超静定结构特性
力学超定静结构计算

1、超静定结构的特性:与静定结构比较,超静定结构有如下特性:内力超静定,约束有多余,是超静定结构区别于静定结构的基本特点。
2、超静定次数的确定:结构的超静定次数为其多余约束的数目,因此上,结构的超静定次数等于将原结构变成静定结构所去掉多余约束的数目。
在超静定结构上去掉多余约束的基本方式,通常有如下几种:(1)断一根链杆、去掉一个支杆、将一刚接处改为单铰联接、将一固定端改为固定铰支座,相当于去掉一个约束。
举例(2)断一根弯杆、去掉一个固定端,相当于去掉三个约束。
举例(3)开一个单铰、去掉一个固定铰支座、去掉一个定向支座,相当于去掉两个约束。
举例返回顶部3、几点注意:①由图10-1结构的分析可得出结论:一个无铰闭合框有三个多余约束,其超静定次数等于三。
对于无铰闭合框结构其超静定次数=3×闭合框数。
如图10-2所示结构的超静定次数为3×5=15次;对于带铰闭合框结构其超静定次数=3×闭合框数-结构中的单铰数(复铰要折算成单铰)如图10-3所示结构的超静定次数为3×5-(1+1+3)=15次。
D点是连接四个刚片的复铰,相当于(4-1)=3个单铰。
②一结构的超静定次数是确定不变的,但去掉多余约束的方式是多种多样的。
如图10-1结构。
③在确定超静定次数时,要将内外多余约束全部去掉。
如图10-4结构外部1次超静定,内部6次超静定,结构的超静定次数是7。
④在支座解除一个约束,用一个相应的约束反力来代替,在结构内部解除约束,用作用力和反作用力一对力来代替。
如图10-1结构所示。
⑤只能去掉多余约束,不能去掉必要的约束,不能将原结构变成瞬变体系或可变体系。
如图10-4结构中A点的水平支杆不能作为多余约束去掉。
如图10-5结构中支杆a,b和链杆c不能作为多余约束去掉,否则就将原结构变成了瞬变体系。
返回顶部1、超静定结构的求解思路:欲求解超静定结构,先选取一个便于计算结构作为基本体系,然后让基本体系与原结构受力一致,变形一致即完全等价,通过这个等价条件去建立求解基本未知量的基本方程。
超静定结构的受力分析及特性

超静定结构的受力分析及特性一、超静定结构的特征及超静定次数超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。
结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。
通常采用去除多余约束的方法来确定结构的超静定次数。
即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。
去除约束的方法有以下几种:(一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。
(二)切断一根两端刚接的杆件,相当于去除三个约束。
(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。
(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。
去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。
去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。
再用其他去除多余约束的方案确定其超静定次数,结果是相同的。
二、力法的基本原理(一)力法基本结构和基本体系去除超静定结构的多余约束,代以相应的未知力Xi (i=1、2、…、n),Xi 称为多余未知力或基本未知力,其方向可以任意假定。
去除多余约束后的结构称为力法基本结构。
力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。
选取力法基本结构应注意下面两点:1.基本结构一般为静定结构,即无多余约束的几何不变体系。
有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。
2.选取的基本结构应使力法典型方程中的系数和自由项的计算尽可能简便,并尽量使较多的副系数和自由项等于零。
大连理工大学《工程力学(二)》在线作业附标准答案 (6)

B. 正确
满分:4 分
正确答案:B
10. 图乘法求等截面直杆位移时要求单位荷载和外荷载作用下的弯矩图都为直线图形。
A. 错误
B. 正确
满分:4 分
正确答案:A
A. 错误
B. 正确
满分:4 分
正确答案:B
5. 脆性材料的梁许用拉应力和许用压应力相等。
A. 错误
B. 正确
满分:4 分
正确答案:A
6. n次超静定结构,任意去掉n个多余约束都可作为力法的基本体系。
A. 错误
B. 正确
满分:4 分
大连理工大学《工程力学(二)》在线作业附标准答案
试卷总分:100 得分:100
一、 单选题 (共 5 道试题,共 20 分)
1. 剪力沿梁轴线方向的变化用方程表示,称为()。
A. 弯矩方程
B. 弯矩图
C. 剪力方程
D. 剪力图
满分:4 分
正确答案:C
2. 关于超静定结构的特性,下列说法不正确的是( )。
A. 温度变化和支座位移等都会在超静定结构中引起内力
B. 一般情况下超静定结构内力分布比静定结构要均匀
C. 超静定结构内力与构件截面尺寸和刚度有关
D. 超静定结构中有无穷多组支座反力和内力满足平衡条件和变形条件
满分:4 分
正确答案:D
3. 力法方程是沿基本未知量方向的( )。
A. 内力
B. 位移
C. 挠度
D. 转角
满分:8 分
正确答案:CD
三、 判断题 (共 10 道试题,共 40 分)
1. 惯性积可正可负,但是不可以为零。
超静定结构(精)

第4章超静定结构§4.1 超静定结构特性●由于多余约束的存在产生的影响1. 内力状态单由平衡条件不能惟一确定,必须同时考虑变形条件。
2. 具有较强的防护能力,抵抗突然破坏。
3. 内力分布范围广,分布较静定结构均匀,内力峰值也小。
4. 结构刚度和稳定性都有所提高。
●各杆刚度改变对内力的影响1. 荷载作用下内力分布与各杆刚度比值有关,与其绝对值无关。
2. 计算内力时,允许采用相对刚度。
3. 设计结构断面时,需要经过一个试算过程。
4. 可通过改变杆件刚度达到调整内力状态目的。
●温度和沉陷等变形因素的影响1. 在超静定结构中,支座移动、温度改变、材料收缩、制造误差等因素都可以引起内力,即在无荷载下产生自内力。
2. 由上述因素引起的自内力,一般与各杆刚度的绝对值成正比。
不应盲目增大结构截面尺寸,以期提高结构抵抗能力。
3. 预应力结构是主动利用自内力调节超静定结构内力的典型范例。
§4.2 力法原理●计算超静定结构的最基本方法超静定结构是具有多余联系(约束)的静定结构,其反力和内力(归根结底是内力)不能或不能全部根据静力平衡条件确定。
力法计算超静定结构的过程一般是在去掉多余联系的静定基本结构上进行,并选取多余力(也称赘余力)为基本未知量(其个数等于原结构的超静定次数)。
根据基本体系应与原结构变形相同的位移条件建立方程,求解多余力后,原结构就转化为在荷载和多余力共同作用下的静定基本结构的计算问题。
这里,基本体系起了从超静定到静定、从静定再到超静定的过渡作用,即把未知的超静定问题转换成已知的静定问题来解决。
●基本结构的选择(解题技巧)1. 通常选取静定结构;也可根据需要采用比原结构超静定次数低的、内力已知的超静定结构;甚至可取几何可变(但能维持平衡)的特殊基本结构。
2. 根据结构特点灵活选取,使力法方程中尽可能多的副系数δij = 0。
3. 应选易于绘制弯矩图或使弯矩图限于局部、并且便于图乘计算的基本结构。
第8章超静定结构的计算方法

三次超静定拱
X1
X2
X3
e)
上一页 下一页 返回
3)撤除一 个固定铰支 座或撤除一 个内部单铰, 相当于解除 两个多余约 束。
二次超静定刚架
X1 X2X2来自X1X1X2二次超静定刚架
上一页 下一页 返回
4)撤除一 个固定端支 座或切断一 个刚性连接, 相当于解除 三个多余约 束。
三次超静定刚架
F
超静定梁,画出内力图。已知梁的抗弯
刚度EI为常数。 解2 (1) 属于一次超静定梁,得 到基本结构如图所示。 (2)建立力法典型方程。 A
A
l/2
C l/2 F
B
C
X1 M1图
B
11 X1+1F=0
(3)求系数和自由项
1 l l 2 l3 11 l EI 2 3 3EI
l Fl/2 M F图
处沿Xi方向的位移。
上一页 下一页 返回
c)
C
X1
f) B
C
X1=1
21
11
A d) B
11
X1倍
d) B
A
C
C
22
12
A
X2
X2=1 X2倍
12
A
ij=ij Xj
22
上一页 下一页 返回
21
B
1=11+12+1F= 0 2=21+22+2F= 0
ij 为多余约束力Xj=1时,基本结构在Xj 单独作用
上一页 下一页
返回
1)撤除 一根支 承链杆 二次超静定梁
一次超静定桁架
X1
X1
a)
或切断
一根结 构内部
静定超静定判断及计算

目的和意义
目的
理解静定与超静定的概念,掌握判断方法,能够进行相应的计算。
意义
在实际工程中,正确判断结构和系统的静定或超静定状态对于确保结构安全、节约材料和降低成本具有重要意义。
02
静定与超静定的基本概念
静定结构的定义
静定结构
在任何外界影响下,其平衡位置都是稳定的 ,且在受到微小扰动后能自动恢复到原来的 平衡状态。
内力计算的方法
静定结构的内力计算通常采用截面法或节点法进行。截面法是通过 截取结构的一部分进行分析,节点法则是对结构的节点进行受力分 析。
内力的表示方法
内力可以用实线和虚线表示,实线表示实际受力方向,虚线表示实际 受力反方向。
静定结构的位移计算
1
位移计算的意义
在结构分析中,位移是一个重要的参数 。通过计算位移,可以了解结构的变形 情况,从而评估结构的稳定性和安全性 。
本文的研究成果已被广泛应用于建筑、机械、航空航天等工程领 域,解决了众多实际工程问题,取得了显著的经济和社会效益。
对未来研究的展望
深入研究复杂结构体系
随着科技的发展,复杂结构体系在工程中越来越常见,未 来研究可进一步探讨复杂结构体系的静定与超静定问题, 提高工程结构的稳定性和安全性。
引入先进计算技术
计算公式
自由度数 = 刚片数 - 约束数。
判断标准
若自由度数等于0,则结构为静定;若自由度数不等于0,则结 构为超静定。
几何法判断
定义
几何法判断是指通过分析结构的几何形状来判断结构是否为静定或超静定的一种方法。
判断标准
若结构的几何形状满足静定结构的条件(即所有刚片都是相互平行的),则结构为静定;否则为超静 定。
01
超静定结构的概念及超静定次数的确定(PPT)

04 超静定结构的实际应用
桥梁工程
桥梁工程中,超静定结构的应用可以增加结构的稳定性和安全性,提高桥梁的承 载能力。例如,连续梁桥采用超静定结构形式,可以减小梁体的振动和变形,提 高行车舒适性和安全性。
此外,超静定结构在桥梁工程中还可以用于抵抗风、地震等自然灾害的影响,提 高桥梁的抗震性能和抗风能力。
ቤተ መጻሕፍቲ ባይዱ
渐进法
总结词
通过逐步逼近的方法求解超静定结构的位移和内力的方法。
详细描述
渐进法是一种基于迭代思想的求解方法,通过逐步逼近的方法求解超静定结构的位移和内力。该方法首先假设一 组初始解,然后逐步修正解的近似值,直到满足精度要求或达到预设的迭代次数为止。渐进法可以处理复杂的超 静定结构问题,具有较高的计算效率和精度。
建筑工程
在建筑工程中,超静定结构的应用可以提高结构的稳定性和 刚度,增强建筑物的承载能力和抗震性能。例如,高层建筑 采用超静定结构形式,可以减小风力、地震等外部荷载对建 筑物的影响,保证建筑物的安全性和稳定性。
此外,超静定结构在建筑工程中还可以用于优化建筑物的空 间布局和结构形式,提高建筑物的美观性和实用性。
超静定结构
在任何一组确定的平衡力系作用 下,需要用多余的约束条件才能 确定结构的平衡状态的体系。
超静定结构的特性
具有多余的约束
超静定结构有多余的约束,这些 多余的约束可以提供额外的稳定 性,使结构在受到外力作用时具
有更好的抵抗变形的能力。
存在内力
由于超静定结构的约束多余,当 受到外力作用时,会在结构内部 产生内力,这些内力有助于抵抗
判别准则二
如果一个结构的支座反力数目小于其约束数目, 则该结构为超静定结构。
判别准则三
如果一个结构的受力状态不能由静力平衡方程完 全确定,则该结构为超静定结构。
建筑力学13超静定结构内力计算

12
有一个多余联系
将横梁某处改为铰接,即相当于去 掉一个联得到图(b)所示静定结构
当去掉 B支座的水链杆则的竖向链杆,即成瞬 变体系[图 (d)]所示,显然 是不允许的,当然也就不能 作为基本结构。
13
13.1.3 超静定结构的计算方法分类 *超静定结构的基本(精确)方法有力法和位移 法两种。 手算时,凡是多余约束多、节点位移少的结 构用位移法,反之用力法。 *超静定结构的计算机解法是矩阵位移法。 *超静定结构的近似解法有:渐近法、分层法、 反弯点法、D值法等。 *渐近法主要有力矩分配法(适于连续梁与无侧 移刚架)、无剪力分配法和迭代法。
34
利用图乘法求得各系数和自由项
1 a 2 2a a 3 11 EI 2 3 3EI
1 a 2 2a 1 2 7a 3 22 a a 2 EI 2 3 EI 6 EI
1 a2 a3 12 21 a EI 2 2 EI
14
13.2 超静定结构的力法计算 13.2.1 力法的基本思路 1.去掉多余约束,并用相应的多余未知力来等 效替换约束条件,得到一静定结构叫基本体 系(结构)。 2.根据原结构的变形条件,即,按基本结构的 变形必须和原结构相同,来建立变形协调方 程,求解多余约束所对应的多余未知力。 3.按照静定结构的分析方法计算结构的内力,并 绘制M、FQ、FN图。
1 2
X1=1
F
qL2/8
qL2/8 (h)M图
20
13.2.3 力法典型方程
图 (a)所示为一个三次超静定结构,在荷载作 用下结构的变形如图中虚线所示。用力法求解时, 去掉支座C的三个多余联系,并以相应的多余力X1 、 X2 和X3代替所去掉的联系的作用,则得到图 (b)所 示的基本结构上,它必须与原结构变形相符,在C点 处沿多余力X1 、X2 和 X3 方向的相应位移 Δ 1 、 Δ2和 Δ 3都应等于零。 Δ1=0 Δ2=0 Δ3=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(续)
③ 温度和沉陷等变形因素的影响
(a) 在超静定结构中,支座移动、温度改 在超静定结构中,支座移动、 材料收缩、 变 、 材料收缩 、 制造误差等因素都可以 引起内力,即在无荷载下产生自内力。 引起内力,即在无荷载下产生自内力。 (b) 由上述因素引起的自内力,一般与各 由上述因素引起的自内力, 杆刚度的绝对值成正比。 杆刚度的绝对值成正比 。 不应盲目增大 结构截面尺寸, 以期提高结构抵抗能力。 结构截面尺寸 , 以期提高结构抵抗能力 。 (c) 预应力结构是主动利用自内力调节超 静定结构内力的典型范例。 静定结构内力的典型范例。
(续)
(d) 构造变换特性 构造变换特性。结构任一几何不变部 分在保持连接方式与不变性条件下,用 另一构造方式的几何不变体代替时,其 它部分受力不变。 (e) 主次结构传力特性。主次结构当仅基 主次结构传力特性 本部分承受荷载时,附属部分不受力; 当荷载作用于附属部分上时,不仅附属 部分受力,基本部分也受力一性):
全部反力和内力均可由静力平衡条件 惟一确定,且数值有限。
② 几何特性 几何特性:
体系几何不变,且无多余联系(约 束)。
其它特性: ③ 其它特性
(a) 仅荷载引起内力 仅荷载引起内力。支座移动、温度改 变、制造误差等因素只使结构产生位移, 不产生内力、反力。 (b) 局部平衡原理 局部平衡原理。结构局部能平衡荷载 时,仅此部分受力,其它部分没有内力。 (c) 荷载等效变换特性。结构任一几何不 荷载等效变换特性 变部分上荷载作静力等效变换时,仅使 变换部分范围内的内力发生变化。
超静定结构特性
① 多余约束的存在及其影响
(a) 内力状态单由平衡条件不能唯一确定, 内力状态单由平衡条件不能唯一确定, 必须同时考虑变形条件。 必须同时考虑变形条件。 (b) 具有较强的防护能力,抵抗突然破坏 具有较强的防护能力,抵抗突然破坏。 (c) 内力分布范围广,分布较静定结构均 内力分布范围广, 内力峰值也小。 匀,内力峰值也小。 (d) 结构刚度和稳定性都有所提高 。
(续)
② 各杆刚度改变对内力的影响
(a) 荷载作用下内力分布与各杆刚度比值 有关,与其绝对值无关。 有关,与其绝对值无关。 (b) 计算内力时,允许采用相对刚度。 计算内力时,允许采用相对刚度。 (c) 设计结构断面时,需要经过一个试算 设计结构断面时, 过程。 过程。 (d) 可通过改变杆件刚度达到调整内力状 态目的。 态目的。