复杂电磁环境基础知识
空间物理学基础知识点总结

空间物理学基础知识点总结空间物理学是研究地球大气圈、太阳风与地球磁层耦合等自然界中宇宙空间的学科,其研究对象是自然界中最为复杂和重要的现象之一。
空间物理学具有高度的跨学科特性,涉及天体物理、地球物理、气象学、电磁场理论、等离子物理、流体力学等多个学科。
空间物理学的研究内容包括太阳活动、地球磁场、地球电离层、地球磁层、高层大气等自然界中宇宙空间的各种现象。
下面将对空间物理学的基础知识点进行总结。
一、太阳活动太阳是地球的能量源,太阳活动对地球空间环境有着重要的影响。
太阳活动主要包括太阳黑子、日珥、太阳耀斑和太阳风等,这些活动释放出来的能量和粒子对地球的大气层和磁层产生一定影响。
太阳黑子是太阳上的一个黑斑,是太阳光焰活动的一个常见现象。
日珥是太阳上的一个亮斑,是太阳表面上的一种辐射现象。
太阳黑子和日珥是太阳活动的主要表现形式,对地球的磁层和大气层有着直接的影响。
太阳耀斑是太阳上的一种强烈的辐射现象,是太阳活动的一个重要表现形式,太阳耀斑释放出的能量和粒子对地球的磁层和大气层有着直接的影响。
太阳风是太阳的大气层中喷射出的高速等离子体流,太阳风携带的能量和粒子对地球磁层和大气层也有着直接的影响。
二、地球磁场地球磁场是地球内部和外部相互作用的结果,地球磁场是一个由磁力线构成的磁场,地球磁场是地球磁层和地球大气层之间的直接联系。
地球磁场对地球空间环境有着重要的影响,地球磁场的磁力线会与太阳黑子、日珥、太阳耀斑以及太阳风等太阳活动发生相互作用,导致地球磁层和大气层产生一定的变化。
地球磁场的变化会影响地球空间环境的稳定性,地球磁场的强度和方向可能会对地球的大气层和磁层产生一定的影响。
三、地球电离层地球电离层是地球大气层中的一个离子层,地球电离层的组成主要是由大气中的氧、氮等气体分子在太阳光线的作用下产生电离而形成。
地球电离层与太阳活动之间有着密切的联系,太阳黑子、日珥、太阳耀斑和太阳风等太阳活动释放出的能量和粒子对地球电离层产生一定的影响,地球电离层的变化会影响地球的大气层和磁层的稳定性,同时也会对地球空间环境的稳定性产生一定的影响。
EMC基础培训资料

EMC基础培训资料一、什么是 EMCEMC 即电磁兼容性(Electromagnetic Compatibility),指的是设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
简单来说,就是电子设备在运行过程中,既不会受到外部电磁环境的干扰,也不会对外界产生过多的电磁干扰。
电磁兼容性包括两个方面:一方面是设备要有一定的抗干扰能力,能够在复杂的电磁环境中稳定运行;另一方面,设备自身产生的电磁辐射要控制在一定范围内,不能影响其他设备的正常工作。
二、EMC 问题的产生电子设备在工作时,会通过电路中的电流变化产生电磁波。
当多个设备同时工作时,这些电磁波就可能相互干扰。
例如,手机在通话时会发出电磁波,如果附近的电子设备对这种电磁波过于敏感,就可能出现工作异常。
同时,外部的电磁环境,如雷电、电力系统的电磁辐射等,也可能对电子设备造成干扰。
三、EMC 标准与规范为了确保电子设备的电磁兼容性,各国和国际组织都制定了相应的标准和规范。
这些标准规定了电子设备在不同频段内允许产生和承受的电磁干扰水平。
常见的 EMC 标准包括国际电工委员会(IEC)制定的标准,以及各个国家和地区自己制定的标准,如我国的 GB 标准。
企业在生产电子设备时,必须按照相关标准进行设计和测试,以确保产品能够通过 EMC 认证,进入市场销售。
四、EMC 测试项目EMC 测试主要包括两个方面:电磁干扰(EMI)测试和电磁抗扰度(EMS)测试。
电磁干扰测试是测量电子设备向外发射的电磁能量,常见的测试项目有:1、传导干扰测试:检测设备通过电源线、信号线等导体向外传播的干扰。
2、辐射干扰测试:测量设备通过空间向外辐射的电磁波。
电磁抗扰度测试是评估电子设备在受到外部电磁干扰时的工作性能,常见的测试项目有:1、静电放电抗扰度测试:模拟人体静电放电对设备的影响。
2、射频电磁场辐射抗扰度测试:考察设备在射频电磁场中的抗干扰能力。
常用基本电磁定律

垂直穿过某截面积的磁力线总和。单位:Wb
F SΒ dA
对于均匀磁场,若B与S垂直,则 F BA
磁场强度H
计算磁场时引用的物理量(实际也在存在的)。单位:A/m B=μH
μ:导磁材料的磁导率。
注意:B的大小与磁场环境有关,H的大小与磁场内在因素有关.
3
电磁学的基本定律
1.3.2 法拉第电磁感应定律—— 磁生电
14
1.4.2 软磁材料与硬磁材料
1、软磁材料——磁滞回线较窄。 硅钢片、铸铁、铸钢、铁氧体等。 用于制作电器设备的铁心。
2、硬磁材料——磁滞回线较宽。 铷铁硼、铁钴钐。 用于制作永久磁铁。
B H(i)
B H(i)
15
1.4.3 铁心损耗
铁耗
磁滞损耗 :由磁畴相互摩擦发热造成
Ñ ph fV HdB Ch fBmnV
11
二、磁化曲线和磁滞回线
1、起始磁化曲线
Φ i
物体从无磁性开始,磁
场强度H(i)由零逐渐增
加时,磁通密度B将随 B μ= B/H
பைடு நூலகம்
之增加。用B=f (H)描述
c
的曲线就称为起始磁化
b
曲线。
a
O
磁饱和现象
d B=f (H)
导磁性能的 非线性现象
H∝i
12
2、磁滞回线
Φ
磁滞回线——当H在Hm和- Hm i 之间反复变化时,呈现磁滞现
第1章 磁路 本章内容
磁路的基本知识 电磁学基本定律 常用磁性材料及其特性
1
第一节 磁路的基本定律
一、磁场的几个常用物理量
1.磁感应强度(磁密) B
•表征磁场强弱及方向的物理量。单位:特斯拉T(Wb/m2)
2024年跟我一起学EMC第基础知识

规范设备安装和使用
确保设备在安装和使用过程中符合相关 EMC标准,避免不必要的干扰。
系统级解决方案
针对复杂系统,需从系统角度出发,制定全 面的解决方案,如合理规划设备布局、采用 综合屏蔽措施等。
案例分享:成功解决EMC问题经验
案例一
某通信设备辐射超标问题。通过 改进PCB布局、优化电源设计等 措施,成功降低辐射发射强度,
电磁抗扰度(EMS)原理
电磁抗扰度是指电子设备或系统在电磁环境中的抗干扰能力 ,即能够抵御外部电磁干扰,保持正常工作状态的能力。 EMS主要包括静电放电抗扰度、射频电磁场辐射抗扰度、电 快速瞬变脉冲群抗扰度等方面。
相关法规与标准
法规
各国政府和国际组织针对EMC问题制定了一系列法规和标准,以确保电子设备和 系统的电磁兼容性。例如,欧盟的EMC指令、美国的FCC法规等。
跟我一起学EMC第基 础知识
目录
• EMC概述与基本原理 • 电磁干扰(EMI)及其来源 • 电磁敏感度(EMS)及其影响因素 • EMC设计原则与方法 • EMC测试技术与方法 • EMC问题诊断与解决方案
01
EMC概述与基本原理
EMC定义及发展历程
定义
EMC(Electromagnetic Compatibility,电磁兼容性)是指电子设备或系统在电磁环境中的正常工作能力,即 不对其他设备产生电磁干扰,也不受其他设备电磁干扰的能力。
数。
实验室分析
利用专业测试设备对问 题设备进行详细分析, 如频谱分析仪、示波器
等。
问题定位
根据测试结果,分析并 定位问题原因,如辐射
干扰、传导干扰等。
针对性解决方案制定
抑制干扰源
提高设备抗扰度
磁场和磁路知识点总结

磁场和磁路知识点总结一、磁场基础概念1. 磁场的概念磁场是物质周围或者物质内部存在的空间,该空间内每一点都存在着磁力的作用,通常用B表示。
磁场是物质所具有的最基本的物理性质之一。
在物质中,由于电子自身的自转产生了绕轨道上前进的电流,而电流则产生磁场。
这就是原子、分子和物质微观结构形成的原因,说明了磁场的实质。
2. 磁感线磁感线是用来表示磁场的一种图示法,即表现磁场的方向、强度和区域的一种方法。
3. 磁场强度磁场强度,通常由H表示,是磁场介质内任一点单位长度磁体磁化,产生的磁场强度。
二、磁路的概念1. 磁路的概念磁路是由磁路主体和磁路气隙两个组成部分构成的。
它是闭合的,但绕封闭轮廓的电动机是有励磁的,则没有完全闭合磁路。
在不同的电供电压下,发生不同的电磁能量转化,是电机工作的基础。
2. 磁路设计的基本要求磁路设计是指设计电磁设备的磁路结构,又称磁路设计。
磁路设计的基本要求有很多,包括各种要素的选择及组合。
磁路设计应该是可以促进和推动电机效果,使电机保持最高效率的设计。
3. 磁路的分析磁路分析是为了定量计算磁路中各种参数的影响,及时发现磁路中可能存在的问题,进行技术分析和处理。
三、磁场与磁路的关系1. 磁场与磁路之间的联系磁场与磁路是相互联系的,磁场的产生、存在和变化,必然需要磁路作为周围环境。
反之,磁路中磁通的变化也必然会引起周围磁场的变化。
这种联系是磁场和磁路的关系。
2. 磁路与效应磁场与磁路的关系,不仅是在实际电磁设备中产生电机效应,磁路中的参数对于电磁设备的性能起着至关重要的作用。
任意一点的磁场强度、磁感应强度、磁通、磁势等都至关重要,同时又与磁路中各种参数有关。
不同的磁路、磁场产生和变化的结果,最终会在转换和作用电机效果过程中得到充分的体现,所以这点和电磁学颇为类似。
四、磁路的基本参数1. 磁路的导磁系数磁路的导磁系数,是磁路中的物质对磁通的相对通过能力。
磁路中磁通的大小是取决于磁路导磁系数的。
电磁辐射基础知识

电磁的基本概念电磁场(electromagnetic field) 是物质的一种形式。
为了说明电磁的基本概念,现对一些常用名词、术语等做一简略介绍[1]。
一、交流电1.交流电(alternating current)交流电是交替地即周期性地改变流动方向和数值的电流。
如果我们将电源的两个极,即正极与负极迅速而有规律地变换位置,那么电子就会随着这种变换的节奏而改变自己的流动方向。
开始时电子向一个方向流动,以后又改向与开始流动方向相反的方向流动,如此交替地依次重复进行,这种电流就是交流电。
在交流电中,电子在导线内不断地振动,从电子开始向一个方向运动起,然后又回到原点的平行位置时,这一运动过程,称为电流的一次完全振动,发生一次完全振动所需要的时间称为一个周期。
半个振动所需要的时间,称为二分之一周期或半周期。
2.频率(frequency) 频率是电流在导体内每秒钟所振动的次数。
交流电频率的单位为赫(Hz)。
例如我国的民用电频率为50Hz,意思是说民用电这种交流电,在一秒钟内振动50次。
美国等一些国家为60Hz。
二、电场与磁场所有的物体都是由大量的和分立的微小粒子所组成,这些粒子有的带正电,有的带负电,也有的不带电。
所有的粒子都在不断地运动, 并被它们以一定的速度传播的电磁场所包围着, 所以带电粒子及其电磁场,不是别的,而是物质的一种特殊形态。
1.电场(electric field)我们知道,物体相互作用的力一般分为两大类,一类是物体的.直接接触发生的力,叫接触力,例如碰撞力、摩擦力等均属于这一类。
另一类是不需要接触就可以发生的力,称为场力,例如电场力、磁场力、重力等。
电荷的周围存在着一种特殊的物质叫做电场。
两个电荷之间的相互作用并不是电荷之间的直接作用,而是一个电荷的电场对另一个电荷所发生的作用,也就是说在电荷周围的空间里,总是有电场力在作用着。
因此,我们将有电场力作用存在的空间称为电场。
电场是物质的一种特殊形态。
EMC基础知识讲解1

干扰来源:电网或变电设施由于故障或负荷突然出现 大变化(接入大功率电器)。
2、试验范围:① 电压暂降 >95%降低 0.5个周期 30%降低 25个周期 ② 电压短时中断 >95%降低 250个周期
3、试验方法:通过电压跌落信号发生器来模拟实验的 环境,让EUT在电压突然跌落到运行电压的0%、 30%、40%、70%观察EUT的工作情况,来判定 EUT对电压跌落的抗扰度性能如何。
EMC基础
目的
主要是给公司的同事们简单介绍下EMC相关 的知识。
目录
❖ 一、EMC 基础知识 ❖ 二、EMC 常见测试项目简介 ❖ 三、EMC 测试标准及相关组织简介
一、EMC基础知识 1、EMC是什么 我们生活中的电磁环境
EMC( Electromagnetic Compatibility )定义:
❖ EMS-CS(传导抗扰)
1、检验设备对来自射频场耦合到线缆上的干扰 的抵抗能力。
干扰来源:当空间的电磁波的波长和设备线缆的 长度可以比拟时,电磁波将会耦合在此段线缆 上并产生感应电压/电流,沿着该电缆流进设备 内部,从而对设备的正常工作产生干扰,上述 的设备线缆包含电源线和信号线 。
2、测试范围:0.15-80MHz
2、测量范围:30-300M
(日本做灯具的认证时只要求DP和CE,不要求空间辐 射)
2、测量方法:考虑到连接线的天线辐射效应——一般 在半波长处辐射最大,30MHz对应的半波长5m,所 以测试时一般是将被测设备的电源线用同质线缆延长 至5m以上,再考虑到功率吸收钳(及起滤波作用的 辅助吸收钳)的长度大约1m,则总长度大约为6m。
4、测量场地:全电波暗室
❖ EMS-EFT(电快速脉冲群)
《电磁兼容和测试技术》课件2-电磁兼容基础知识

4.电磁骚扰源分类及特性
雷电 NEMP
脉冲电路
无线通信
ESD
直流电机、变频调速器 感性负载通断
4.电磁骚扰源分类及特性
大气干扰
雷电干扰
宇宙干扰
自然 干扰源
热噪声 电气化铁路
无线电广播
电磁 干扰源
无线通信
功能性
人为 干扰源
非功能性
电视 雷达 导航
办公设备
输电线
点火系统
家用电器
工业、 医疗设备
4.电磁骚扰源分类及特性
电磁兼容性控制技术
传输通道抑制 空间分离 时间分隔 频谱管理 电气隔离 其他技术
6 电磁兼容的工程方法
电磁兼容性预测分析
电磁兼容性预测分析是采用计算机数字仿真技术,将各种 电磁干扰特性、传输特性和敏感度特性用数学模型描述,并编制 成程序对潜在的电磁干扰进行计算。
• 数学模型
干扰源模型、传输损耗模型、接受器模型
• 系统法
从电子设备或系统设计开始就进行电磁兼容性设计的方法。它在设备或 系统设计的全过程中贯彻始终,全面综合电磁耦合因素,不断进行电磁兼容 性分析、预测,对各阶段设计进行评估,提出修改措施。
6 电磁兼容的工程方法 EMC措施与费效比
6 电磁兼容的工程方法
为了实现系统内外的电磁兼容,需要技术上和组织上两方面采取措施。
Ea , Ha ;Eb , Hb
S
Va
V
J
a
,
J
m a
Sa
Va
J
b
,
J
m b
Sb
2. 传导耦合的基本原理
传导耦合按其耦合方式可以划分为三种基本方式: ①电路性耦合 ②电容性耦合 ③电感性耦合 实际工程中,这三种耦合方式同时存在、互相联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复杂电磁环境基础知识
一、概念
复杂电磁环境,是在有限的时空里,一定的频段上,多种电磁信号密集、交叠,妨碍信息系统和电子设备正常工作,对武器装备运用和作战行动产生显著影响的战场电磁环境。
二、复杂电磁环境的形成
(一)电磁应用活动是电磁环境形成的基础
电磁应用活动是以电磁波辐射、传播、接收为基础的各类使用电磁波的军用、民用活动,以及科学实验与研究行为。
在电磁应用领域,将电磁波按频率或波长的顺序排列起来就构成了电磁频谱。
无线电波和光波,包括X射线等都是电磁波,只是频率或波长有很大不同。
无线电波主要用于通信,是人类电磁应用活动最早涉足的领域。
1904年日俄战争双方都使用了无线电。
雷达广泛应用于军事、国民经济和科学研究等领域的电子技术设备。
1935年英国设计了世界上第一部实用雷达。
70年代以来,光波通信和激光制导、测距等广泛应用于战场,拓展了战场电磁环境的范畴,尤其是大功率激光的运用,使战场电磁环境向更深层次发展。
(二)电子对抗活动促使战场电磁环境向复杂演变
通信对抗、雷达对抗、光电对抗是电子对抗最基本也是应用最为广泛的三个专业。
通信对抗是采用干扰信号或干扰噪音减弱敌方的通信能力,或施放假信号欺骗迷惑敌人的通信联络。
它的原理如同日常生活中当一个人在不太嘈杂的场合和你说话时,你就能听得见;但是当若个人同时和你说话或者环境噪声很大时,你就很难听清。
雷达对抗主要有以下方式:有源干扰、无源干扰、目标隐身、反辐射摧毁。
光电对抗主要方法有激光干扰、激光毁坏,施放烟幕、水幕,进行光电隐身和施放红外诱饵等等。
战争时期,由于电子对抗手段的大量应用,电磁环境呈复杂多变的状态,各种电子对抗行动,都要通过电磁环境为媒介来实施和达成,必然促使电磁环境更加复杂。
(三)信息化进程进一步加剧战场电磁环境的复杂化
由于信息化在根本上是建立在电磁活动之上的,电磁空间是信息活动的主体空间,电磁活动是信息活动的主体表现形式,当今社会和军队的信息化进程不可避免地加剧了战场电磁环境复杂化。
一方面,电子信息设备大量嵌入武器平台及弹药中,使战场电磁信号出现“爆炸性”的增长。
在无线电用于战场的初期阶段,电台就是电台,雷达就是雷达,都属于单一的作战保障装备。
信息化进程中,雷达、通信以及后来出现的光电探测、制导等技术设备广泛应用于各种武器平台及弹药上,已成为武器装备的主要组成部分。
另一方面,作战平台上各种电子设备密布,造成局部电磁环境交叉、重叠和密集现象。
二战时期,一架飞机、一辆坦克上只装载一部通信电台,军舰上也只装一部通信电台和一部对海搜索雷达。
现在,一艘现代化的军舰上就装有几十部电磁辐射设备,军舰桅杆上天线林立。
这些装备拥挤在狭小的空间范围内,在同一空域内工作,作战中,通信联络,对海、对空警戒、武器制导、导航等各种电磁辐射同时展开,将使局部电磁环境非常复杂。
三、复杂电磁环境对作战的影响
(一)影响战场感知的真实性
雷达探测、光电探测和电子侦察是现代战争中人们感知战场目标的三种基本电磁手段,它们也构成了军用感知探测的主体。
在信息化战场上,为了进一步提高单个作战平台或武器系统的判断能力,为各级指挥员的决策提供更全面的参考情报,还大量使用了无线电导航定位和敌我识别等电子信息系统,这些用于战场感知电子信息系统都依靠电磁活动来实现其功能,也无不受到战场电磁环境的影响。
这样,观测与感知战场的过程实质上就是从复杂的电磁环境中筛选出有用的电磁信号的过程。
一旦由于己方管控措施不力,或者敌方电子干扰强烈,引起战场电磁环境混乱不堪的现象,则将极有可能陷入传感器迷茫、战场感知失真的被动境地,进而全面影响着各级指挥员和作战人员判断决策的准确性。
(二)影响作战指挥的稳定性
在掌握战场态势的基础上,在高度灵活、机动的作战行动过程中,各种作战平台之间,以及作战平台与指挥机构之间都需要依靠无线电通信来传输情报数据、作战指令与协同信息。
现代战场上通信系统广泛应用于各种武器装备、作战平台和人员上;同时,民用电台也十分众多、密集,特别是个人移动通信设备的爆炸性增长,往往一个省的各种通信辐射源就达上千万部。
如此数量和密度的通信系统应用于相对有限的战场空间内,使得通信频段的战场电磁环境日益复杂化。
作战力量体系的指挥控制脉络是由短波、超短波组网通信、接力通信、卫星通信和散射通信组成的。
在复杂战场电磁环境影响干扰下,这些通信系统必然在传递数据中断、差错率提高、协同效率下降三个方面严重影响着指挥控制活动的稳定性。
(三)影响作战行动的实效性
现代化的战争背景下,武器装备和作战行动既依赖于电磁信号,又不可避免地受到复杂电磁环境的影响。
1、对信息化武器效能发挥的影响
在2003年伊拉克战争中,伊拉克大量使用GPS干扰器,造成一定数量的美军战斧导弹和杰达姆联合指导弹药失去准头。
而在1982年英阿马岛战争中,英国皇家海军最先进的导弹驱逐舰“谢菲尔德”号由于自身的
警戒雷达和卫星通信设备之间存在严重的相互干扰现象,以致被阿根廷发射的“飞鱼”导弹轻易击沉。
2、对信息系统整体作战实效性的影响
信息化战场上各种作战平台通过信息系统的无缝链接形成了一体化的作战体系,其整体作战效能得到几何级数的增长,但这种整体效能的形成与发挥更加依赖于各类电磁应用活动,并在更大的地理空间范围和频谱范围内受到战场电磁环境的多重影响。
3、对战斗行动实效性的影响
战前指挥员拟定的作战行动方案不可能全面、彻底、准确地分析判断战场电磁环境,也不可能明察秋毫地了解掌握部署于战场中的所有电磁辐射源和各种电子信息系统的技术性能。
交战之时己方内部的突发电磁冲突,不仅难以避免,还将频繁发生;敌方的电子干扰也带有强烈的针对性、目的性和谋略性。
这些随着战争进程引起的战场电磁环境的变化及其带来的影响,最终会不断导致作战方案和战役战斗行动的重新调整或修订,对作战行动的影响非常深远。