电路原理(邱关源)习题答案第二章 电阻电路的等效变换练习

合集下载

第2章电阻电路的等效变换习题及答案解析

第2章电阻电路的等效变换习题及答案解析

第2章 习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。

2Ω3Ω(a)(b)题2-1图解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。

ab8Ωab8Ω(a)(b)题2-2图解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ωab(a) (b)题2-3图解:(a )开关打开时(84)//43ab R =+=Ω开关闭合时4//42ab R ==Ω(b )开关打开时(612)//(612)9ab R =++=Ω开关闭合时6//126//128ab R =+=Ω2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。

6Ω6Ω(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为1I 21/(16//123//621/(142)3A =++++=)=从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以 312I I -I =1A =(b )从下往上流过6V 电压源的电流为 66I 4A 1.5===(1+2)//(1+2)从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。

2Ω(a)(b)题2-5图解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥1a所以 111//11332ab R =++=Ω()()(b )将图中的两个Y 形变成△形,如图所示2Ωab即得4021Ωab所以 1.269ab R =Ω2-6计算题2-6图所示电路中a b 、两点间的等效电阻。

《电路》邱关源第五版课后习题解答

《电路》邱关源第五版课后习题解答

电路习题解答第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。

【题2】:D 。

【题3】:300;-100。

【题4】:D 。

【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。

【题6】:3;-5;-8。

【题7】:D 。

【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。

【题9】:C 。

【题10】:3;-3。

【题11】:-5;-13。

【题12】:4(吸收);25。

【题13】:0.4。

【题14】:3123I +⨯=;I =13A 。

【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。

【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。

【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得 U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。

【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴ KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。

⑵ KCL :43211-=-I I ;I 18=-A ;U S =-24V 。

第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5A;U Ia b.=+=9485V;IU162125=-=a b.A;P=⨯6125.W=7.5W;吸收功率7.5W。

(邱关源第五版)习题答案上

(邱关源第五版)习题答案上

题 !!! 图
(当流过元件的电流的参考方向 # 解!’ 从该元件的标示电压正极性的一端指向 ! 即电流的参 考 方 向 与 元 件 两 端 电 压 降 落 的 方 向 一 致 # 称电压 负极性的一端 # 和 电流的参考方向关联 # 所以 ’ 图中"" ’ 图中"" ( ( + #的参考方向是关联的 * , # 的参考方向是非关联的 ! ’ (当取元件的"" 定义 $ % " # #参考方向为关联参考方向时 # # 为元件吸收的功 当取元件的"" 定义 $ %" 所以 率* #参考方向为非关联时 # # 为元件发出的功率 ! ’ 图中的" ’ (图中的" ( # 表示元件吸收的功率 * # 表示元件发出的功率 ! + , (在电压 " # ’ 电流参考方向关联的条件下 # 代入"" 经计算 # 若$ %" $ #数值 # #&# 表示元件实际吸收了功率 * 若$ ’表示元件吸收负功率 # 实际是发出功率 ! ’ ( # # # 图中 # 若"&则$ %" 表示元件吸收了负功率 # 实际发出功率 ! + #’#’在电压 " 电流参考方向非关联的条件下 # 代 入 "# 经 计 算# 若 $ %" #& #数 值# 为正值 # 表示 元 件 实 际 是 发 出 功 率 * 若 $ ’ -# 为 负 值# 表示元件发出负功 -# ( 率# 实际是吸收功率 ! 所以 ’ 图中 # 当" & -# 则 $ %" 表示元件 , #& -# # & -# 实际发出功率 ! 而" % ! ’ ( . / 0 1 ! & *# # %!!# ! 若某元件端子上的电压和电流取关联参考方向 # ! 求$ ’ ( 1 2 3 ! & 4! %. ! (该元件吸收功率的最大值 * ’ ! ’ (该元件发出功率的最大值 ! # (% "’ ( ’ ( 解 ! !!!!!!!!!$’ & & # & ’ ( ’ ( & & . / 0 1 ! 1 2 3 ! ! ! %! ’. ’ (6 5 & 1 2 3 # & ! %& ’ ( 当 ’ ( 时 # ’ ( # 元件实际吸收功率 * 当1 ’ ( ! 1 2 3# & &- $ & &2 3 # & ! ! %!时 # 元件吸收最大功率 $ &" &

《电路》邱关源第五版课后习题答案

《电路》邱关源第五版课后习题答案

《电路》邱关源 第五版课后题答案第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。

【题2】:D 。

【题3】:300;-100。

【题4】:D 。

【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。

【题6】:3;-5;-8。

【题7】:D 。

【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。

【题9】:C 。

【题10】:3;-3。

【题11】:-5;-13。

【题12】:4(吸收);25。

【题13】:0.4。

【题14】:3123I +⨯=;I =13A 。

【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。

【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。

【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得 U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。

【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴ KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。

⑵ KCL :43211-=-I I ;I 18=-A ;U S =-24V 。

第二章 电阻电路的等效变换【题1】:[解答]I =-+9473A =0.5 A ;U I a b .=+=9485V ; I U 162125=-=a b .A ;P =⨯6125. W =7.5 W;吸收功率7.5W 。

电路原理习题答案第二章 电阻电路的等效变换练习

电路原理习题答案第二章 电阻电路的等效变换练习

第二章 电阻电路的等效变换“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。

所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。

由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。

等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。

等效变换的目的是简化电路,方便地求出需要求的结果。

深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。

2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。

若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。

试求以上3种情况下电压2u 和电流23,i i 。

解:(1)2R 和3R 为并联,其等效电阻842R k ==Ω,则总电流 mA R R u i s 3504210011=+=+=分流有 mA i i i 333.86502132==== V i R u 667.666508222=⨯==(2)当∞=3R ,有03=imA R R u i s 1082100212=+=+=V i R u 80108222=⨯==(3)03=R ,有0,022==u imA R u i s 50210013===2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。

求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。

因此有 32332R R i R i += 32322R R i R R u s+=(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。

第2章电阻电路的等效变换习题及答案

第2章电阻电路的等效变换习题及答案

第2章习题与解答2-1试求题2-1图所示各电路血端的等效电阻心,。

解:(a)心,=1 + 4//(2 + 6//3) = 30(b)心=4//(6//3 + 6//3) = 2C 2 —2试求题2-2图所示各电路弘〃两点间的等效电阻IQ 5G_| ------ [ ----- 1.5Q 4G(a)(b)题2—2图解:(a) 心=3 + [(8 + 4)//6 + (l + 5)]//10 = 8G(b) R ah =[(4//4 + 8)//10 + 4]//9 + 4 + l ・5 = 10C2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻尺血oIQ 4Q3G(b)(a)题2—3图 解:(a)开关打开时心=(8 + 4)//4 = 3。

开关闭合时^,=4/74 = 20(b)开关打开时 R ah =(6 + 12)/7(6+12) = 90开关闭合时心=6//12 + 6//12 = 8。

2—4试求题2—4图(a)所示电路的电流/及题2—4图(b)所示电路的电压U 。

解:(a)从左往右流过1G 电阻的电流为I] =21/(1 + 6//12 + 3//6)二21/(l+4 + 2) = 3A 从上往下流过3 O 电阻的电流为I.= —x3 = 2A3 + 6 从上往下流过120电阻的电流为I p =—^-x3 = lA12 + 6 所以1 =【3叫2 = 1 A⑹从下往上流过6V 电压源的电流为"击莎1Q + O1V3Q 6Q(a)12Q6Q题2—4图从上往下流过两条并联支路的电流分别为2A所以U = 2x2-lx2=2V2 — 5试求题2 — 5图所示各电路ab端的等效电阻R ah,其中/?] = = 1。

2Q题2-5图解:(a)如图,对原电路做厶-丫变换后,得一平衡电桥所以心,=(*+*)//(1 + 1)= *°(b)将图中的两个Y形变成△形,如图所示2.5Q5Q 白804Q 4QT50T T2Q即得所以陰=L269G2 —6计算题2 —6图所示电路中弘b两点间的等效电阻。

电路原理(邱关源)习题解答第二章课件-电阻电路的等效变换练习

电路原理(邱关源)习题解答第二章课件-电阻电路的等效变换练习

第二章 电阻电路的等效变换“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。

所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。

由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。

等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。

等效变换的目的是简化电路,方便地求出需要求的结果。

深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。

2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。

若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。

试求以上3种情况下电压2u 和电流23,i i 。

解:(1)2R 和3R 为并联,其等效电阻84R k ==Ω,则总电流 mA R R u i s 3504210011=+=+=分流有 mA i i i 333.86502132==== V i R u 667.666508222=⨯==(2)当∞=3R ,有03=imA u i s 10100212===V i R u 80108222=⨯==(3)03=R ,有0,022==u imA R u i s 50210013===2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。

求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。

因此有 32332R R i R i += 32322R R i R R u s+=(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。

《电路原理》第五版,邱关源,罗先觉第五版课件最全包括所有章节及习题解答

《电路原理》第五版,邱关源,罗先觉第五版课件最全包括所有章节及习题解答

i º
R1
º
i1
R2
i2
1 R1 R2i i1 i 1 R1 1 R2 R1 R2
1 R2 R1i i2 i (i i1 ) 1 R1 1 R2 R1 R2
功率
p1=G1u2, p2=G2u2,, pn=Gnu2 p1: p2 : : pn= G1 : G2 : :Gn
=R1i2+R2i2+ +Rni2
=p1+ p2++ pn
表明
电阻串连时,各电阻消耗的功率与电阻大小成正比 等效电阻消耗的功率等于各串连电阻消耗功率的总和
2、电阻并联 (Parallel Connection)
i + 电路特点 u _
R1
i1 R2
i2 Rk
ik Rn
in
各电阻两端分别接在一起,两端为同一电压 (KVL); 总电流等于流过各并联电阻的电流之和 (KCL)。

GΔ Y相邻电导乘积 GY
Y变
特例:若三个电阻相等(对称),则有
R12 R1 外大内小 R2 R23 R31 R3
R = 3RY
注意
等效对外部(端钮以外)有效,对内不成立。 等效电路与外部电路无关。 用于简化电路

桥 T 电路 1k 1k 1k 1k R
1/3k
1/3k 1/3k
– 3
2 +
u23Y
接: 用电压表示电流 i1 =u12 /R12 – u31 /R31 i2 =u23 /R23 – u12 /R12 i3 =u31 /R31 – u23 /R23 (1)
Y接: 用电流表示电压 u12Y=R1i1Y–R2i2Y u23Y=R2i2Y – R3i3Y u31Y=R3i3Y – R1i1Y i1Y+i2Y+i3Y = 0 (2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 电阻电路的等效变换“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。

所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。

由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。

等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。

等效变换的目的是简化电路,方便地求出需要求的结果。

深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。

2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。

若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。

试求以上3种情况下电压2u 和电流23,i i 。

解:(1)2R 和3R 为并联,其等效电阻842R k ==Ω,则总电流 mA R R u i s 3504210011=+=+=分流有mA i i i 333.86502132====… V i R u 667.666508222=⨯==(2)当∞=3R ,有03=imA R R u i s 1082100212=+=+=V i R u 80108222=⨯==(3)03=R ,有0,022==u imA R u i s 50210013===2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。

求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响影响如何解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。

因此有 32332R R i R i += 32322R R i R R u s+=!(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。

因此当1R 增大,对432,,R R R 及s u 的电流和端电压都没有影响。

但1R 增大,1R 上的电压增大,将影响电流源两端的电压,因为s s si u u i R u -+=21显然s i u 随1R 的增大而增大。

注:任意电路元件与理想电流源s i 串联,均可将其等效为理想电压源s i ,如本题中题解图(a )和(b )。

但应该注意等效是对外部电路的等效。

图(a )和图(b )中电流源两端的电压就不等于原电路中电流源两端的电压is u 。

同时,任意电路元件与理想电压源s u 并联,均可将其等效为理想电压源s u ,如本题中对而言,其余部分可以等效为s u ,如题图(c )所示。

但等效是对外部电路(如4R )的等效,而图(c )中s u 上的电流则不等于原电路中s u 中的电流。

2-3电路如图所示。

(1)求s o u u ;(2)当)(//212121R R R R R R R L +=>>时,s ou u 可近似为212R R R +,此时引起的相对误差为00212100⨯+-s os o u u R R R u u?当L R 为)//(21R R 的100倍、10倍时,分别计算此相对误差。

解:(1)L L R R R R R +⨯=22 R R u i s +=1 R R R u Ri u s o +==1 所以 LL L s o R R R R R R R R R R R u u 212121++=+= (2)设2121R R R R K R L +=,带入上述s o u u 式子中,可得2122121212121212)1()(R R R K K R R R R K R R R R R R R R K R u u s o +⨯+=+⨯+++⨯=相对误差为000000212212212002121001100111 10011100)(⨯-=⨯+-+=⨯+++-++=⨯+-=KK K K K R R R K KR R R R R R K K u u R R R u u s o s o η当100=K 时001-=η10=K 时 0010-=η】2-4 求图示电路的等效电阻ab R ,其中Ω=Ω==Ω==4,2,154321R R R R R ,Ω===2,121R S G G 。

解:(a)图中4R 被短路,原电路等效为图(a1)所示。

应用电阻的串并联,有[][]Ω=+=+=4.442//1//1////5321R R R R R ab(b)图中1G 和2G 所在支路的电阻 Ω=+=21121G G R所以 [][]Ω=+=+=322//2//34R R R R ab(c)图可以改画为图(c1)所示,这是一个电桥电路,由于4321,R R R R ==处于电桥平衡,故开关闭合与打开时的等效电阻相等。

《Ω=++=++=5.1)21//()21()//()(4231R R R R R ab(d)图中节点1,1'同电位(电桥平衡),所以11'-间跨接电阻2R 可以拿去(也可以用短路线替代),故Ω=++=++=5.01//)11//()11(//)//()(12121R R R R R R ab(e)图是一个对称的电路。

解法一:由于结点1与1',2与2'等电位,结点3,3,3'''等电位,可以分别把等电位点短接,电路如图(e1)所示,则Ω==+⨯=323)42(2R R R R ab解法二:将电路从中心点断开(因断开点间的连线没有电流)如图(e2)所示。

则 Ω==+=3232)2//2(2R R R R R ab?解法三:此题也可根据网络结构的特点,令各支路电流如图(e3)所示,则左上角的网孔回路方程为1222Ri Ri =故 12i i = 由结点①的KCL 方程1212225.0i i i i i ==+=得 i i i 4112==由此得端口电压 Ri iR i R i R u ab 235.04125.0=⨯+⨯+⨯= 所以 Ω===323R i u R ab ab(f)图中(1,1,2)ΩΩΩ和(2,2,1)ΩΩΩ构成两个Y 形连接,分别将两个Y 形转化成等值的△形连接,如图(f1)和(f2)所示。

,等值△形的电阻分别为Ω='='Ω=⨯++='Ω=⨯++='Ω==Ω=⨯++=Ω=⨯++=4 422121812222 55)12121( 5.2)21111(23212321R R R R R R R R并接两个∆形,最后得图(f3)所示的等效电路,所以[][]2211332//(//)////(//) 2//(5//4) 2.5//8//(5//4)204020 // 1.26919219ab R R R R R R R '''=+=+⎡⎤=+=Ω⎢⎥⎣⎦(g)图是一个对称电路。

解法一:由对称性可知,节点1,1,1'''等电位,节点2,2,2'''等电位,连接等电位点,得图(g1)所示电路。

则 Ω==++=667.165)363(R R R R R ab"解法二:根据电路的结构特点,得各支路电流的分布如图(g2)所示。

由此得端口电压R i R i R i R i u ab ⨯=⨯+⨯+⨯=65316131所以 Ω===667.165R i u R ab ab注:本题入端电阻的计算过程说明,判别电路中电阻的串并联关系是分析混联电路的关键。

一般应掌握以下几点(1)根据电压、电流关系判断。

若流经两电阻的电流是同一电流,则为串联;若两电阻上承受的是同一电压,就是并联。

注意不要被电路中的一些短接线所迷惑,对短接线可以做压缩或伸长处理。

(2)根据电路的结构特点,如对称性、电桥平衡等,找出等电位点,连接或断开等电位点之间的支路,把电路变换成简单的并联形式。

(3)应用Y ,∆结构互换把电路转化成简单的串并联形式,再加以计算分析。

但要明确,Y ,∆形结构互换是多端子结构等效,除正确使用变换公式计算各阻值之外,务必正确连接各对应端子,更应注意不要把本是串并联的问题看做Y, ∆结构进行变换等效,那样会使问题的计算更加复杂化。

(4)当电路结构比较复杂时,可以根据电路的结构特点,设定电路中的支路电流,通过一些网孔回路方程和结点方程确定支路电流分布系数,然后求出断口电压和电流的比值,得出等效电阻。

!2-5 在图(a)电路中,Ω=Ω=Ω===2,6,12,6,2432121R R R V u V u s s 。

图(b)为经电源变换后的等效电路。

(1)求等效电路的s i 和R ;(2)根据等效电路求3R 中电流和消耗功率; (3)分别在图(a),(b)中求出2,1R R 及R 消耗的功率; (4)试问21,s s u u 发出的功率是否等于s i 发出的功率21,R R 消耗的功率是否等于R 消耗的功率为什么解:(1)利用电源的等效变换,图(a)中电阻与电压源的串联可以用电阻与电流源的并联来等效。

等效后的电路如题解2-5图所示,其中 A R u i s s 21224111===A R u i s s 166222===对题解2-5图电路进一步简化得图(b)所示电路,故—A i i i s s s31221=+=+=Ω=+⨯==4612612//21R R R(2)由图(b)可解得三条并联支路的端电压V i R R u s 432424)//(3=⨯+⨯=⨯=所以3R 的电流和消耗的功率分别为W i R P AR u i 8222242233333=⨯=====(3)根据KVL ,图(a)电路中21,R R 两端的电压分别为V u u u Vu u u s s 246204242211=-=-==-=-= 则21,R R 消耗的功率分别为WR u P WR u P 326)2(33.33310012)20(2222221211======[(b)图中R 消耗的功率W R u P 44422===(4)(a)图中21s s u u 和发出的功率分别为 W R u u P s s u 401220241111=⨯=⨯=W R u u P s s u26262222=⨯=⨯=(b)图中s i 发出功率Wi u P s si 1234=⨯=⨯=显然 21s us u si P P P +≠由(3)的解可知21P P P +≠以上结果表明,等效电源发出的功率一般并不等于原电路中所有电源发出的功率之和;等效电阻消耗的功率一般也并不等于原电路中所有电阻消耗的功率之和。

相关文档
最新文档