜的特性与基底材料、制备工艺、 环境条件等多种因素有关。
薄膜的分类
根据材料分类
影响
面缺陷的存在会影响薄膜的光学性能和表面平整度,如反射率、透光 率等。
04
薄膜的制备方法
物理气相沉积法
01
真空蒸发沉积
利用加热蒸发材料,使其原子或分子从蒸发源中逸出,并在基底表面凝
结成膜的方法。
02
子或分子被溅射出来并在基底表面
沉积成膜的方法。
03
离子镀

薄膜形貌实验报告

薄膜形貌实验报告

一、实验目的1. 了解薄膜制备的基本原理和方法。

2. 掌握薄膜形貌分析的基本技术。

3. 通过实验,观察和分析薄膜的形貌特征。

二、实验原理薄膜形貌是指薄膜的表面结构、晶粒大小、晶界、缺陷等特征。

薄膜形貌对薄膜的性能具有重要影响。

本实验通过制备不同类型的薄膜,利用扫描电子显微镜(SEM)观察和分析薄膜的形貌特征。

三、实验材料与仪器1. 实验材料:ZnO、Cu、SiO2等。

2. 实验仪器:磁控共溅射设备、扫描电子显微镜(SEM)、光致发光测量系统(PL)、紫外-可见吸收谱(UV-Vis)系统、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等。

四、实验方法1. 薄膜制备:采用磁控共溅射法制备ZnO、Cu掺杂ZnO、SiO2等薄膜。

将靶材放置在溅射室中,通过调整射频功率、靶材与基底的间距、溅射气体压力等参数,制备不同厚度的薄膜。

2. 薄膜形貌分析:a. X射线衍射(XRD)分析:通过XRD分析薄膜的晶体结构,确定薄膜的物相和晶体取向。

b. 扫描电子显微镜(SEM)观察:利用SEM观察薄膜的表面形貌、晶粒大小、晶界、缺陷等特征。

c. 光致发光(PL)测量:通过PL测量薄膜的发光特性,分析薄膜的缺陷类型和浓度。

d. 紫外-可见吸收谱(UV-Vis)分析:通过UV-Vis分析薄膜的光吸收特性,了解薄膜的禁带宽度。

五、实验结果与分析1. ZnO薄膜:XRD分析结果显示,ZnO薄膜为六方纤锌矿结构,晶粒大小约为100nm。

SEM观察发现,ZnO薄膜表面较为平整,晶粒呈短柱状,晶界清晰。

2. Cu掺杂ZnO薄膜:XRD分析结果显示,Cu掺杂ZnO薄膜为替位掺杂的(002)单一相。

SEM观察发现,适量的Cu掺杂能够促进ZnO薄膜的结晶特性和(002)择优取向,晶粒大小约为200nm。

PL测量结果显示,Cu掺杂ZnO薄膜的发光峰位置红移,发光强度增强。

3. SiO2薄膜:XRD分析结果显示,SiO2薄膜为立方相结构。

SEM观察发现,SiO2薄膜表面较为平整,晶粒大小约为100nm。

薄膜材料的定义

薄膜材料的定义

薄膜材料的定义薄膜材料是一种具有特殊结构和性质的材料,广泛应用于各个领域。

它的定义可以从多个角度来解释,包括材料的厚度、结构和功能等方面。

从厚度角度来看,薄膜材料是指在纳米尺度下的材料,其厚度通常在几纳米到几微米之间。

相比之下,传统的材料通常具有更大的尺寸。

由于薄膜材料的特殊厚度,它们具有许多独特的性质和应用。

从结构角度来看,薄膜材料通常由一层或多层原子、分子或离子组成。

这些层状结构使得薄膜材料具有特殊的物理、化学和光学性质。

例如,由于薄膜材料的结构紧密,它们通常具有较高的表面积和较低的体积,从而表现出更高的反应活性和更好的传输性能。

从功能角度来看,薄膜材料具有广泛的应用。

它们可以用作表面涂层,以增强材料的硬度、耐腐蚀性和耐磨性。

薄膜材料还可以用于光学器件,例如太阳能电池板和液晶显示屏,以改善光的传输和控制。

此外,薄膜材料还可以应用于电子器件、传感器、生物医学和环境保护等领域。

薄膜材料的制备方法多种多样,可以通过物理蒸发、化学气相沉积、溶液法和电化学方法等来实现。

每种制备方法都有其优点和局限性,需根据具体应用需求来选择合适的方法。

薄膜材料的研究和应用正在不断发展。

随着纳米技术的发展,人们对薄膜材料的理解和掌握将更加深入。

通过对薄膜材料的研究,可以进一步改善材料的性能,拓宽其应用领域。

预计薄膜材料将在未来的科技发展中发挥重要作用。

薄膜材料是一种具有特殊结构和性质的材料,其定义可以从厚度、结构和功能等方面来解释。

薄膜材料具有广泛的应用前景,并且其研究和应用正在不断发展。

通过对薄膜材料的深入研究,可以进一步拓展其应用领域,推动科技的发展。

薄膜的结构与缺陷

薄膜的结构与缺陷
由于晶粒生长倾向于入射方向,高起的晶粒遮住了 相邻的晶粒使继续入射的原子达不到,使薄膜表面凹凸 不平,内部出现大缺陷。(见示意图)
2014-9-15
16
16
2014-9-15
17
17
薄膜表面结构与构成薄膜整体的内部结构相关, 因此应研究薄膜内部结构。
2、内部结构
由于薄膜表面结构和构成薄膜整体的微型体状密 切相关,大多数蒸发薄膜具有下述特点:
形成无定形薄膜的工艺条件:
降低吸附原子的表面扩散速率(通过降低基体温度Ts、引 入反应气体和搀杂方法实现),使原子扩散速率降低到凝结 在本身射点及入射点附近。
2014-9-15 9 9
二.薄膜的晶体结构
◆ 薄膜的晶体结构是指薄膜中各晶粒的晶型状况。
◆ 晶体的主要特征是其中原子有规则的排列。 ◆ 由于晶体结构具有对称性,可以用三维空间中的三个矢 量a’、b’ 、c’ 以及对应的夹角α、β、γ来描述。
四、层错缺陷
2014-9-15
在真空蒸发薄膜中存在层错缺陷,由原子错排 产生,
34
34
在完整的面心立方晶体中应以ABC顺序堆垛,每三层一个 反复,周而复始,ABCABC……(若在原子排列中缺少某 一层,如A层),则为ABC BC ABC,于是产生了层错。
2014-9-15
35
◆ 若薄膜的平均厚度为d,它按无规则变量的泊松 几率分布,由此可得到膜厚的平均偏离值 d d
2014-9-15 13
2014-9-15
1—在N2气压为133.3Pa下淀积的;2—在高真空下淀积的 14
14
◆ 薄膜的表面积随着其厚度的平方根值而增大。但由于
入射原子沉积到基体表面上之后,释放出能量就吸附在 基体表面上。然后依靠横向扩散能量在表面上作扩散, 占据表面上的一些空位,使薄膜表面上的谷被填平,峰 被削平,导致薄膜表面面积不断缩小,表面能逐步降低。

薄膜物理与技术-6 现代薄膜分析方法

薄膜物理与技术-6  现代薄膜分析方法

照相室(底片) 或数字暗室
6 现代薄膜分析方法
6.2 薄膜形貌/结构 (3)透射电子显微镜 (Transmission Electron Microscopy)
一、测量原理:
1、把经加速和聚集的电子束投射到非常薄的样品上,电子在 穿过样品的同时与样品原子碰撞而改变方向,从而产生立 体角散射; 2、散射角的大小与样品的密度、厚度相关,因此可形成明暗 不同的影像; 3、通常:TEM的分辨率达 0.1~0.2 nm; 放大倍数为 n×104~n×106倍。
6 现代薄膜分析方法
6.2 薄膜形貌/结构 (1)X射线衍射法(X-Ray Diffraction,XRD)
转晶法测得花状金纳米颗粒XRD谱
6 现代薄膜分析方法
6.2 薄膜形貌/结构 (1)X射线衍射法(X-Ray Diffraction,XRD)
应用P170:
定性相分析 定量相分析 测定结晶度 测定宏观应力
测定晶粒大小 确定晶体点阵参数 测定薄膜厚度
6 现代薄膜分析方法
6.2 薄膜形貌/结构 电子束的作用区域及主要成像粒子:
1、电子束入射到样品表面后,会与表面层的原 子发生各种交互作用, 其作用区域大致为一个梨形区域,深度约 1m; 2、该区域在电子束照射下可实现成像和波谱分 析的主要激发粒子是: (1)最表层 (10Å):俄歇电子; (2)浅层 (50~500Å):二次电子; (3)梨形区上部:背散射电子; (4)梨形区下部:特征X射线。
6 现代薄膜分析方法
6.2 薄膜形貌/结构 (1)X射线衍射法(X-Ray Diffraction,XRD)

X射线的发现:1895年,伦琴对阴极射线的研究过程中发现 了一种穿透能力很强的射线 ——X射线(伦琴射线)

缺陷对β-Ga_(2)O_(3)薄膜的结构和光学特性的影响

缺陷对β-Ga_(2)O_(3)薄膜的结构和光学特性的影响

文章编号:1001-9731(2021)03-03081-05缺陷对-Ga2O3薄膜的结构和光学特性的影响符思婕,向琴,赖黎,莫慧兰,范嗣强,李万俊(重庆师范大学物理与电子工程学院,光电功能材料重庆市重点实验室,重庆,401331)摘要:采用射频磁控溅射技术和后期退火在蓝宝石衬底上成功制备了-Ga2O3薄膜。

借助于X射线衍射(XRD)、拉曼散射光谱(Raman)、X射线光电子能谱(XPS)、以及二次离子质谱(SIMS)研究了缺陷对(-Ga2O3薄膜的结构和光学特性的影响。

结果表明,未退火的Ca2O3薄膜呈现非晶态,随高温退火时间逐渐增加,非晶Ca2O3薄膜逐步转变为沿(201)方向择优生长的-Ga2()3薄膜。

所有Ga2()3薄膜在近紫外到可见光区的平均透过率都高达95%,相Ga2O3薄膜的光学带隙比非晶态薄膜增加〜0.3eV,且随退火时间的增加,—Ga2O3薄膜的光学带隙也随之变宽。

此外,发现非晶Ga2O3薄膜富含氧空位缺陷,高温退火处理后,—Ga2O3薄膜中的氧空位浓度明显降低,但蓝宝石衬底中的Al极易扩散至Ga2O3薄膜层,并随退火时间的增加Al浓度明显增加,氧空位的降低和Al杂质的增加是导致-Ga2O3薄膜光学带隙变宽的主要原因。

关键词:Ga2()3薄膜;退火;缺陷;结构和光学特性中图分类号:O482.31文献标识码:A DOI:10.3969/.issn.00197312021.03.0110引言Ga2()3作为一种新型的宽禁带氧化物半导体材料,不仅具有超宽的带隙(4.8-5.2eV)和高耐压洗损耗特点,而且具有优异的物理和化学特性,近年来受到人们的广泛关注[-4]。

迄今为止,Ga2()3被揭示具有6个不同的结晶相(a-Ga2O3,Ga2O3,7-Ga2O3,5-Ga2O3, LGa2()3和K-Ga2()3),其中Ga2()3相的物理和化学性能最为稳定,已被广泛地应用于金属半导体场效应晶体管(MESFET),金属氧化物半导体场效应晶体管(MOSFET),肖特基二极管(SBD)[57]等功率器件中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、薄膜的表面结构 在薄膜的沉积、形成、成长过程中,入射到基体表 面上的气相原子是无规律的,所以薄膜表面都有一定的 粗糙度。粗糙度对光学性能关,在基体温度和真空度较低时,容易出现多孔结构。 所有真空蒸发薄膜都呈现柱状体结构,溅射薄膜的 柱状结构是由一个方向来的溅射粒子流在吸附原子表面 扩散速率很小的情况下凝聚形成的。
薄膜的结构特征与缺陷
薄膜的结构和缺陷在很大程度上决定着薄膜的性能, 主要讨论影响薄膜结构与缺陷的因素,以及对性能的影 响。
一、薄膜的结构 薄膜的组织结构是指它的结晶形态,薄膜结 构可分为三种类型: 1、组织结构 2、晶体结构 3、表面结构
1、薄膜的组织结构 (1)非晶态结构。 从原子排列情况来看它是一种近程有序、远程 无序的结构,只有少数原子排列是有秩序的,显示 不出任何晶体的性质,这种结构称为非晶结构或玻 璃态结构。 形成非晶薄膜的工艺条件是降低吸附原子的表 面扩散速率。可以通过降低基体温度、引入反应气 体和掺杂等的方法制成非晶薄膜。
(2)多晶结构。 多晶结构薄膜是由若干尺寸大小不等的晶粒所 组成。在薄膜形成过程中生成的小岛就具有晶体的 特征(原子有规则的排列)。由众多小岛聚结形成的 薄膜就是多晶薄膜。 用真空蒸发法或阴极溅射法制成的薄膜,都是 通过岛状结构生长起来的,所以必然产生许多晶粒 间界,从而形成多晶结构。
(3)纤维结构。 纤维结构薄膜是晶粒具有择优取向的薄膜,根据取 向方向、数量的不同分为单重纤维结构和双重纤维结构。 生长在薄膜中晶粒的择优取向可发生在薄膜生长的 各个阶段:初始成核阶段、小岛聚结阶段和最后阶段。
(4)单晶结构。 单晶结构薄膜通常是用外延工艺制造的。外延生长 需要满足三个基本的条件。 a、吸附原子必须有较高的表面扩散速率,所以基体温 度和沉积速率就相当重要。在一定的蒸发速率条件下, 大多数基体和薄膜之间都存在着发生外延生长的最低温 度,即外延生长温度。 b、基体与薄膜材料的结晶相溶性。 c、基体表面清洁、光滑和化学稳定性好。 满足以上三个基本条件,才能制备结构完整的单晶薄膜。
2、薄膜的晶体结构 薄膜的晶体结构是指薄膜中各晶粒的晶型状况。晶体 的主要特征是其中原了有规则的排列。在大多数情况下, 薄膜中晶粒的晶格结构与块状晶体是相同的,只是晶粒取 向和晶粒 尺寸与块状晶体不同。除了晶体类型之外,薄膜 中晶粒的晶格常数也常常和块状晶体不同。 产生这种现象的原因有两个:一是薄膜材料本身的晶 格常数与基体材料晶格常数不匹配,二 是薄膜中有较大的 内应力和表面张力。
1、薄膜的点缺陷 晶体中晶格排列出现的缺陷如果只涉及单个晶格则称 为点缺陷。当沉积速率很高、基片湿度较低时,到达基片 表面的原子来不及完整地排列就被后来的原子层所覆盖, 这样就可能在薄膜中产生高浓度的空位缺陷。 点缺陷的典型构型是空位和填隙原子。逃离原位的原 子或跃迁到晶体表面的 正常位置,形成 Schottky 缺陷, 或会跳进晶格原子之间的间隙里形成 Frenkcl 缺陷。这两 种缺陷均为本征点缺陷。
2、薄膜的线缺陷。 位错是晶态薄膜中最普遍存在的一种线性缺陷,是 薄膜中最常遇到的缺陷之一,它是晶格结构中一种“线 型”的不完整结构。 薄膜中的位错大部分从薄膜表面伸向基体表面,并 在位错周围产生畸变。引起薄膜位错的原因很多。在薄 膜生长过程中,最初阶段基片上的晶核和孤立的小扇形 状和结晶取向是随机的。但是在聚结阶段,当两个小岛 相遇时,如果它们的位向有轻微差别,在结合处将形成 位错。
3、薄膜的面缺陷 (1)晶界 晶界和块状材料相似,薄膜中各晶粒之间由于相对 取向的不同出现了晶界,因此晶界是把结构相同但位向 不同的两个晶粒分隔开来的一个面缺陷。 (2)层错 层错是在薄膜的生长过程中由于晶面的正常堆垛次 序遭到破坏而出现的晶格缺陷。
二、薄膜的缺陷
所有在块状晶体材料中可能出现的各类晶格缺陷在 薄膜中也都可能出现。但是由于薄膜及其成膜过程的特 殊性,因而薄膜中缺陷的形成原因和分布等也表现出一 定的持续性,特别是其数量一般都大大超过块状材料。 与此同时,薄膜中的晶格常数也与材料块状时的值有较 大的差别。 薄膜的缺陷可以分为以下三种类型 1、点缺陷 2、线缺陷 3、薄膜的晶界与层错
相关文档
最新文档