大数据分析关键技术概述(PPT 38张)
大数据分析PPT(共 73张)

' LOGO '
COMPANY LOGOTYPE INSERT
Value 价值
• 挖掘大数据的价值类似沙里淘金,从海量数据中挖掘稀疏但珍贵的信息. • 价值密度低,是大数据的一个典型特征.
' LOGO '
COMPANY LOGOTYPE INSERT
• 2010年海地地震,海地人散落在全国各地,援助人员为 弄清该去哪里援助手忙脚乱。传统上,他们只能通过飞往 灾区上空来查找需要援助的人群。
数据量增加
数据结构日趋复杂
大量新数据源的出现则导致了非结构化、 半结构化数据爆发式的增长
根据IDC 监测,人类产生的数据量正在呈指数级 增长,大约每两年翻一番,这个速度在2020 年之 前会继续保持下去。这意味着人类在最近两年产生 的数据量相当于之前产生的全部数据量。
TB
PB
EB
ZB
' LOGO '
• 一些研究人员采取了一种不同的做法:他们开始跟踪
海地人所持手机内部的SIM卡,由此判断出手机持有人所
处的位置和行动方向。正如一份联合国(UN)报告所述,此
举帮助他们“准确地分析出了逾60万名海地人逃离太子港
之后的目的地。”后来,当海地爆发霍乱疫情时,同一批
研究人员再次通过追踪SIM卡把药品投放到正确的地点,
这些消息足够一个人昼夜不息的浏览16 年…
每天亚马逊上将产生 6.3 百万笔订单…
每个月网民在Facebook 上要花费7 千亿分钟,被移动互联
网使用者发送和接收的数据高达1.3EB…
Google 上每天需要处理24PB 的数据…
' LOGO '
COMPANY LOGOTYPE INSERT
大数据技术及应用简介PPT课件

随机样本划分的数据块分布
42
大数据逼近式集成学习计算框架
子集Ɗ 子集Ɗ 子集Ɗ
大数据 Ɗ
子集Ɗ
子集Ɗ 子集Ɗ 子集Ɗ
子集Ɗ
计算操作
大数据划分 子集抽样
子集Ɗ
子模型
返回计算新 一批子模型
子集Ɗ
子模型
集成模型Π
子集Ɗ
子模型
子集Ɗ
子模型
子模型计算
子模型加入 Π + {πj´}
集成模型测试 输出模型Π
区域智能数据中心
支持多种终端访问
区域智能数据中心
46
大数据分析平台集群
47
支撑海量数据处理 、
挖掘与分析运算
云计算引擎
Open API
提供数据挖掘平台 与第三方应用系统
的扩展接口
关键技术
数据处理分析流程图形 化
设计数据处理分析流程 自动执行资源调度及优
化 工作流引擎
大数据分析平台
提供海量复杂数据 处理、分析与挖掘
14
• 人工采集
数据采集 • 自动化采集
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
15
中央磁盘存储
数据存储
云存储
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
16
数据处理、转换和融合
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
17
关联分析
数据分析与挖掘
分类模型
聚类分析
数据 采集
数据 存储
数据 处理
基础性战略资源,全面实施促进大数据发展行动,加快推动 数据资源共享开放和开发应用。建设国家大数据平台、数据 中心等基础设施。
大数据分析PPT(共73张)

2024/1/26
22
未来发展趋势预测
人工智能与大数据融合
人工智能技术将进一步提高大数据处 理和分析的效率和准确性。
数据驱动决策
大数据将更广泛地应用于企业决策、 政府治理等领域,提高决策的科学性 和有效性。
2024/1/26
跨界融合与创新
大数据将与云计算、物联网、区块链 等技术相结合,推动跨界融合和创新 发展。
模型评估与优化
通过交叉验证、网格 搜索等方法对模型进 行评估与优化,提高 模型预测性能。
成果展示
实现用户行为预测模 型,为电商平台提供 个性化推荐服务,提 高用户满意度和购买 转化率。
2024/1/26
26
项目经验教训总结
数据质量至关重要
在项目实施过程中,发现原始数据存在大量噪声 和缺失值,对数据清洗和预处理工作提出了更高 要求。为了保证分析结果的准确性,需要投入更 多时间和精力进行数据清洗和预处理。
模型评估不可忽视
在构建模型后,需要对模型进行评估和优化,以 确保模型在实际应用中的性能表现。采用合适的 评估指标和方法对模型进行全面评估是非常重要 的。
2024/1/26
特征工程影响模型性能
在特征工程阶段,需要仔细考虑哪些特征与用户 行为相关,并选择合适的特征提取方法。不同的 特征选择和处理方式会对模型性能产生较大影响 。
大数据分析PPT(共73张)
2024/1/26
1
目录
• 大数据分析概述 • 大数据技术基础 • 大数据分析方法与工具 • 大数据在各行业应用案例 • 大数据挑战与未来趋势 • 大数据分析实践项目分享
2024/1/26
2
01
大数据分析概述
2024/1/26
大数据介绍PPT课件

数据清洗与转换
缺失值处理
对缺失数据进行填充、插值或删除等操作。
数据转换
将数据转换为适合分析的格式,如数值型、 类别型等。
异常值处理
识别并处理数据中的异常值,如离群点、噪 声等。
数据规约
降低数据维度,减少数据冗余和复杂性。
数据集成与融合
01
数据集成
将来自不同数据源的数据进行整合, 形成一个统一的数据视图。
副本机制
为确保数据可靠性和可用性,对每个数据分片创建多个副本,并将 它们存储在集群的不同节点上。
一致性协议
通过分布式一致性协议(如Paxos、Raft等)确保数据在多个副本之 间保持一致性。
数据备份与恢复策略
定期备份
制定定期备份计划,将数据备份到远程存储或云 存储中,以防止数据丢失。
增量备份
仅备份自上次完整备份以来发生更改的数据,以 减少备份时间和存储空间。
数据去重
识别并删除重复的数据记录,确保 数据的唯一性。
03
02
数据融合
对多个数据源的数据进行融合,提 取出更全面、准确的信息。
数据校验
对数据进行校验,确保数据的准确 性和一致性。
04
04 大数据存储与管 理
分布式存储原理
数据分片
将大数据集分割成小块,分别存储在多个节点上,以实现数据的分 布式存储。
大数据可视化
处理大规模数据集的可视化技术,如分布式可视化、并行可视化等。
06 大数据挑战与未 来趋势
数据质量与可信度问题
数据来源多样性
大数据来自各种渠道和源头,数 据质量参差不齐,可能存在不准 确、不完整或误导性的数据。
数据清洗与预处理
为确保数据质量,需要进行数据 清洗、去重、异常值处理等预处 理步骤,增加数据处理复杂性和 成本。
(完整版)大数据介绍ppt

➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
2020/4/14
6
大数据的4V特性
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
数据挖掘基本方法
➢预测建模:将已有数据和模型用于对未 知变量的语言。(1)分类,用于预测离 散的目标变量(2)回归,用于预测连续 的目标变量
➢关联分析:反映一个事物与其他事物之 间的相互依存性和关联性。用来发现描述 数据中强关联特征的模式。
➢聚类分析:发现紧密相关的观测值组群, 使得与属于不同簇的观测值相比,属于同 一簇的观测值相互之间尽可能类似
-分布式文件系统(HDFS) -分布式数据库存储系统(Hbase) -分布式计算构架(MapReduce) ➢使用Java编写 ➢运行平台:Linux
HDFS 分布式文件系统
HDFS: - 分布式文件存储系统,存储海量的数 据;
- 数据冗余,硬件容错; - 流式的数据访问; - 存储大文件;
- 适合数据批量读写,吞吐量高;适 一次写入,多次读取,顺序读写。 - 不适合交互式应用,低延迟很难 满足不支持多用户并发写相同文件。
大数据分析课件

大数据分析课件一、引言随着互联网、物联网、云计算等技术的飞速发展,数据已经成为当今社会的一种重要资源。
大数据分析作为一种新兴的数据处理方法,通过对海量数据的挖掘、分析和利用,为各行各业提供决策依据,成为推动社会进步的重要力量。
本课件旨在介绍大数据分析的基本概念、技术体系、应用场景及发展趋势,帮助读者了解大数据分析的核心内容,为实际应用提供理论支持。
二、大数据分析基本概念1.大数据(1)数据量巨大:大数据涉及的数据量通常达到PB (Petate)级别,甚至更高。
(2)数据类型多样:大数据包括结构化数据、半结构化数据和非结构化数据等多种类型。
(3)数据速度快:大数据的产生速度极快,如社交网络、物联网等实时产生的数据。
2.大数据分析(1)数据采集:从各种数据源获取原始数据。
(2)数据预处理:对原始数据进行清洗、转换、集成等操作,提高数据质量。
(3)数据存储:将预处理后的数据存储在适当的数据仓库或数据湖中。
(4)数据分析:运用统计、机器学习等方法对数据进行挖掘和分析。
(5)数据可视化:将分析结果以图表、报告等形式展示,便于用户理解和使用。
三、大数据分析技术体系1.分布式计算框架为了应对大数据处理的需求,分布式计算框架应运而生。
常见的分布式计算框架有Hadoop、Spark等。
这些框架可以将大数据分布式存储在多个节点上,实现数据的并行处理,提高数据处理效率。
2.数据挖掘算法数据挖掘算法是大数据分析的核心。
常见的数据挖掘算法包括分类、聚类、关联规则挖掘、时间序列分析等。
这些算法可以帮助我们从海量数据中提取有价值的信息和知识。
3.机器学习技术机器学习是一种让计算机自动从数据中学习规律的方法。
在大数据分析中,机器学习技术可以帮助我们构建预测模型,实现对未知数据的预测和分类。
常见的机器学习算法有决策树、支持向量机、神经网络等。
4.数据可视化技术数据可视化技术可以将复杂的数据以图形、图像等形式展示,便于用户理解和分析。
大数据处理技术简介(PPT 37张)
本与网民增长等速或超过网民的增速,网络国际出口带宽达到1,182,261.45Mb
学习 · 创造
国内外相关研究
实时计算(数据驱动) VS. 批处理计算(任务驱动)
数据流计算的典型模式之一是不确定数据速率的数据流流入系统,系统处 能力必须与数据流量大小相匹配。 Hadoop(MapReduce)框架为批处理做了高度优化,数据存储在分布式文 系统中,系统典型地通过调度批量任务来操作分布式文件系统静态数据。
数据源 任务1
任务2.1
计算单元3 任务2.1
计算单元2 任务2 任务3.1 任务2.2
任务3.2 基于文件/消息传输的 分布式并行计算
应用 普通集群 云计算 数据流 实时云计算
计算模型与通信机制 基于消息传递的分布式模型 基于文件传输的并行计算模型 基于消息(封装文件)传输的 并行计算
数据规模 TB级/百台 PB级/千台 PB级/千台
3、海量异构的数据(包括文本、图像、声音等)。
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)
3
学习 · 创造
大数据处理技术的应用
近年来,一种新的数据密集型应用已经得到了广泛的认同,这些应用
括:网络监控、电信数据管理、Web应用、传感检测等等。在这种数据流
据以大量、快速、时变(可能是不可预知)的数据流持续到达,如何对海 动数据建模并处理,产生了一些新的基础性研究问题。
计算模型 MPI
MapReduc
Online MapReduc
11
学习 · 创造
实时计算系统的改造
• • • • •ຫໍສະໝຸດ • • • • • • •
第一类方法,Hadoop改造: [1] Yingyi Bu等在Hadoop MapReduce工作的基础上设计了HaLoop,主要克服了Hadoo 迭代计算时需要设置收敛条件以及每次迭代均需要重新加载数据的缺点; [2] 伯克利大学的Tyson Condie等对Hadoop进行改进,设计了Hadoop Online Prototype 系统,支持连续查询、事件监测以及流处理等功能; [3] Facebook在SIGMOD’ 2011上发表了利用Hbase/Hadoop进行实时处理数据的论文,通 些实时性改造,力图使hadoop批处理计算平台也具备实时计算的能力。 [4] Google在新一代内容索引系统中放弃了MapReduce,替代者是尚不为人知的分布式数据 系统Percolator,Percolator是一种增量处理平台,它能持续更新索引系统,无需从头重新处 遍整个系统。 [5] Wang Lam等开发了类似于Map-reduce框架、专注于快速处理数据的Muppet; 第二类方法,实时云计算系统: [6] MIT等三所高校的研究人员联合研发了第二代分布式流处理系统Borealis; [7] Sheheryar Malik设计了具有良好错误容忍机制的实时云计算系统;Harmeek Singh BFacebook Puma,Twitter Storm,Yahoo! S4 [9] 2011年组织了以实时云计算和虚拟化为主题的国际讨论组会RTSOAA(Real-Time Cloud Computing and Virtualization)。 [10] 2011年度的Hadoop China大会一个热点议题就是数据流计算,在MapReduce计算模型 全球之后,Stream Processing将会是下一个研究热点,无论是在工业界还是学术界。
大数据分析关键技术概述.ppt
Storage
Distribute File System
Column Database
流式计算
实时性:高
流式计算
流数据的实时计算注重对流数据的快速高效处理、计算和分析。其特点是计算过程数据不落地,所有 数据在内存中完成。其计算模型是根据规则生成容器,当数据流经过容器时,实时产生分析结果。
Output Adapter
Column Database
批量处理
实时性:低
批量处理 MapReduce是一种编程模型,用于大规模数据集的并行批量计算。概念Map和Reduce当前的主流
实现是指定一个Map函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce函数,用来保 证所有映射的键值对中的每一个共享相同的键组。
Context包括
• 实例A2异常
• 最终接收事件号
事件输入
• 实例A4新增
• 状态对象
事件路由
接入层
关键步骤1 • 从A1或A3中选择一个实例,如A3
实例 A 1
Context
实例 A 2
异常
实例 A 3
Context
实例 A 4
新增
Context
分析引擎
C 实例1
C 实例2
C 实例3
D 实例4
事件去重
事件分析平台
规则模板 开发IDE
事件元 数据
类SQL规 则语言
Action 元数据
Web规则 模板管理
Web规则 实例配置 与热部署
面向数据 流
基于内存
冷热数据 分离与恢
复
内存状态 数据迁移
集群规模 水平伸缩
事件动态 路由
自动化、图形化运维
ppt大数据
分布式计算技术
MapReduce编程模型
01
一种用于大规模数据处理的编程模型,将问题拆分为若干个可
以在集群中并行执行的小任务。
Spark计算框架
02
一种基于内存计算的分布式计算框架,提供比MapReduce更快
的计算速度和更丰富的功能。
Flink流处理框架
03
一种用于实时数据流处理的分布式计算框架,支持高吞吐、低
法规与合规性要求
随着数据安全和隐私问题的日益突出,相关法规和合规性要求也在 不断完善,对企业提出了更高的合规要求。
数据质量与可信度问题
数据质量问题
大数据中包含了大量不准确、不完整、不一 致的数据,对数据分析和决策造成了干扰。
数据可信度评估
由于缺乏统一的数据质量标准,如何评估数据的可 信度成为大数据应用的重要问题。
通过边缘计算,可以减少大量数据的网络传输, 降低网络带宽和延迟对大数据处理的影响。
3
提高数据处理效率
边缘计算可以充分利用终端设备的计算能力,提 高大数据处理的效率和响应速度。
大数据推动数字化转型
业务模式创新
大数据可以为企业提供 更深入的市场洞察和用 户行为分析,帮助企业 进行业务模式的创新。
运营效率提升
大数据的发展历程
萌芽期
20世纪90年代至2008年,大数据概 念开始萌芽,一些企业开始尝试利用 数据进行业务分析。
发展期
成熟期
2013年至今,大数据技术和应用逐渐 成熟,成为企业和政府决策的重要依 据。同时,大数据产业也形成了较为 完整的产业链和生态系统。
2009年至2012年,大数据逐渐受到 关注,相关技术和应用开始快速发展 。
延迟的数据流处理。
大数据分析ppt课件完整版
数据质量与可信度问题
数据质量问题
大数据中包含了大量不准确、不完整或格式不统一的 数据,如何保证数据质量是数据分析的关键。
数据可信度挑战
虚假数据、误导性信息等可能影响数据分析结果的准 确性,如何提高数据可信度是重要议题。
数据治理与标准化
通过建立数据治理机制和标准化流程,提高数据质量 和可信度,保证数据分析结果的准确性。
数据仓库
构建数据仓库,实现数据的整合、管理和优化,提供统一的数据视图。
数据湖
利用数据湖技术,实现多源异构数据的集中存储和管理。
数据安全与隐私保护
制定数据安全策略,采用加密、脱敏等技术手段保护数据安全与隐私。
数据分析与挖掘
描述性分析
运用统计学方法对数据进行描述性分析,如数据 分布、集中趋势、离散程度等。
NoSQL数据库
如HBase、Cassandra等 ,适用于非结构化数据存 储和大规模数据处理。
云存储服务
如AWS S3、阿里云OSS 等,提供高可用、高扩展 性的在线存储服务。
数据挖掘算法
分类算法
如决策树、随机森林等,用于预测离 散型目标变量。
聚类算法
如K-means、DBSCAN等,用于发 现数据中的群组结构。
诊断性分析
通过数据挖掘技术,如关联规则挖掘、聚类分析 等,发现数据中的异常和模式。
ABCD
预测性分析
运用回归分析、时间序列分析等方法对数据进行 预测性分析,揭示数据间的潜在关系。
处方性分析
基于诊断结果,提供针对性的解决方案和优化建 议。
数据可视化呈现
数据可视化工具
运用Tableau、Power BI等数据可视化工具 ,将数据以图表、图像等形式呈现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代码实 现
用C++实现,做了很多有针对性的硬件优化。对外提供多语言API、多种访问协议。
• • • •
概述 即席查询 批量处理 流式计算
然后由QueryCompiler来对用户提交
的HiveSQL进行编译/检查/优化并最终 生成MapReduce任务。 • ExecutionEngine会与Hadoop进行交 互,将 MapReduce任务交给Hadoop 来执行,并从Hadoop取得最终的执行 结果,并返回给用户。
Job Tracker
大数据分析关键 技术
• • • •
概述 即席查询 批量处理 流式计算
大数据计算分析模式分类
数据承载
响应时间
适用场景
即席查询 Ad-Hoc Query
磁盘
秒级 (准实时)
自然人交互式 经营分析
批量处理 Batch Processing Map/Reduce
磁盘
分钟级至小时级 (准实时)
事前/事后 大批量数据处理
Batch Processing
Ad-Hoc Query
SQL Syntax Parallel Compute Framework Meta Data
SQL Syntax+ Compute Frament Storage Distribute File System Column Database
Batch Processing
Ad-Hoc Query
SQL Syntax Parallel Compute Framework Meta Data
SQL Syntax+ Compute Framework
Resource Management Storage Distribute File System Column Database
流式计算 Stream Computing
内存 (事件窗口 非全量数据)
秒级 (实时)
实时事件分析 实时风险干预
针对不同的业务领域,需要采用不同的数据计算分析方式,快速发现数据价值。
即席查询
即席查询 户自定义查询条件。
实时性:高
即席查询(Ad Hoc)是用户根据自己的需求,灵活的选择查询条件,系统能够根据用户的选择生成 相应的统计报表。即席查询与普通应用查询最大的不同是普通的应用查询是定制开发的,而即席查询是用
HDFS DN HBase
Impalad
Query Planner Query Coordinator Query Exec Engine Data
HDFS DN HBase
Impalad
Query Planner Query Coordinator Query Exec Engine Data
HDFS DN HBase
批量处理
批量处理 证所有映射的键值对中的每一个共享相同的键组。
实时性:低
MapReduce是一种编程模型,用于大规模数据集的并行批量计算。概念Map和Reduce当前的主流 实现是指定一个Map函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce函数,用来保 形成这种模型的原因是:数据的分布式存储、计算资源的分布式、并行计算减少计算时长。
流式计算
流式计算
实时性:高
流数据的实时计算注重对流数据的快速高效处理、计算和分析。其特点是计算过程数据不落地,所有 数据在内存中完成。其计算模型是根据规则生成容器,当数据流经过容器时,实时产生分析结果。
NoSQL
Input Adapter
Output Adapter
Engine Cluster
Cluster Management
Hadoop
Impala相对于Hive的优势
中间结 果 作业调 度 作业分 发 数据访 问 Impala不需要把中间结果写入磁盘,省掉了大量的I/O开销。
省掉了MapReduce作业启动的开销。MapReduce启动task的速度很慢(默认每个心跳间 隔是3秒钟),Impala直接通过相应的服务进程来进行作业调度,速度快了很多。 Impala借鉴了MPP并行数据库的思想,可以做更多的查询优化,从而省掉不必要的 shuffle、sort等开销。 使用了支持Data locality的I/O调度机制,尽可能地将数据和计算分配在同一台机器上进行, 减少了网络开销。
Name Node
Data
HDFS DN Task Tracker
解析 HiveSQL 之后生成所 MapReduce 任务,在运行中访问元数据信息时,将直接 读取生成的物理计划时产生的 plan.xml ,此 文件会被放入 Hadoop 的分布式缓存中,, MapReduce任务可以从分布式缓存中获得相 应的元数据。
Rule Repository
• • • •
概述 即席查询 批量处理 流式计算
Impala架构
SQL JDBC
Common HiveQL & Interface
Hive MetaStore
HDFS NN
MetaData
State Store
Impalad
Query Planner Query Coordinator Query Exec Engine Data
Impala Node
Impala Node
Impala Node
Local Direct Reads
Thrift
Hive架构
SQL JDBC WUI
• ThriftServer:JDBC通过ThriftServer 连接到Hive。ThriftServer连接 MetaStore来读取hive的元数据信息。 • MetaStore:在关系型数据库中存放表 /分区/列元数据,可以低延迟的快速的 访问到需要的元数据信息。 • Driver/QueryCompiler/ExecutionEn gine:客户端提交的HiveSQL首先进入 Driver,然后Driver会为此次HiveSQL
Thrift Server
Meta Store
的执行创建一个Session,Driver维护 整个session的生命周期。Driver首先 将HiveSQL传送给QueryCompiler,
Driver (Compiler, Optimizer, Executor) Hive (Over Hadoop 0.20.X)