剪力墙布置及模型调整方法
【结构设计】大神解读——0.2V0调整

大神解读——0.2V0调整看到有人问为什么0.2V0是取结构底部而不是每层的剪力,并且不是少数人对此有疑惑,因此HiStruct将对此问题进行详细分析,以加深大家对框架剪力墙结构的理解.首先,来看看规范是如何执行这个内力调整的:根据高规和抗规的规定:抗震设计时,框架-剪力墙结构中剪力墙的数量必须满足一定要求.这就是说,在地震作用时剪力墙作为第一道防线承担了大部分的水平力.但这并不意味着框架部分可以设计得很弱.相反,框架部分作为第二道防线必须具备一定的抗侧力能力,这就需要在计算时,对框架部分所承担的剪力进行调整.在高规中,对Vf<0.2V0的楼层,设计时Vf取 1.5Vf,max和0.2V0的较小值.V0为地震作用产生的结构底部总剪力,Vf,max为各层框架所承担的总剪力中的最大值.这种调整方法对于框架柱沿竖向的数量变化不大的情况是合适的,但是对于那些框架柱沿竖向的数量变化较大的建筑,这样调整会造成上部楼层框架柱所承担的剪力明显偏大,是不合理的.因此,高规规定:对框架柱数量从下至上分段有规律变化的结构,当Vf<0.2V0时,V0应取每段最下一层结构对应于地震作用标准值的总剪力;Vf,max应取每段中对应于地震作用.其次,理解为什么要进行框架部分的内力调整我想几乎所有的结构工程师都大概的知道这是为了保证框架作为结构二道防线之用.那么详细分析起来会是如何呢?首先来看典型框架剪力墙的内力分配图(此图为解析推导,与实际情况稍有出路,可以参考理论推导的假设,但是基本规律是合适的).由图可见在结构的底部剪力墙需承担大部分的内力,变形上是剪力墙小而框架大,因此剪力墙在此部分起到主导的作用,即第一道防线,若在外力作用下剪力墙屈服则将转移很大的内力给框架,此时只按弹性分析设计出来的框架将无法承担这部分由墙转移出来的作用而破坏,因此我们需要提高底部区域框架的设计内力以实现它的二道防线功能.那么对于结构的上部区域是否还是这样的情况呢?那就不是了,顶部区域框架可能承担超过层剪力的作用而剪力墙的内力则反向与外力作用相同,因此在上部(尤其是顶部)区域,框架剪力=外力+墙剪力!而变形上框架小剪力墙大,此时实际上框架起到主导作用,是框架在帮剪力墙,那么两道防线的概念则发生了转移,因此在框架剪力墙结构的顶部区域也需要加强框架.第三,对于普通的框架剪力墙结构而言,执行了规范的规定会出现什么结果?应该分两种情况讨论,第一种情况,当1.5Vf,max<0.2V0时,整个框架结构的内力调整由1.5Vf,max控制,这时对于顶部区域而言就会出现内力调整系数过大的情况,于是就要执行规范关于分段采用Vf,max的规定,而如果结构中不存在高规规定的可分段条件,是否还可以分段呢?在结构的概念上是可以的,或者比如stawe限制2为上限,但是考虑到框架剪力墙结构的顶部区域需要加强框架,且规范要求为“应”,因此这样的设计在概念上并无过错只是偏保守.第二种情况,当1.5Vf,max>0.2V0时,框架剪力墙结构中底部区域的内力调整由0.2V0控制,中部区域不需要调整,上部区域由0.2V0控制,此时也出现了对于顶部区域而言就会出现内力调整系数过大的情况,这种情况下调整框架的内力在结构概念上就意义就不清晰了,因此HiStruct建议,此时若调整系数很大则可直接采用“2”的调整系数,但是一般情况下既然1.5Vf,max>0.2V0则说明框架部分其实也不太弱,即顶部按0.2V0的调整系数一般不会太大,可以设计下来.在规范尚未明确可以分段采用V0时,也考虑框架剪力墙结构的顶部区域需要加强框架,因此从安全性的角度出发,规范的规定还是老实执行为好.第四,特殊情况下的一些内力调整措施实际结构设计存在一些特殊的情况,HiStruct举一些例子供大家参考,其实只要真实的理解了框架剪力墙结构,那么概念设计和抗震措施上需要加强之处自然也就水落石出了.(1)带加强层的框筒结构,这种情况下加强层附近框架内力一般有较大突变,Vf,max可不需要按照此处采用,而要从整体概念上把握,但是由于规范对加强层处的设计无具体规定,因为还是建议适当加强.(2)混合结构,见规范的规定,适当提高要求.(3)框肢柱,见规范要求.(4)结构有明显的规律性分段如竖向构件减数,立面缩进,转换等,可考虑分段调整,但要强调整体把握.(5)少量较大框架柱,由于建筑布置等原因,可能框架柱较少,若要突破规范就要提方案审查,可参考少量框肢柱的内力调整规定或更强措施.最后,结语其实只有真正理解了框架剪力墙结构体系,在理论依据和结构概念设计的基础上,可深入理解规范条文,面对结构设计中千变万化的特殊情况时,具体问题具体分析,那么设计思路和加强措施也就水到渠成.HiStruct注:感谢okok论坛的sh0315兄提供很多有用的信息,如下:蔡益燕《双重体系中框架的剪力分担率》、胡庆昌《钢筋混凝土框剪结构抗震设计若干问题的探讨》、黄吉锋,李云贵,邵弘,陈岱林的《高层建筑抗震设计中两种剪力调整的讨论》你可以参考下.另外最新的《高层建筑钢-混凝土混合结构设计规程》(CECS230:2008)对于混合结构的框架-剪力墙和框架-核心筒结构框架部分的剪力就是以第i楼层的总地震层剪力的10%~18%(具体数值详本规范)来规定的.这本规范依据钱嫁茹、魏勇、蔡益燕、郁银泉、申林《钢框架-混凝土核心筒结构框架地震设计剪力标准值研究》(《建筑结构》2008年第3期)的研究而得来.陈富生、邱国桦、范重《高层建筑钢结构设计》P278页“框架总剪力的最小值”一段的论述也可以参考.我的感觉是从这些论文来看,取0.2倍基底总剪力似乎不妥,加之1.5Vf,max似乎概念更加模糊,设计大师胡庆昌的那篇文章应该很明确.相关论文下载如下:<双重体系中框架的剪力分担率>,<钢筋混凝土框剪结构抗震设计若干问题的探讨>,<高层建筑抗震设计中两种剪力调整的讨论>HiStruct尝试对论文进行一些分析:首先,看蔡益燕老师的文章,请大家首先要注意一点的是它将注意力放在钢框架剪力墙和框架核心筒结构中讨论,做过设计的朋友都知道这两个结构体系,底部框架部分分担的剪力比别说0.25Vi,0.2Vi了,就是0.1Vi都很难实现(Vi为层剪力),这种情况下的一种观点(可以算上我)是认为0.1Vi都实现不了,就不应该叫做双重抗侧力体系;而另一种观点就是可以继续调整,那么怎么调整?用文章中提到了美国人的方法?--蔡益燕老师也说去掉核心筒之后剩下的框架如何保持结构稳定性还是个问题,更别提接下来的计算了和复核0.25V0了!HiStruct所知在国外的设计中强调抗力体系的概念,比如一个结构中抗侧力体系和抗竖向力体系是可以独立设计的,但是需要强调的是如果按照此文中的方法做,把核心筒去掉,剩下一个“独立”的外框架,怎么计算?如果想不通那么一定是咱们都没理解美国人的意思.为什么不回过头来反思,难道我们一定要按照美国人的思路来做吗?他们一定就对了吗?难道我们自己就不能主动去理解这个结构体系了?希望大家也都反思一下,其实pkpm专家的论文就值得读.话说回来在这之前我就看到过类似蔡老师提到的美国人的做法,就是胡老师文中提到的Dr.S.K.Ghosh的解释,只是我也一开始也不解,导致后来不想去解,那么各位中国的结构工程师们看完这些美国人的说法之后都打算怎么猜他们的意思呢?HiStruct推荐可以去读一篇文章《采用ETABS及美国规范设计境外某高层建筑结构的体会》易勇张蜀泸刘兰花冯远(中国建筑西南设计研究院有限公司).其次,请注意上述文章都是基于钢框架为主的,那么如果框架采用混凝土或者型钢混凝土呢?还能照搬这些专家们的意见吗?各位自己思考吧,本博客上关于框架剪力墙结构框架内力调整设计建议的文章,绝大部分是基于我觉得还不错的一些教材的资料,需要强调的是这些说法都不是普适性的理论.第三,在第一次做超高层框架核心筒结构的时候,HiStruct进行了大量的分析计算以了解框架剪力墙这个结构体系,因为是年轻人,所以在面对有争议的问题时,我更相信的是自己亲自弄出来的结论,当然那些自己做过的体会不是一篇博文就能说得清楚,其实调整系数这个问题在我的脑子中就是一个概念设计的强化措施而已,实际上抗震审查的专家有可能要求我们做得比规范严格得多,但是只要是概念朝着更安全的方向,就至少不是一种消极的态度.你可以把它做得很保守或者由于限额设计的要求要做的很经济,但是不管怎么样,建议各位自己心里一定要有个“数”.注:国外的做法可以参考,但是不建议照搬.今天翻了一下方鄂华老师的书,其中关于美国规范框架剪力墙双重体系的理解说得很好,记录下来供各位参考:地震作用下,当框架部分的设计层剪力不小于该层总剪力25%时作为双重体系,双重体系可认为具有很高的延性,即可以多折减设计地震力.而当框架负担的水平力小于25%时,美国规范的对策是(1)减小它的延性系数,即相对的提高设计地震力;(2)并且要求只考虑剪力墙或筒体独立承担100%的剪力(框架部分还按计算比例,不用调整),此时认为结构只是单重体系.由此可见方老师的说法与蔡、胡老师等,角度完全不同.HiStruct认为方老师的说法好理解,也更合理.赵西安老师的书上提到中国规范的0.2V0和1.5Vf,max双控是60-70年代提出的,当时主要是针对规则的结构体系,但是随着社会的发展,楼越来越高,体型越来越复杂,所以规范也跟着变化出现了分段调整的做法,并且这些内力调整的方法也在不断的探讨和更新.静力分析表明,对于框架剪力墙的中部和上部而言,一般框架部分的分担力比较大(可以超过0.2甚至0.25的每层地震力),其实中部区域,框架一般会出现Vf,max,但是也不足以撼动剪力墙的主导地位,即框架还是须作为第二道防线之用,上部区域一般框架作用越来越大,所以框架很可能转为第一道防线,因此有观点认为此时框架(中上部)可不再调整了(比如建议用每层Vi来调整内力的观点,本质上就是不需要调中上部框架的内力),HiStruct认为要不要做内力调整还是需要根据结构的具体受力情况而定,如讨论[1]中所叙述的.另,请大家注意的是,事实上很多的弹塑性时程分析都表明,尤其是超高层结构,受高阶振型的影响,顶部区域的核心筒或剪力墙通常是薄弱部位(由于设计墙厚等原因,很可能比底部更早屈服破坏),这也就是HiStruct一直在强调虽然顶部框架在静力计算下主导,但是也要适当提高设计内力的根本原因,因为此时框架并不会早于墙而破坏!当然地震作用下的实际情况如何无法说清楚,不过做强剪力墙或者做强框架是必要的.再往下看结构的下部区域,其实对于框架剪力墙的下部区域而言采用Vi和采用V0差别并不会很大,采用V0相对更保守一点.HiStruct注:这段时间连续发出几篇文章,希望能将框架剪力墙结构体系的认识和设计体会说得清楚一些.新的抗震设计规范审查稿GB50011-20XX已经出来,从中可以发现变化之处有很多,HiStruct推荐各位好好读读,其中就包括了咱们一直有争议的框架剪力墙结构框架内力调整方法.具体的新条文和说明如下:6.2.13钢筋混凝土结构抗震计算时,尚应符合下列要求:1.侧向刚度沿竖向分布基本均匀的框架-抗震墙结构和框架-核心筒结构,任一层框架部分按侧向刚度分配的地震剪力应乘以增大系数,其值不宜小于 1.15且不应小于结构底部总地震剪力的20%和按框架–抗震墙结构、框架-核心筒结构侧向刚度分配的框架部分各楼层地震剪力中最大值1.5倍二者的较小值.…………[说明]:本条有两处修改,其一,关于普通的框架-抗震墙结构的剪力调整系数,其二,少墙框架的计算.按照框剪结构多道防线的概念设计要求,墙体是第一道防线,设防烈度、罕遇地震下先于框架破坏,由于塑性内力重分布,框架部分按侧向刚度分配的剪力必须加大;即使按框架与抗震墙协同工作分析,结构上部1/3~1/2的楼层,框架部分按侧向刚度分配的楼层剪力可能大于墙体,也应考虑内力重分布适当增大.我国80年代1/3比例的空间框剪结构模型反复荷载试验及试验模型的弹塑性分析表明:保持楼层侧向位移协调的情况下,弹性阶段框架仅承担不到5%的总剪力;随着墙体开裂,框架承担的剪力逐步增大;当墙体端部的纵向钢筋开始受拉屈服时,框架承担大于20%总剪力;墙体压坏时框架承担大于33%的总剪力.2001版的规定与89版的规定相同,多遇地震下弹性阶段20%的总剪力,当结构在罕遇地震下墙体损坏导致的墙体与框架之间地震剪力重分布,则框架承担的剪力远大于20%.因此,继续保持2001版的规定是最低的要求,本次修订拟明确:“任一层框架部分按侧向刚度分配的地震剪力应乘以增大系数”.89版、2001版增大系数的规定,取较小值是为了避免仅有少量框架的框剪结构的框架调整系数过大,但当上部楼层按刚度分配大于总剪力20%时不需调整,没有体现多道防线,故拟增加按刚度分配的 1.15倍考虑多道防线.近来有一种意见,认为上部各层的框架部分只需承担不少于本层剪力的20%.只在剪力墙结构体系中设置个别框架(仍作为剪力墙体系看待)的情况是合适的;对一般的框剪体系,则这种观点忽略了剪力墙与框架变形特征的不同和协同工作的计算结果,忽视了多道防线的要求,故不予采纳.HiStruct解读:首先,框架部分的最小剪力调整系数1.15正如条文[说明]中所解释的一样,规范审查稿否定了那一种认为上部各层的框架部分只需承担不少于本层剪力的20%(25%),而不必再调整的意见,给出的解释是“没有体现多道防线”和“忽略了剪力墙与框架变形特征的不同和协同工作”.HiStruct前面所分析的主要认为框剪结构中上部框架部分可能已经转为结构第一阶段的主要受力部分,并且由于高阶振型的影响(反应谱可能估算不足),上部的墙体也容易开裂,继续转移内力,还是需要强调框架后备作用,因此上部框架也必须调整.因此同意审查稿的方法,从总体上对于外框架内力调整系数提出了下限值.其次,89和2001规范此条规定的试验和理论结果80年代1/3比例的空间框剪结构模型反复荷载试验及试验模型的弹塑性分析的结论是咱们国家89和2001规范的条文依据,这与美国UBC的结论稍有不同,但也近似.并且近年来很多超高层的弹塑性分析表明,框架-核心筒结构按照弹性刚度分配,外框架底部实际上难以分担到很多剪力,一般5%-10%,甚至更低都有,但是随着核心筒的开裂损伤,底部外框架所承担的剪力迅速增加,当墙体端部的纵向钢筋开始受拉屈服时达到20%左右是完全有可能的,并且从大震下的破坏分析来看,外框架一般最晚开始屈服,且进入塑性的水平并不高,实际上合理的设计是可以起到二道防线的作用,当然前提就是刚度不足,要用强度来补,内力调整系数不应有上限!STAWE设置2为上限的做法不合理.第三,其他一些双重体系的内力调整规定6.6.3板柱-抗震墙结构的抗震计算,应符合下列要求:1.房屋高度大于24m时,抗震墙应承担结构的全部地震作用;房屋高度不大于24m时,抗震墙宜承担全部地震作用.各层板柱和框架部分的地震剪力,除满足按侧向刚度分配值外,应能承担不少于本层地震作用(?)的20%且不小于最大计算层剪力的 1.2倍.6.7.1框架-核心筒结构应符合下列要求:2.除加强层及其相邻上下层外的任一楼层,框架按其侧向刚度分配的最大地震剪力,不宜小于整个结构总地震剪力的15%(?).8.2.3.3钢框架-支撑结构的斜杆可按端部铰接杆计算;框架部分按刚度分配计算得到的地震层剪力应乘以增大系数.其值不小于 1.15且不小于结构总地震剪力25%和框架部分计算最大层剪力1.8倍的较小值.[说明]:本款修订依据多道防线的概念设计,框架-支撑体系中,支撑框架是第一道防线,在强烈地震中支撑先屈服,内力重分布使框架部分承担的地震剪力必需增大,二者之和应大于弹性计算的总剪力;如果调整的结果框架部分承担的地震剪力不适当增大,则不是“双重体系”而是按刚度分配的结构体系.美国IBC规范中,这两种体系的延性折减系数是不同的,适用高度也不同.日本在钢支撑-框架结构设计中,去掉支撑的纯框架按总剪力的40%设计,远大于25%总剪力.因此,建议,即使框架部分按计算分配的剪力大于结构总剪力的25%,也至少按框架最大计算层剪力的1.15倍调整,以实现一定的二道防线.近来,有一种意见认为,1997UBC规定双重体系的框架部分应至少承担底部总剪力的25%,2000IBC改为框架部分应至少承担设计力(design forces)的25%,且按刚度分配.咨询美方来华专家的意见,认为设计力是指层剪力,因此建议本款改为框架部分只承担不小于本层地震剪力的25%.这种意见忽略了多道防线的重要概念,也不符合纯框架与支撑框架二者变形协同工作的分析结果,对于大震下的结构是不安全的,故未采纳.G2.3.2钢框架部分按刚度计算分配的地震剪力,不宜小于结构总地震剪力的12%(?).[说明]:本条规定了钢框架-钢筋混凝土核心筒结构体系设计中不同于混凝土结构、钢结构的一些基本要求:1.近年来的试验和计算分析,对钢框架部分应承担的最小地震作用有些新的认识:框架部分承担一定比例的地震作用是非常重要的,如果钢框架部分按计算分配的地震剪力过少,则混凝土墙体、筒体的受力状态和地震下的表现与普通钢筋混凝土结构几乎没有差别,甚至混凝土墙体更容易破坏.清华大学土木系选择了一幢国内的钢框架-混凝土核心筒结构,变换其钢框架部分和混凝土核心筒的截面尺寸,并将它们进行不同组合,分析了共20个截面尺寸互不相同的结构方案,进行了在地震作用下的受力性能研究和比较,提出了钢框架部分剪力分担率的设计建议.考虑钢框架-钢筋混凝土核心筒的总高度大于普通的钢筋混凝土框架-核心筒房屋,为给混凝土墙体楼有一定的安全储备,按钢框架分配的地震剪力乘以增大系数1.8后稍大于总地震剪力20%,则得到本条推荐的钢框架按刚度分配的最小地震作用.G2.4.2钢框架部分除伸臂加强层及相邻楼层外的任一楼层按计算分配的地震剪力应乘以不小于1.15的增大系数,且不小于结构总地震剪力的25%和最大楼层地震剪力1.8倍二者的较小值.由地震作用产生的该楼层框架各构件的剪力、弯矩和轴力(?)计算值均应进行相应调整.[说明]:本条规定了抗震计算中,不同于钢筋混凝土结构的要求:1.混合结构的阻尼比,取决于混凝土结构和钢结构在总变形能中所占比例的大小.采用振型分解反应谱法时,不同振型的阻尼比可能不同.当简化估算时,可取0.045.2.根据多道抗震防线的要求,钢框架部分应按其刚度承担一定比例的楼层地震力.按美国IBC2006规定,凡在设计时考虑提供所需要的抵抗地震力的结构部件所组成的体系均为抗震结构体系.其中,由剪力墙和框架组成的结构有以下三类:①双重体系是“抗弯框架(moment frame)具有至少提供抵抗25%设计力(design forces)的能力,而总地震抗力由抗弯框架和剪力墙按其相对刚度的比例共同提供”;由中等抗弯框架和普通剪力墙组成的双重体系,其折减系数R=5.5,不许用于加速度大于0.20g的地区.②在剪力墙-框架协同体系中,“每个楼层的地震力均由墙体和框架按其相对刚度的比例并考虑协同工作共同承担”;其折减系数也是R=5.5,但不许用于加速度大于0.13g的地区.③当设计中不考虑框架部分承受地震力时,称为房屋框架(building frame)体系;对于普通剪力墙和建筑框架的体系,其折减系数R=5,不许用于加速度大于0.20g的地区.关于双重体系中钢框架部分的剪力分担率要求,美国UBC85已经明确为“不少于所需侧向力的25%”,在UBC97是“应能独立承受至少25%的设计基底剪力”.我国在2001抗震规范修订时,第8章多高层钢结构房屋的设计规定是“不小于钢框架部分最大楼层地震剪力的1.8倍和25%结构总地震剪力二者的较小值”.因此,在保持规范延续性的基础上,本条拟规定调整后钢框架承担的剪力至少增加15%HiStruct注:由于结构体系的不同,抗震设计规范审查稿中,对于外框架(外支撑)提出了不同的内力条件系数和条件,但是HiStruct认为除了6.2.13条外,其中依然有些内力调整系数的用词和调整方法不统一,且有些控制调整系数的依据也不足.。
剪力墙构造要求2024

引言概述:剪力墙是一种常见的抗震结构形式,被广泛应用于高层建筑及其他结构中。
本文将详细介绍剪力墙构造的要求,以保证其抗震性能,提高结构的安全性和稳定性。
正文内容:1.剪力墙的布置要求:a.布置位置:剪力墙应布置在建筑结构的主要承重墙体上,以负责承担侧向地震力的作用。
b.距离限制:剪力墙之间的距离应根据建筑设计的要求,并考虑到相邻墙体的互相影响。
c.墙体厚度:剪力墙的厚度应满足设计要求并考虑到抗震性能的需要。
2.剪力墙的结构形式:a.整体式剪力墙:即将剪力墙布置在整个建筑结构中,形成连续的墙体,提供较好的整体刚度。
b.局部式剪力墙:局部式剪力墙指将剪力墙仅布置在建筑结构的局部区域,常用于解决局部承重要求较高、整体结构不需要剪力墙的情况。
3.剪力墙的材料要求:a.墙体材料:剪力墙的材料应具有足够的抗压和抗剪强度,一般采用混凝土或钢筋混凝土作为墙体的构造材料。
b.加劲筋:在剪力墙中,可以设置加劲筋来提高墙体的承载能力和刚度。
4.剪力墙的纵向与横向钢筋布置要求:a.纵向钢筋布置:纵向钢筋应按照设计要求正确布置在剪力墙中,以承担地震力的作用。
b.横向钢筋布置:横向钢筋应按照设计要求正确布置在剪力墙中,以提供墙体的抗剪承载力和延性。
5.剪力墙的连接强度要求:a.剪力墙与周边构件的连接:剪力墙与周边构件之间的连接应具有足够的强度和刚度,以确保整体结构的稳定性。
b.剪力墙之间的连接:如果采用了整体式剪力墙的布置方式,剪力墙之间的连接也需要具备足够的强度和刚度。
总结:剪力墙构造的要求涉及到剪力墙的布置、结构形式、材料要求、纵向与横向钢筋布置要求以及连接强度要求等方面。
通过合理满足这些要求,剪力墙可以提供较好的抗震性能,保障建筑结构的安全性和稳定性。
设计师和工程师应充分了解并遵循这些构造要求,以确保剪力墙在地震荷载下的正常工作。
高层住宅剪力墙结构设计控制及调整

高层住宅剪力墙结构设计控制及调整高层住宅设计中广泛采用剪力墙结构,本文给出了剪力墙结构的布置原则及设计时的注意事项;汇总了剪力墙结构计算的各个设计指标以及对应的调整方法。
随着社会进步,科技发展,人们对住宅的功能要求越来越丰富,建筑设计越来越符合功能和审美的要求;为实现建筑的要求,结构选型主要与其使用功能直接相关,同时拟建场地的地理位置,抗震烈度也是影响结构选型的重要因素。
为了进一步提高土地利用率,建设单位倡导建设高层住宅,以满足市场的需求及企业自身经济效益的要求;目前高层住宅成为人们的主要居住形式,高层住宅主要的结构形式多为剪力墙结构。
1剪力墙结构的特点剪力墙结构是由竖向剪力墙和水平楼面梁板组成的结构。
剪力墙既作为承受水平和竖向作用的构件,又有分隔房间的作用。
其布置原则除了应满足建筑使用要求,对结构受力是否合理至关重要,剪力墙布置是否合理进一步决定了该建筑的建设费用,所以更多的建设单位在前期建筑方案及与相应的结构选型上尽量优化,而达到节省造价的目的。
2建模时的注意事项(1)剪力墙:目前结构常用计算软件:中国建筑科学研究院开发的软件PKPM,北京盈建科软件XXXX有限公司编制的软件YJK,均可进行剪力墙结构的计算。
(2)剪力墙平面布置原则:依据建筑平面图:①外墙可布置为剪力墙,增加建筑平面的抗扭刚度。
②内墙布置时,平面均匀对称布置,竖向连续,避免楼层错洞保证剪力墙边缘构件上下连续贯通,同时避免墙肢开洞过大形成抗震性能较差的短肢墙(短肢剪力墙指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙)。
③剪力墙的截面厚度及构造配筋应当依据实际工程剪力墙部位及抗震等级,参见《高层建筑混凝土结构技术规程(JGJ3-2010)》7.2.1,10.4.6,《建筑抗震设计规范(GB52022-0510)》(以下简称抗规)6.4.1,6.4.3条。
④内墙长度除应满足建筑条件,还要考虑墙下桩最小桩间距的要求,例如:常规设计时,桩直径700mm,桩间距不小于3倍桩径,加上0.5倍的桩径,建议上部剪力墙的长度为2500mm,上部如有结构洞口,宜尽量使洞口避开桩位。
(完整)高层住宅剪力墙结构设计原则

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
高层住宅剪力墙结构设计原则1 剪力墙布置原则(1)剪力墙的位置:1)遵循均匀、分散、对称和周边的原则。
2)剪力墙应沿房屋纵横两个方向布置。
3)剪力墙宜布置在房屋的端部附近、平面形状变化处、恒荷载较大处以及两端楼(电)梯处,在结构中部尽量减少剪力墙的布置量。
4)在平面布置上尽可能均匀、对称,以减小结构扭转。
不能对称时,应使结构的刚度中心和质量中心接近。
5)沿高度均匀变化;在竖向布置上应贯通房屋全高,使结构上下刚度连续、均匀。
6)多均匀长墙(增加抗侧刚度和减少剪力墙数和混凝土用量),少短墙(抗震性差);可布置成单片形(不少于三道,长度不超过8m)、L形、T形、工字形、十字形或筒形最佳,H/L≥2, 少复杂形状转折。
7)洞口布置在截面中部,避免布置在剪力墙端部或柱边。
(2)剪力墙的间距:为了保证楼(屋)盖的侧向刚度,避免水平荷载作用下楼盖平面内弯曲变形,应控制剪力墙的最大间距。
(3)剪力墙的厚度:剪力墙厚度取值由以下因素确定:1)通过结构分析,在满足最大层间位移、周期比、位移比的各项指标确定每层剪力墙的厚度;2)不同抗震等级的轴压比的限制;3)构造性及稳定性要求(而稳定性一般会满足);对于普通的住宅建筑在7度或8度地区,墙厚大多情况下是按稳定性和构造要求所控制的;首先剪力墙厚度应满足《高规》7.2.1条7.7.2条规定(其实是高厚比要求),当不能满足上面几条的时候应按《高规》附录D 计算墙体的稳定,从大量工程实例看,按《高规》附录D 计算的墙厚比《高规》7.2.1条7.7.2条规定的小得多。
高层剪力墙住宅结构优化设计

高层剪力墙住宅结构优化设计1. 引言随着我国城市化进程的不断推进,高层住宅建筑已经成为城市居住的主要形式之一。
剪力墙结构作为高层住宅建筑中常用的一种结构形式,其设计合理性对建筑的安全性、稳定性和经济性具有重要影响。
本文将探讨如何对高层剪力墙住宅结构进行优化设计,以提高其性能和效益。
2. 剪力墙结构特点及优化目标剪力墙结构具有较高的抗侧刚度、良好的抗震性能和较大的使用空间,但其自重较大,材料消耗较多,且墙体较为厚重,影响室内采光和通风。
因此,剪力墙结构的优化应围绕提高结构性能、降低成本、改善室内环境等方面展开。
3. 结构优化设计方法3.1 合理布置剪力墙1.根据建筑平面布局和功能需求,合理划分剪力墙的位置和尺寸,使墙体既能够满足结构受力需求,又能够兼顾室内空间使用。
2.在保证结构安全的前提下,适当减小墙体厚度,以降低自重和提高空间利用率。
3.2 采用新型材料及构件1.采用高强度钢材、高性能混凝土等新型材料,以提高剪力墙的承载能力和降低自重。
2.引入钢框架、空腹墙等新型构件,以提高结构的抗震性能和减小墙体厚度。
3.3 优化结构体系1.采用框架-剪力墙结构,使剪力墙与框架共同承担水平力,提高结构的整体稳定性。
2.考虑采用多重剪力墙体系,通过设置多道墙体,提高结构的抗侧刚度和抗震性能。
3.4 合理设置连梁1.合理设置连梁的截面尺寸和连接方式,以提高剪力墙之间的协同工作性能。
2.考虑连梁的屈服强度和极限强度,以保证结构在地震作用下的安全性。
4. 结构优化设计实例以一栋18 层的高层剪力墙住宅为例,采用上述优化方法进行设计。
经过优化,该结构在满足安全性的前提下,自重降低约 10%,墙体厚度减小约 20%,且室内空间利用率得到提高。
5. 结语高层剪力墙住宅结构优化设计应注重合理布置剪力墙、采用新型材料及构件、优化结构体系和合理设置连梁等方面。
通过这些方法,可以提高结构的性能和效益,满足现代城市居住的需求。
6. 结构优化设计软件应用在实际设计过程中,为了更好地实现结构优化,可以借助结构优化设计软件进行模拟和分析。
剪力墙结构的优化方法

剪力墙结构是一种常见结构形式,特别是在量大面广的高层住宅中广泛应用。
剪力墙结构由于梁和板的跨度不大,梁和板的优化空间相对较小。
下面从墙肢布置、结构计算参数取值、性能控制指标( 如位移角) 三个方面讨论剪力墙结构的优化方法。
1 平面布置原则墙肢布置的优劣直接从宏观上影响整个建筑结构的力学性能和经济指标,因此优化布置是进行剪力墙结构优化设计的关键。
剪力墙布置宜遵循如下四点原则。
1. 1 墙肢对齐布置剪力墙构件作为高层剪力墙结构主要的抗侧移构件,进行结构设计时应充分发挥墙肢间的联动效用。
因此进行结构布置时,同一方向的墙肢宜均匀布置,在平面上形成多道联肢剪力墙协同工作,尽量避免剪力墙错位布置。
如图 1 所示的某高层住宅结构平面 Y 向存在 4 片墙肢刚好错位布置的情况( 图1 中框起部分的墙肢) 。
稍微调整该墙肢的位置,可形成 2 道联肢剪力墙,则对齐布置的计算模型局部侧向刚度可增加 10% 。
1. 2 墙肢均匀布置高层建筑结构在满足承受竖向荷载和结构抗侧移刚度的需要外,还应具有一定的抗扭转刚度。
具体设计过程中,可通过适当加强周边剪力墙以及外圈梁,调整结构刚度中心与结构平面几何形心、质量中心的相对位置,尽量做到“三心”重合的理想效果。
1. 3 避免使用短肢剪力墙或长墙由于短肢剪力墙的延性较差,且构造要求高,钢筋用量较大,结构布置时应避免使用短肢剪力墙。
墙肢长度过长,刚度过大,会造成地震力比较集中。
剪力墙结构中如果存在少量长墙,地震作用下的楼层剪力主要由这部分长墙承受,发生超烈度地震时该部分墙肢由于承受巨大的地震力往往首先破坏,由于其他墙肢的承载力较弱,容易造成剪力墙墙肢由强到弱各个击破的破坏形式,最终导致结构倒塌。
因此,进行剪力墙结构布置时宜使各墙肢刚度接近,尽量避免使用长墙。
1. 4 优先采用带翼缘墙L 形、T 形的剪力墙因墙肢端部的翼墙起到扶壁作用,稳定性较好,同时也比较容易满足框架梁搭接在剪力墙端部时钢筋的锚固长度要求,进行结构布置时宜优先采用,L 形、T 形墙的翼墙长度可控制在 0. 5 ~ 1. 0m,翼墙长度越短,则配筋越少。
pkpm剪力墙建模流程

pkpm剪力墙建模流程PKPM剪力墙建模流程剪力墙是一种常用的结构形式,用于提供建筑物的抗震性能。
PKPM (Peking University Program for Microcomputers)是一种常用的结构分析和设计软件,可以用来进行剪力墙的建模和分析。
下面将介绍PKPM剪力墙建模的流程。
第一步:创建新模型在PKPM软件中,首先需要创建一个新的模型。
可以选择创建3D模型或平面模型,根据实际需要进行选择。
在创建模型的过程中,需要设置模型的尺寸、材料等参数。
第二步:绘制剪力墙在模型中绘制剪力墙。
可以使用PKPM软件提供的绘制工具,在平面视图或者立体视图中绘制剪力墙的轮廓。
需要注意的是,剪力墙的位置和数量应该符合结构设计要求。
第三步:定义材料属性在PKPM软件中,需要定义剪力墙所使用的材料属性。
可以设置材料的弹性模量、泊松比、强度等参数。
这些参数将影响剪力墙的受力性能和破坏形式。
第四步:设置加载条件在PKPM软件中,需要设置加载条件。
可以设置剪力墙所受到的荷载类型、大小和作用位置等参数。
这些参数将影响剪力墙的受力情况和变形情况。
第五步:生成网格在PKPM软件中,需要对剪力墙进行网格划分。
可以选择不同的网格划分方式,如均匀网格划分、非均匀网格划分等。
网格划分的方式将影响剪力墙的模型精度和计算效率。
第六步:定义约束条件在PKPM软件中,需要定义剪力墙的约束条件。
可以设置剪力墙所受到的支撑方式、支座刚度等参数。
这些参数将影响剪力墙的整体受力性能。
第七步:进行分析计算在PKPM软件中,进行剪力墙的分析计算。
可以选择静力分析或动力分析的方法,根据实际情况进行选择。
分析计算的结果将得到剪力墙的受力状态和变形情况。
第八步:结果分析和优化设计根据PKPM软件计算得到的结果,进行剪力墙的结果分析和优化设计。
可以根据剪力墙的受力情况和变形情况,对剪力墙的尺寸、材料等参数进行调整和优化,以满足设计要求。
第九步:输出结果在PKPM软件中输出剪力墙的分析结果。
建筑结构设计中剪力墙结构设计要点

建筑结构设计中剪力墙结构设计要点摘要:作为常见的建筑形式,剪力墙结构因自身良好的抗风性能和抗震性能在建筑工程当中得到了广泛的运用,为了充分发挥出剪力墙结构的优点,必须高度重视结构设计问题。
设计人员首先应该针对剪力墙结构进行充分分析,结合工程需求提出优化措施,考虑到影响剪力墙结构的要素众多,必须综合考量,结合工程实践完成设计方案调整,发挥剪力墙结构的应有之用,文章将以此作为切入点进行深入分析。
关键词:建筑结构设计;剪力墙结构设计;应用分析0引言通过与传统墙体结构的比较,剪力墙结构在承载能力和抗震性能方面表现优良,保证了结构的稳定性,同时也营造了更加安全的居住环境。
剪力墙结构设计包含的内容多样,设计过程中需要根据工程实践分析结构设计当中的常见问题,结合工程经验,通过优化设计保证剪力墙结构性能的发挥。
设计人员是影响建设效果的关键所在,为此设计之前就应该针对其应用流程进行全面掌握,同时明确重点难点问题,以优化措施发挥最大的潜力墙结构优势。
1. 剪力墙的使用原则1.1 剪力墙结构设计原则要保证建筑墙体的安全性,必须在剪力墙结构以及结构形式的基础之上进行分析,找出针对性的解决方案,刚接形式的结构设计能够满足楼面横截面积小的情况,具有减少墙肢平面外弯矩的效果,能够提高整体的承重能力。
横向和纵向结构分化设计当中,需要从整体角度进行考量。
剪力墙在高层建筑当中的作用尤为突出,作为一个竖向构件,在建筑中充当着抵抗策略的角色,同时也承受着竖向负重以及横切面的负重,如果采用剪力墙组成受力墙面结构,剪力墙墙体就能够承担所有负重,对整个建筑工程影响很大。
为了发挥出剪力墙设计的最优作用,首先应该合理认识剪力墙的作用,布置方式采用沿中心轴方向双向布置,如果建筑抗震要求高,可以采用双向剪力墙设计方法;墙体的形状同样也会对剪力墙的使用设计产生一定的影响。
在设计过程中应保持受力均匀,保持受力对称,保证剪力墙中心和墙的结构中心相近,使剪力墙的效果最大化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剪力墙布置及模型调整方法
1、结构布置
应遵循均匀、分散、对称和周边的原则,剪力墙应沿房屋纵横两个方向布置,在满足位移限值的情况下尽量少布墙。
剪力墙应设置成“L”、“T”、“U”、“工”、“十”形,尽量不要设“一”形墙。
在竖向布置上剪力墙应贯通房屋全高,使结构上下刚度连续、均匀。
1.1 结构中间部位布置剪力墙的原则
建筑专业为满足使用功能需要而对结构梁布置有诸多限制。
结构人员在拿到建筑图时应首先考虑梁布置,应避免主次梁关系过于复杂情况的出现。
如果主次梁关系过于复杂,次梁级数太多,就可能出现因为一级主梁破坏而使结构相关联区域丧失使用功能,是结构设计概念所不许的,应在此原则下布置因设置楼面梁所需的剪力墙。
恒荷载较大处以及楼(电)梯处所设置的剪力墙。
由于楼面开洞及楼梯构件的影响,楼(电)梯间处是结构的薄弱环节,同时楼梯间也是地震等情况下建筑物唯一的逃生通道,因此在楼(电)梯间四周能布置剪力墙的地方应全布置上剪力墙,既可以作为薄弱环节的加强,也可以形成筒体,为结构提供竖向刚度。
结构中间部位布置剪力墙时在遵循上述两原则的基础上,还应做到尽量的少布墙,这主要是对为楼面梁布置所设置的剪力墙而言,中部布置剪力墙过多,结构抗扭转刚度相对较小,第一振型下的扭转周期就相对较大,不利于周期比的调整。
中间部位剪力墙的布置是结构布置的关键,要做到数量少和位置均匀两点,最主要的就是从梁布置方案出发,分析出最合理的梁布置方案,也就得出了最合理的中部剪力墙布置方案。
1.2 结构周边部位布置剪力墙的原则
周边部位剪力墙可以为结构提供竖向刚度,以减小结构位移,也可以提高结构的抗扭转刚度,减小扭转周期。
在周边剪力墙的布置时,在结构周边,建筑允许设墙的位置应尽量布置剪力墙。
与周边剪力墙相连的另一方向肢的长度应在满足建筑使用功能的前提下根据结构位移计算需要而增减。
1.3 在不违反规范前提下应尽量布置长墙
从经济性考虑,结构剪力墙布置若短而多,则剪力墙暗柱数量也会很多,如果设置长墙,减少一些不必要的墙或者开洞,这样剪力墙暗柱数量少,在墙数量相同的情况下可以减少钢筋用量,施工图绘制中也会省下一定的时间。
2模型调整
根据初步布置好的剪力墙及梁建立计算模型(PKPM),建一个至二个标准层(楼层较多、应变墙厚计算的须建立两个标准层),进行结构初步计算。
初步计算主要是确定模型的规则性及竖向刚度调整。
在具体参数中初步计算应达到以下效果:
第一:周期及周期比的规则。
一般情况下纯剪力墙结构高层建筑都不会太复杂,结构调整时应首先满足Tt/T1≤0.9(A级高度高层),如果周期比不满足,则说明结构抗扭转刚度相对较小,调整时应增加周边部位剪力墙、加高周边连梁(建筑立面允许的情况下)或者减少中间部位剪力墙。
PKPM计算中,周期比满足要求以后,应调整周期的平动系数及扭转系数,X向、Y向以平动为主的第一自振周期的平动系数及以扭转为主的第一自振周期的扭转系数均宜接近1.00。
第二:位移接近限值、不考虑偶然偏心时的位移比接近1.00。
位移及位移比的大小是表现结构剪力墙布置多少的最直观数据。
一方面要布置足够多的剪力墙,以满足1/1000的位移要求,另一方面,也要控制剪力墙的数量不能太多,否则不经济。
实际初调模型时,应控制位移(X向、Y向)至1/1000左右;对于不考虑偶然偏心时的位移比也应调整至1.00或者接近1.00,这个位移比更直接的表现了结构在作用影响下位移的规则性。
若这个比值过大,则是由于结构某一部位或者某一点不合理而使该部位或该点位移过大而造成的。
如果这时再控制位移至1/1000则表明剪力墙布置相对较多了,反之,如果这时位移为1/800~1000时,则可能经过找出局部位移过大点对局部剪力墙调整而达到位移1/1000的要求。
第三:中间及上部楼层基本无超筋,且不出现超筋(这里超筋不仅指配筋超限,也指抗剪、抗扭截面超限)超的特别多的梁。
若有较多超筋则说明墙布置不合理,对它的调整也会影响到周期及位移。
若个别梁超筋过多也说明了该梁处应力集中,该梁对结构刚度的影响也很大,就形成了结构的薄弱部位,设计时应通过调整布局使各构件受力均匀,避免过大的应力集中。
结构调整中,质心和刚心应尽量重合或基本重合,质心和刚心重合可以避免结构刚度向某方向偏置而减小扭转作用,对位移比及周期比的调整有很大帮助。
调整的方法是视位移的大小而在刚心偏置的反方向增加剪力墙或者刚心偏置的方向减少剪力墙。
(刚心为圆圈,质心为十字)
周期、位移、超筋的调整均不是孤立的,它们之间是相互关联及相互影响的,应全面加以考虑,不能“头疼医头,脚疼医脚”,此三项调整完毕,剪力墙布置也就基本确定下来了,接下来就是细致建模和调整连梁超筋了。
模型细化以后,若还有局部连梁超筋则可以用下列方法调整。
第一:调幅法。
抗震设计剪力墙中连梁的弯矩和剪力可进行塑性调幅,以降低其剪力设计值。
但在结构计算中已对连梁进行了刚度折减,其调幅范围应限制或不再调幅。
当部分连梁降低弯矩设计值后,其余部位的连梁和墙肢的弯矩应相应加大。
经调幅法处理的连梁,应确保连梁对承受竖向荷载无明显影响。
第二:减小和加大梁高。
减小梁高使梁所受内力减小,在通常情况下对调整超筋是十分有效的,但是在结构位移接近限值的情况下,可能造成位移超限。
加大连梁高度连梁所受内力加大,抗力也加大了,可能使连梁不超筋,且可以减小位移,但是这种方法可能受建筑对梁高的限制,且连梁高度加大超过一定限值,构造需加强,也造成了钢筋用量的增加。
第三:加大连梁跨度。
可以非常有效的解决连梁超筋问题,但是减短剪力墙可能造成位移加大。
设计时可以以上一种和几种方法共同使用。
若个别连梁超筋还存在,也可以采用加大相连墙肢配筋及加大连梁配箍量使配筋能承载截面最大抗剪能力要求。