part1常用数字信号处理

合集下载

《数字信号处理》课件

《数字信号处理》课件
特点
数字信号处理具有精度高、稳定性好、灵活性大、易于实现和可重复性好等优 点。它克服了模拟信号处理系统中的一些限制,如噪声、漂移和温度变化等。
数字信号处理的重要性
数字信号处理是现代通信、雷达、声 呐、语音、图像、控制、生物医学工 程等领域中不可或缺的关键技术之一 。
随着数字技术的不断发展,数字信号 处理的应用范围越来越广泛,已经成 为现代信息处理技术的重要支柱之一 。
04 数字信号变换技术
CHAPTER
离散余弦变换
总结词
离散余弦变换(DCT)是一种将离散信号变换到余弦函数基 的线性变换。
详细描述
DCT被广泛应用于图像和视频压缩标准,如JPEG和MPEG, 因为它能够有效地去除信号中的冗余,从而减小数据量。 DCT通过将信号分解为一系列余弦函数的和来工作,这些余 弦函数具有不同的大小和频率。
雷达信号处理
雷达目标检测
利用数字信号处理技术对雷达回 波数据进行处理和分析,实现雷 达目标检测和跟踪。
雷达测距和测速
通过数字信号处理技术,对雷达 回波数据进行处理和分析,实现 雷达测距和测速。
雷达干扰抑制
利用数字信号处理技术对雷达接 收到的干扰信号进行抑制和滤除 ,提高雷达的抗干扰能力。
谢谢
THANKS
《数字信号处理经典》ppt课 件
目录
CONTENTS
• 数字信号处理概述 • 数字信号处理基础知识 • 数字滤波器设计 • 数字信号变换技术 • 数字信号处理的应用实例
01 数字信号处理概述
CHAPTER
定义与特点
定义
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及信号的获 取、表示、变换、分析和综合的理论和技术。它以数字计算为基础,利用数字 计算机或其他数字硬件来实现信号处理的方法。

数字信号处理

数字信号处理

数字信号处理数字信号处理(Digital Signal Processing,简称DSP)是一种通过算法对数字信号进行处理和分析的技术方法。

它广泛应用于音频、图像、视频、通信等领域,在现代科技发展中扮演重要角色。

本文将从数字信号处理技术的定义、应用领域、基本原理等角度进行探讨。

一、定义数字信号处理是指利用数字技术方法来处理和分析信号的过程。

相较于模拟信号处理,数字信号处理能够通过采样、量化和编码将连续时间信号转换为离散时间信号,然后利用计算机等设备对离散时间信号进行处理。

在数字信号处理中,信号被表示为数字序列,通过算法进行运算和处理。

二、应用领域数字信号处理在众多领域中都有着广泛的应用,下面列举几个典型的应用领域。

1. 音频处理音频处理是数字信号处理的重要应用之一。

通过对音频信号进行采样和处理,可以实现音频增强、噪声消除、音频编码等功能。

在音频设备、通信系统以及音乐制作等领域都离不开数字信号处理的技术支持。

2. 图像处理数字图像处理是应用数字信号处理技术处理图像的方法。

通过对图像进行采样和处理,可以实现图像增强、边缘检测、图像压缩等功能。

在计算机视觉、医学影像、卫星图像等领域得到广泛应用。

3. 视频处理视频处理是对视频信号进行处理和分析的过程。

通过对视频信号进行采样、编码和压缩,可以实现视频压缩、移动视频传输等功能。

在监控系统、视频会议等领域都离不开数字信号处理技术的支持。

4. 通信处理数字信号处理技术在通信领域中起到了至关重要的作用。

通过对数字信号进行调制、编解码、信道均衡等处理,可以提高通信系统的可靠性和传输效率。

在移动通信、卫星通信等领域都广泛应用了数字信号处理技术。

三、基本原理数字信号处理的基本原理包括信号采样、量化、编码、运算和重构等步骤。

1. 信号采样信号采样是将连续时间信号转换为离散时间信号的过程。

通过按照一定的时间间隔对信号进行采样,得到一系列取样值,用来表示原始信号。

2. 量化和编码信号量化是将连续时间信号中的幅度值转换为离散值的过程。

数字信号处理知识点总结

数字信号处理知识点总结

N
1
x(n)
1 N
N 1
X
(k
)W
Nkn,0k0nN
1
2024/1/22
7
Discrete Fourier Transform
DFT Transform Pair
DFT的物理意义
X
(k
)
N 1
n0
x(n)W
k N
n,0
k
N
1
x(n)
1 N
N 1
X
(k
)W
N
k
n,0
k0
n
N
1
N 1
X (z) x(n)zn 1. z-Transform n0
将模拟信号转换为数字信号,并且保证采样前后信息部丢失—采样定理。
xa(t)
采样
量化
编码
x(n)
A/D转换器
xa t sin4 t
2024/1/22
4
采样频率
s
2
Ts
xa( t )|tnT x( n ) sin( nTs ) x( n ) sin(n )
时域离散 幅度量化
3
数字信号处理 Digital signal processing
复加次数: Nlog2N;
2024/1/22
11
FFT computation cost
Comparison between FFT and DFT in complex multiplication
N 16 512 2048
N2 (DFT) 256
262144 4194304
Nlog2N/2(FFT) 32
卷积
(3)
N

数字信号处理

数字信号处理

数字信号处理数字信号处理(Digital Signal Processing)数字信号处理是指将连续时间的信号转换为离散时间信号,并对这些离散时间信号进行处理和分析的过程。

随着计算机技术的飞速发展,数字信号处理在各个领域得到了广泛应用,如通信、医学影像、声音处理等。

本文将介绍数字信号处理的基本概念和原理,以及其在不同领域的应用。

一、数字信号处理的基本概念数字信号处理是建立在模拟信号处理基础之上的一种新型信号处理技术。

在数字信号处理中,信号是用数字形式来表示和处理的,因此需要进行模数转换和数模转换。

数字信号处理的基本原理包括采样、量化和编码这三个步骤。

1. 采样:采样是将连续时间信号在时间上进行离散化的过程,通过一定的时间间隔对信号进行取样。

采样的频率称为采样频率,一般以赫兹(Hz)为单位表示。

采样频率越高,采样率越高,可以更准确地表示原始信号。

2. 量化:量化是指将连续的幅度值转换为离散的数字值的过程。

在量化过程中,需要确定一个量化间隔,将信号分成若干个离散的级别。

量化的级别越多,表示信号的精度越高。

3. 编码:编码是将量化后的数字信号转换为二进制形式的过程。

在数字信号处理中,常用的编码方式有PCM(脉冲编码调制)和DPCM (差分脉冲编码调制)等。

二、数字信号处理的应用1. 通信领域:数字信号处理在通信领域中具有重要的应用价值。

在数字通信系统中,信号需要经过调制、解调、滤波等处理,数字信号处理技术可以提高信号传输的质量和稳定性。

2. 医学影像:医学影像是数字信号处理的典型应用之一。

医学影像技术如CT、MRI等需要对采集到的信号进行处理和重建,以获取患者的影像信息,帮助医生进行诊断和治疗。

3. 声音处理:数字信号处理在音频处理和语音识别领域也有广泛的应用。

通过数字滤波、噪声消除、语音识别等技术,可以对声音信号进行有效处理和分析。

总结:数字信号处理作为一种新兴的信号处理技术,已经深入到各个领域中,并取得了显著的进展。

数字信号处理知识点

数字信号处理知识点

数字信号处理知识点1. 引言数字信号处理(Digital Signal Processing,DSP)是应用数字计算技术来过滤、压缩、存储、生成、识别和其他方式处理信号的科学领域。

本文旨在概述数字信号处理的核心技术和知识点,为学习和应用DSP提供明确的指导。

2. 信号的基本概念2.1 模拟信号与数字信号2.2 信号的时域和频域特性2.3 采样定理(奈奎斯特定理)2.4 量化和编码2.5 信号重构3. 离散时间信号与系统3.1 离散时间信号的定义3.2 线性时不变(LTI)系统3.3 卷积和系统响应3.4 Z变换及其应用3.5 差分方程4. 傅里叶分析4.1 傅里叶级数4.2 傅里叶变换4.3 快速傅里叶变换(FFT)4.4 频谱分析5. 滤波器设计5.1 滤波器的基本概念5.2 理想滤波器5.3 窗函数法5.4 IIR滤波器设计5.5 FIR滤波器设计6. 信号的检测与估计6.1 信号检测理论6.2 最小二乘估计6.3 卡尔曼滤波6.4 信号的自适应滤波7. 语音与图像处理7.1 语音信号的特性7.2 语音编码技术7.3 图像信号的基本概念7.4 图像压缩技术7.5 图像增强技术8. 实时数字信号处理系统8.1 DSP芯片的特性8.2 实时操作系统8.3 硬件与软件协同设计8.4 系统性能评估9. 应用实例9.1 通信系统中的DSP应用9.2 生物医学信号处理9.3 音频和视频处理9.4 雷达和声纳系统10. 结论数字信号处理是一个多学科交叉的领域,涉及信号理论、数学、计算机科学和电子工程。

掌握DSP的基础知识对于理解和设计现代通信系统、音频和视频处理系统以及其他相关应用至关重要。

请注意,本文仅为数字信号处理知识点的概述,每个部分都需要深入学习才能完全理解和应用。

读者应参考相关教材、课程和实践项目,以获得更全面和深入的知识。

10种常见的数字信号处理算法解析

10种常见的数字信号处理算法解析

10种常见的数字信号处理算法解析数字信号处理算法是数字信号处理领域的核心技术,它能够将连续型信号转化为离散型信号,从而实现信号的数字化处理和传输。

本文将介绍10种常见的数字信号处理算法,并分别从理论原理、算法步骤和典型应用三个方面进行解析。

一、傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的算法。

其原理是分解信号中的不同频率分量,使得信号频域分析更方便。

傅里叶变换的算法步骤包括信号采样、离散化、加窗、FFT变换、频谱分析等。

傅里叶变换广泛应用于通信、音频处理、图像处理等领域。

二、小波变换小波变换是一种将时域信号分解为多个小波信号的算法。

其原理是利用小波基函数将信号分解成不同频率和时间范围的小波信号。

小波变换的算法步骤包括信号采样、小波变换、重构等。

小波变换广泛应用于信号压缩、图像处理、语音信号处理等领域。

三、滤波器设计滤波器设计是一种根据需要设计出不同类型的滤波器的算法。

其原理是利用滤波器对信号进行滤波处理,达到对信号不同频率分量的取舍。

滤波器设计的算法步骤包括滤波器类型选择、设计要求分析、滤波器设计、滤波器性能评估等。

滤波器设计广泛应用于信号处理和通信系统中。

四、自适应滤波自适应滤波是一种能够自主根据需要调整滤波器参数的算法。

其原理是通过采样原始信号,用自适应滤波器对信号进行滤波处理,以达到信号降噪的目的。

自适应滤波的算法步骤包括信号采样、自适应算法选择、滤波器参数估计、滤波器性能评估等。

自适应滤波广泛应用于信号处理和降噪领域。

五、功率谱密度估计功率谱密度估计是一种用于估计信号功率谱密度的算法。

其原理是利用信号的离散傅里叶变换,对信号功率谱密度进行估计。

功率谱密度估计的算法步骤包括信号采样、离散傅里叶变换、功率谱密度估计等。

功率谱密度估计广泛应用于信号处理、通信、声学等领域。

六、数字滤波数字滤波是一种对数字信号进行滤波处理的算法。

其原理是利用数字滤波器对信号进行滤波处理,以取舍信号中不同频率分量。

数字信号处理

数字信号处理

数字信号处理数字信号处理(Digital Signal Processing,简称DSP)是一门研究数字信号的获取、处理和分析的学科。

数字信号处理在各个领域都有着广泛的应用,例如通信、音频和视频处理、图像处理等。

本文将从数字信号的获取、数字信号处理的基本原理以及数字信号处理的应用等几个方面进行论述。

一、数字信号的获取在数字信号处理中,数字信号的获取是非常重要的一步。

通常,我们通过模拟信号转换成数字信号进行处理。

这个过程包括了模拟信号的采样和量化两个步骤。

1. 采样采样是指将连续的模拟信号转换成离散的数字信号。

在采样过程中,我们将连续的信号在时间上进行等间隔地取样,得到一系列离散的采样值。

采样定理告诉我们,采样频率必须大于信号最高频率的两倍,这样才能保证信号在采样后的恢复。

2. 量化量化是指将连续的采样值转换成离散的数字量。

在量化过程中,我们对每个采样值进行近似处理,将其量化为离散的取值,通常使用有限个取值来表示连续的信号强度。

二、数字信号处理的基本原理数字信号处理的基本原理包括离散信号的表示和离散信号的处理。

1. 离散信号的表示离散信号是指在时间上是离散的,并且在幅值上也是离散的。

常用的离散信号表示方法包括时间序列和频率谱。

- 时间序列是离散信号在时间上的表示,通常由一系列采样值组成,可以看作是一个序列。

- 频率谱是离散信号在频率上的表示,可以将离散信号分解成一系列不同频率的正弦波成分。

2. 离散信号处理离散信号处理是指对离散信号进行一系列运算和变换,常见的包括滤波、频谱分析和信号重建等。

- 滤波是指对信号进行滤波器的作用,通常用于去除信号中的噪声或者增强希望的信号成分。

- 频谱分析是指对信号的频谱进行分析,常用的方法包括傅里叶变换和快速傅里叶变换等。

- 信号重建是指将经过处理的离散信号恢复成连续信号,常用的方法包括插值和重采样等。

三、数字信号处理的应用数字信号处理在多个领域都有着广泛的应用,下面以通信领域和音频处理领域为例进行介绍。

常用的数字信号处理算法-数字信号处理

常用的数字信号处理算法-数字信号处理

图像和视频处理
数字信号处理在图像和视频处 理中用于图像增强、图像压缩 、视频编解码等方面。
生物医学工程
数字信号处理在生物医学工程 中用于心电图、脑电图、超声 波等医学信号的处理和分析。
02 常用数字信号处理算法
离散傅里叶变换(DFT)
总结词
DFT是数字信号处理中最基本和最重要的算法之一,用于将时域信号转换为频域 信号。
行硬件加速。
数字信号处理在物联网中的应用
传感器数据处理
利用数字信号处理技术对物联网中传感器采集的数据进行预处理、 特征提取和分类识别。
通信信号处理
对物联网中无线通信信号进行调制解调、信道均衡和干扰抑制等 处理,提高通信质量和可靠性。
图像和视频处理
利用数字信号处理技术对物联网中获取的图像和视频数据进行压 缩、去噪、增强和识别等处理。
音清晰度等。
音频分析
提取音频特征,用于语音识别 、音乐信息检索等领域。
音频合成
通过数字信号处理技术生成人 工声音或音乐。
图像信号处理
图像增强
提高图像的视觉效果, 如锐化、对比度增强、
色彩校正等。
图像分析
提取图像中的特征,用 于目标检测、识别和跟
踪等任务。
图像压缩
降低图像数据的存储和 传输需求,提高图像处
实现复杂信号处理
数字信号处理能够实现复杂的信号处 理算法,如频域变换、滤波器设计、 特征提取等,满足各种应用需求。
数字信号处理的应用领域
通信领域
数字信号处理在通信领域中广 泛应用于调制解调、信道编解 码、无线通信系统设计等方面

音频处理
数字信号处理在音频处理中用 于音频压缩、音频特效、语音 识别等方面。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



Q=1.4826*d =MAD
●计算 ●如果
q | x m (k) - z |
q LQ 则
y m (k) x m (k) 否则
y m (k) Z
可以用窗口宽度m和门限L调整滤波器的特性。m影响滤波器的 总一致性,m值至少为7。门限参数L直接决定滤波器主动进取 程度,本非线性滤波器具有比例不变性、因果性、算法快捷等 特点,实时地完成数据净化。
(1).确定当前数据有效性的判别准则

一个序列的中值对奇异数据的灵敏度远 无小于序列的平均值,用中值构造一个 尺度序列,设{ x i (k) }中值为Z,则
给出了每个数据点偏离参照值的尺度
令{d(k)}的中值为D,著名的统计学家FR.Hampel 提出并证明了中值数绝对偏差 MAD = 1.4826*D , MAD可以代替标准偏差σ。对3σ法则的这一修正 有时称为“Hampel标识符”。
X X N
i 1 i

Xi Si ni
Si为采样值中的有用部分ni 为随机误差。
1 N 1 N 1 N X (si n i ) si n i N i 1 N i 1 N i 1
1 N X Si N i 1
滤波效果主要取决于采样次数N,N越大,滤 波效果越好,但系统的灵敏度要下降。因此 这种方法只适用于慢变信号。
二、抑制小幅度高频噪声的平均滤波法
小幅度高频电子噪声:电子器件热噪
声、A/D量化噪声等。 通常采用具有低通特性的线性滤波器: 算数平均滤波法、加权平均滤波法、 滑动加权平均滤波法等。
1.算数平均滤波

N个连续采样值(分别为X1至XN)相加,然 后取其算术平均值作为本次测量的滤波值。 1 N 即
2.滑动平均滤波法
对于采样速度较慢或要求数据更新率
较高的实时系统,算术平均滤法无法 使用的。 滑动平均滤波法把N个测量数据看成一 个队列,队列的长度固定为N,每进行 一次新的采样,把测量结果放入队尾, 而去掉原来队首的一个数据,这样在 队列中始终有N个“最新”的数据。
1 Xn X n i N i 0
采用 3σ准则净化奇异数据,有的仪器通过选择 Lσ中的 L 值( L = 2 , 3 , 4 , 5 )调整净化门限, L > 3 ,门限放宽, L < 3 ,门限紧缩。采用 3σ 准则净化采样数据有其局限性,有时甚至失效。 ( 1 )该准则在样本值少于 10 个时不能判别任 何奇异数据; (2)3σ准则是建立在正态分布的等精度重复 测量基础上,而造成奇异数据的干扰或噪声难 以满足正态分布。
确定系数
三、复合滤波法
在实际应用中,有时既要消除大幅度的脉冲 干扰,有要做数据平滑。因此常把前面介绍 的两种以上的方法结合起来使用,形成复合 滤波。 去极值平均滤波算法:先用中值滤波算法滤 除采样值中的脉冲性干扰,然后把剩余的各 采样值进行平均滤波。连续采样 N 次,剔除 其最大值和最小值,再求余下N-2个采样的 平均值。显然,这种方法既能抑制随机干扰, 又能滤除明显的脉冲干扰。
(2).实现基于L*MAD准则的滤波算法
●建立移动数据窗口(宽度m)
●计算出窗口序列的中值Z(排序法) ●计算尺度序列 d i (k) | w i (k) - z | 的中值d(排序法)
{w 0 (k), w1 (k), w 2 (k),w m-1 (k)} {x 0 (k), x1 (k), x 2 (k),x m-1 (k)}
4. 基于中值数绝对偏差的决策滤波器


中值绝对偏差估计的决策滤波器能够判别 出奇异数据,并以有效性的数值来取代。 x 0 (k) 采用一个移动窗口,, …x ,, 1 (k) x m-1 (k) 利用 m 个数据来确定的有效性。如果滤波器判 定该数据有效,则输出,否则,如果判定 该数据为奇异数据,用中值来取代。
Part1 基本数据处理算法

克服随机误差的数字滤波算法 消除系统误差的算法、非线性校正 诸如频谱估计、相关分析、复杂滤波等 算法,阅读数字信号处理方面的文献。
(一)克服随机误差的数字滤波算法
随机误差:由串入仪表的随机干扰、仪器内部器 件噪声和A/D量化噪声等引起的,在相同条件下测量 同一量时,其大小和符号作无规则变化而无法预测, 但在多次测量中符合统计规律的误差。采用模拟滤 波器是主要硬件方法。 数字滤波算法的优点:(1)数字滤波只是一 个计算过程,无需硬件,因此可靠性高,并且不存 在阻抗匹配、特性波动、非一致性等问题。模拟滤 波器在频率很低时较难实现的问题,不会出现在数 字滤波器的实现过程中。(2)只要适当改变数字滤 波程序有关参数,就能方便的改变滤波特性,因此 数字滤波使用时方便灵活。
若本次采样值为yn,则本次滤波的结果由下式确定:
a, yn yn yn | yn yn 1 | a, yn yn 1或yn 2 yn 1 yn 2
a, yn yn yn | yn yn 1 | a, yn yn 1或yn 2 yn 1 yn 2
一、仪器零位误差和增益误差的校正方法

由于传感器、测量电路、放大器等不可避 免地存在温度漂移和时间漂移,所以会给 仪器引入零位误差和增益误差。
需要输入增加一个多路开关电路。开关的状 态由计算机控制。
1.零位误差的校正方法 在每一个测量周期或中断正常的测量过程中, 把输入接地(即使输入为零),此时整个测量 输入通道的输出即为零位输出 ( 一般其值不 为零 )N0 ;再把输入接基准电压 Vr 测得数据 Nr,并将N0和Nr存于内存;然后输入接Vx, 测得Nx,则测量结果可用下式计算出来。
3.基于拉依达准则的奇异数据滤波法 (剔除粗大误差)
拉依达准则法的应用场合与程序判别
法类似,并可更准确地剔除严重失真 的奇异数据。 拉依达准则:当测量次数N足够多且测 量服从正态分布时,在各次测量值中, 若某次测量值Xi所对应的剩余误差Vi> 3σ,则认为该Xi为坏值,予以剔除。
拉依达准则法实施步骤
α 和β 为常数,当温度在0~50℃之间分 别约为1.44×10-6和4016K。
2、建模方法之一:代数插值法

代数插值:设有 n + 1 组离散点: (x0, y0) , (x1, y1),…,(xn, yn),x∈[a,b]和未知函数f(x), 就是用n次多项式
例:某测温热敏电阻的阻值与温度之间的 关系为
R T R 25Ce
/ T
f (T)
RT为热敏电阻在温度为T的阻值;
ln R T ln( R 25C ) / T
T / ln[(R T /( R 25C )] F(R T )
z T F( N / k) / ln[N /(k R 25C )]


ห้องสมุดไป่ตู้
设滤波器窗口的宽度为n=2k+1,离散时间信号x (i)的长度为N,(i=1,2,…,N;N>>n), 则当窗口在信号序列上滑动时,一维中值滤波 器的输出: med[x ( i ) ]=x(k) 表示窗口 2k+1 内排序的第 k 个值,即排序后的中间值。
原始信号
中值滤波后的信号
对不同宽度脉冲滤波效果
(1)求N次测量值X1至XN的算术平均值
1 N X Xi N i 1
(2)求各项的剩余误差Vi
(3)计算标准偏差σ
Vi Xi X
N i 1 2 i
( V ) /( N 1)
(4)判断并剔除奇异项Vi>3σ ,则认为该Xi为 坏值,予以剔除。
依据拉依达准则净化数据的局限性
常用的数字滤波算法
一、克服大脉冲干扰的数字滤波法
1.限幅滤波法 2.中值滤波法 3.基于拉依达准则的奇异数据滤波法(剔除粗大误差) 4. 基于中值数绝对偏差的决策滤波器
二、抑制小幅度高频噪声的平均滤波法
1.算数平均 2.滑动平均 3.加权滑动平均
三、复合滤波法
一、克服大脉冲干扰的数字滤波法
克服由仪器外部环境偶然因 素引起的突变性扰动或仪器内部 不稳定引起误码等造成的尖脉冲 干扰,是仪器数据处理的第一步。 通常采用简单的非线性滤波法。
第四章 基于LabVIEW的数学计算 与分析
Part1: 基本数据处理算法 Part2: LabVIEW实现信号分析
Part1
智能仪器的基本数据处理算法
数据处理能力是智能仪器水平的标志,不能充分发 挥软件作用,等同硬件化的数字式仪器. 测量精度和可靠性是仪器的重要指标,引入 数据处理算法后,使许多原来靠硬件电路难以 实现的信号处理问题得以解决,从而克服和弥 补了包括传感器在内的各个测量环节中硬件本 身的缺陷或弱点,提高了仪器的综合性能。
X n 为第n次采样经滤波后的输出;
N 1
n - i 次采样值; X n 为未经滤波的第 i
N为滑动平均项数。 平滑度高,灵敏度低;但对偶然出现的脉冲 性干扰的抑制作用差。实际应用时,通过观 察不同 N值下滑动平均的输出响应来选取 N 值 以便少占用计算机时间,又能达到最好的滤 波效果。
3.加权滑动平均滤波
1.限幅滤波法

限幅滤波法(又称程序判别法)通过程序判断被测 信号的变化幅度,从而消除缓变信号中的尖脉冲干 扰。具体方法是,依赖已有的时域采样结果,将本 次采样值与上次采样值进行比较,若它们的差值超 出允许范围,则认为本次采样值受到了干扰,应予 易除。 已滤波的采样结果:
yn 1,yn 2 , yn 1
Vr V x NrNo ( N x No)
2.增益误差的自动校正方法

其基本思想是测量基准参数,建立误差校正模型, 确定并存储校正模型参数。在正式测量时,根据 测量结果和校正模型求取校正值,从而消除误差。 需要校正时,先将开关接地,所测数据为X0,然 后把开关接到Vr,所测数据为X1,存储X0和X1, 得到校正方程:Y=A1X+A0 A1=Vr/(X1X0) A0=Vr X0/(X0X1) 这种校正方法测得信号与放大器的漂移和增益变 化无关,降低了对电路器件的要求,达到与Vr等 同的测量精度。但增加了测量时间。
相关文档
最新文档