运用程伟超级结论讲解高考真题(椭圆部分)
椭圆高考题赏析-(带解析)

__________________________________________________椭圆高考题赏析1.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.15答案:B解析:由2a,2b,2c 成等差数列,所以2b=a+c. 又222b a c =-, 所以222()4()a c a c +=-.所以53a c =.所以35c e a ==. 2.已知椭圆22221(y x a b a b+=>>0)的左焦点为F,右顶点为A,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P.若AP 2PB =,则椭圆的离心率是( )C.13D.12答案:D解析:对于椭圆,∵AP 2PB =,则OA 2OF =, ∴a=2c.∴12e =.3.已知椭圆22221(y x a b a b+=>>0)的左、右焦点分别为1(0)F c -,、2(0)F c ,,若椭圆上存在一点P 使1221sin PFF sin PF F a c =,∠∠则该椭圆的离心率的取值范围为 .答案:11)-,解析:因为在△12PF F 中,由正弦定理得211221sin PFF sin PF F PF PF ||||=,∠∠则由已知,得1211a c PF PF =,||||即a|1PF |=c|2PF |.由椭圆的定义知|1PF |+|2PF |=2a, 则c a|2PF |+|2PF |=2a,即|2PF |22a c a=,+由椭圆的几何性质知|2PF |<a+c,则22a c a<+a+c,即2220c c a +->, 所以221e e +-,解得21e <-或21e >-.又(01)e ∈,,故椭圆的离心率(211)e ∈,.4.椭圆22192y x +=的左、右焦点分别为1F 、2F ,点P 在椭圆上,若|1PF |=4,则|2PF |= ;12F PF ∠的大小为 .答案:2 120解析:∵2292a b =,=,∴22927c a b =-=-=∴|12F F |7=又|1PF |=4,|1PF |+|2PF |=2a=6,∴|2PF |=2. 又由余弦定理,得cos 2221224(27)12F PF +-∠==-, ∴12120F PF ∠=,故应填2,120.5.已知椭圆22221(y x a b a b+=>>0)的离心率3e =连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A,B.已知点A 的坐标为(-a,0).若|AB|=求直线l 的倾斜角;解:(1)由c e a==得2234a c =.再由222c a b =-,解得a=2b. 由题意可知12242a b ⨯⨯=,即ab=2. 解方程组 22a b ab =,⎧⎨=,⎩ 得a=2,b=1.所以椭圆的方程为2214x y +=. (2)由(1)可知点A 的坐标是(-2,0).设点B 的坐标为11()x y ,,直线l 的斜率为k. 则直线l 的方程为y=k(x+2).于是A,B 两点的坐标满足方程组22(2)14y k x x y =+,⎧⎪⎨+=.⎪⎩ 消去y 并整理,得 2222(14)16(164)0k x k x k +++-=.由212164214k x k --=,+得2122814k x k -=+.从而12414k y k=+. 所以|AB|==由|AB|==. 整理得42329230k k --=,即22(1)(3223)0k k -+=,解得1k =±. 所以直线l 的倾斜角为4π或34π.巩固提升题组一 椭圆的离心率问题1.椭圆22221(y x a b a b+=>>0)的右焦点为F,其右准线与x 轴的交点为A,在椭圆上存在点P 满足线段AP 的垂直平分线过点F,则椭圆离心率的取值范围是( )A.2(0]2,B.1(0]2,C.[211)-,D.1[1)2,答案:D解析:|AF|22a b c c c =-=,而|AF|=|PF|a c ≤+, 所以2b ac c+≥, 即2210e e +-≥,解得112e ≤<.2.已知12F F ,是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△2ABF 是等腰直角三角形,则这个椭圆的离心率是( )A.32 B.22C.21-D.2答案:C解析:根据题意:2145AF F ∠=2222b c e e a,=,+-1=0,又(01)e ∈,,∴21e =-. 3.设椭圆22221(0y x m m n+=>,n>0)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A.2211216y x += B.2211612y x += C.2214864y x += D.2216448y x += 答案:B解析:由题意可知:c=2,且焦点在x 轴上.由12e =,可得m=4,∴22212n m c =-=.故选B.题组二 椭圆的定义4.设P 是椭圆2212516y x +=上的点.若12F F ,是椭圆的两个焦点,则|1PF |+|2PF |等于( )A.4B.5C.8D.10答案:D解析:因为a=5,所以|1PF |+|2PF |=2a=10.5.设直线l :2x+y-2=0与椭圆2214y x +=的交点为A 、B,点P 是椭圆上的动点,则使△PAB 面积为13的点P 的个数为( )A.1B.2C.3D.4答案:D解析:联立方程组 2222014x y y x +-=,⎧⎪⎨+=,⎪⎩ 消去y 整理解得:02x y =,⎧⎨=⎩ 或 10x y =,⎧⎨=,⎩|AB|=结合图象知P 的个数为4. 题组三 椭圆的综合应用6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .答案:221369y x += 解析:212e a a ==,=6,b=3,则所求椭圆方程为221369y x +=. 7.已知1F 、2F 是椭圆C:22221(y x a b a b+=>>0)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若△12PF F 的面积为9,则b= .答案:3解析:依题意,有 1212222122184PF PF a PF PF PF PF c ||+||=,⎧⎪||⋅||=,⎨⎪||+||=,⎩ 可得2436c +24a =,即229a c -=,∴b=3.8.如图,已知椭圆22221y x a b+=(a>b>0)过点(1,左 、右焦点分别为F 1 、F 2.点P 为直线l:x+y=2上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为A B ,和C ,D ,O .为坐标原点(1)求椭圆的标准方程.(2)设直线1PF ,PF 2的斜率分别为1k ,k 2. 证明:12312k k -=.解:(1)因为椭圆过点(1e ,=所以221112c aa b+=,=. 又222a b c =+,所以1a b c ==,=1. 故所求椭圆的标准方程为2212x y +=.(2)设00()P x y ,,则00120011y yk k x x =,=+-. 因为点P 不在x 轴上,所以0y ≠.又002x y +=, 所以00001213(1)422312x x x y k k y y y y +---=-===. 因此结论成立.。
(2021年整理)高考(2016-2018)高考数学试题分项版解析专题17椭圆文(含解析)

(完整)高考(2016-2018)高考数学试题分项版解析专题17椭圆文(含解析) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高考(2016-2018)高考数学试题分项版解析专题17椭圆文(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高考(2016-2018)高考数学试题分项版解析专题17椭圆文(含解析)的全部内容。
考纲解读明方向考纲解读考点内容解读要求常考题型预测热度1.椭圆的定义及其标准方程掌握椭圆的定义、几何图形、标准方程及简单性质掌握选择题解答题★★★2.椭圆的几何性质掌握填空题解答题★★★3.直线与椭圆的位置关系掌握解答题★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2。
能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3。
能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4。
本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大。
2018年高考全景展示1.【2018年全国卷II文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A。
B. C。
D。
【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义。
高三数学椭圆试题答案及解析

高三数学椭圆试题答案及解析1.椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.(1)求椭圆C的方程;(2)当的面积为时,求直线的方程.【答案】(1);(2)直线方程为:或.【解析】本题主要考查椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于椭圆过点A,将A点坐标代入得到a和b的关系式,再利用椭圆的离心率得到a与c的关系式,从而求出a和b,得到椭圆的标准方程;第二问,过的直线有特殊情况,即当直线的倾斜角为时,先讨论,再讨论斜率不不为的情况,将直线方程与椭圆方程联立,利用韦达定理得到和,代入到三角形面积公式中,解出k的值,从而得到直线方程.试题解析:(1)因为椭圆过点,所以①,又因为离心率为,所以,所以②,解①②得.所以椭圆的方程为:(4分)(2)①当直线的倾斜角为时,,,不适合题意。
(6分)②当直线的倾斜角不为时,设直线方程,代入得:(7分)设,则,,,所以直线方程为:或(12分)【考点】椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式.2.如图,椭圆的左焦点为,过点的直线交椭圆于两点.的最大值是,的最小值是,满足.(1) 求该椭圆的离心率;(2) 设线段的中点为,的垂直平分线与轴和轴分别交于两点,是坐标原点.记的面积为,的面积为,求的取值范围.【答案】(1);(2).【解析】本题主要考查椭圆的标准方程、椭圆的离心率、椭圆与直线相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,设出F点坐标,数形结合,根据椭圆的性质,得到代入已知中,得到,计算出椭圆的离心率;第二问,根据题意,设出椭圆方程和直线方程,两方程联立,消参,利用韦达定理,得到和,利用三角形相似得到所求的比例值,最后求范围.试题解析:(1) 设,则根据椭圆性质得而,所以有,即,,因此椭圆的离心率为. (4分)(2) 由(1)可知,,椭圆的方程为.根据条件直线的斜率一定存在且不为零,设直线的方程为,并设则由消去并整理得从而有,(6分)所以.因为,所以,.由与相似,所以. (10分)令,则,从而,即的取值范围是. (12分)【考点】椭圆的标准方程、椭圆的离心率、椭圆与直线相交问题.3.椭圆的离心率为,其左焦点到点的距离为.(1) 求椭圆的标准方程;(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.【答案】(1);(2)证明详见解析,.【解析】本题主要考查椭圆的标准方程及其几何性质、直线与椭圆相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和左焦点到点P 的距离列出方程组,解出基本量a,b,c,从而得到椭圆的标准方程;第二问,用直线与椭圆联立,消参得到关于x的方程,利用韦达定理得到和,由于AB为直径的圆过椭圆右顶点A2(2,0) ,所以,利用向量的数量积的运算公式,将前面的式子都代入,得到或 m = -2k,经验证都符合题意,则分别求出定点坐标,再验证,最终得到结论.试题解析:(1)由题:①左焦点 (-c,0) 到点 P(2,1) 的距离为:② 2分由①②可解得c =" 1" , a =" 2" , b 2 = a 2-c 2 = 3. 3分∴所求椭圆 C 的方程为. 4分(2)设 A(x1,y1)、B(x2,y2),将 y =" kx" + m代入椭圆方程得(4k 2 + 3) x 2 + 8kmx + 4m 2-12 = 0.∴,, 6分且y1 = kx1+ m,y2= kx2+ m.∵AB为直径的圆过椭圆右顶点 A2(2,0) ,所以. 7分所以 (x1-2,y1)·(x2-2,y2) = (x1-2) (x2-2) + y1y2= (x1-2) (x2-2) + (kx1+ m) (kx2+ m)= (k 2 + 1) x1x2+ (km-2) (x1+ x2) + m 2 + 4= (k 2 + 1)·-(km-2)·+ m 2 + 4 =" 0" . 10分整理得 7m 2 + 16km + 4k 2 = 0.∴或 m = -2k 都满足△ > 0. 12分若 m = -2k 时,直线 l 为 y = kx-2k =" k" (x-2) ,恒过定点 A2(2,0),不合题意舍去; 13分若时,直线 l 为,恒过定点. 14分【考点】椭圆的标准方程及其几何性质、直线与椭圆相交问题.4.已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.(1)求动点C的轨迹E的方程;(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.【答案】(1)+=1(x≠±4)(2)16【解析】(1)由题意知|CA|+|CB|=12-4=8>|AB|,所以C的轨迹E为椭圆的一部分.由a=4,c=2,可得b2=12.故曲线E的方程为+=1(x≠±4).(2)设两直线的方程为y=kx与y=-kx(k>0).记y=kx与曲线E在第一象限内的交点为(x0,y),由,可得x2=.结合图形的对称性可知:四交点对应的四边形为矩形,且其面积S=2x0·2y=4kx2=.因为k>0,所以S=≤=16 (当且仅当k=时取等号).故四边形面积的最大值为16.5.椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.(1)求椭圆C的标准方程;(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.【答案】(1)+y2=1 (2)见解析【解析】(1)设椭圆的标准方程为+=1(a>b>0),因为|F1F2|=2,所以c=,由S△PF1F2=1,得|PF1||PF2|=2,又由PF1⊥PF2,得|PF1|2+|PF2|2=|F1F2|2=12,即(|PF1|+|PF2|)2-2|PF1||PF2|=12,即4a2-4=12,a2=4,b2=a2-3=1,所以椭圆C的标准方程为+y2=1.(2)由方程组,得(1+4k2)x2+8kmx+4m2-4=0,Δ=(8km)2-4(1+4k2)(4m2-4)>0,整理得4k2-m2+1>0.设M(x1,y1),N(x2,y2),则x1+x2=-,x1x2=.由AM⊥AN且椭圆的右顶点为A(2,0),得(x1-2)(x2-2)+y1y2=0,因为y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,所以(1+k2)x1x2+(km-2)(x1+x2)+m2+4=0,即(1+k2)·+(km-2)·+m2+4=0,整理得:5m2+16mk+12k2=0,解得m=-2k或m=-,均满足4k2-m2+1>0.当m=-2k时,直线的l方程为y=kx-2k,过定点(2,0),与题意矛盾,舍去;当m=-时,直线l的方程为y=k(x-),过定点(,0),符合题意.故直线l过定点,且定点的坐标为(,0).6.已知P是圆M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.(1)求出轨迹C的方程,并讨论曲线C的形状;(2)当m=时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.【答案】(1)当m>2,,轨迹是以、为焦点的椭圆,其方程为;当m<2,轨迹是以、为焦点的双曲线,其方程为;(2)定点,定值为6.【解析】(1)利用线段的垂直平分线交直线于点,当时,根据椭圆的定义,即可求出轨迹的方程;当时,根据双曲线的定义,即可求出轨迹的方程;(2)当时,轨迹必为椭圆方程,设,分别过E取两垂直与坐标轴的两条弦CD,,根据求出E若存在必为定值为6.再进行证明.存在性问题,先猜后证是关键.再设设过点E的直线方程,代入椭圆方程,消去,设,,利用一元二次方程的根与系数的关系,求得为定值6.(1)由题意,,所以,所以轨迹是以、为焦点,以为长轴的椭圆,当m>2,,轨迹是以、为焦点的椭圆,其方程为;当m<2,轨迹是以、为焦点的双曲线,其方程为(4分)(2)由(1)当时,曲线C为,设,分别过E取两垂直于坐标轴的两条弦CD,,则,即解得,∴E若存在必为定值为6.(6分)下证满足题意.设过点E的直线方程为,代入C中得:,设、,则,,(8分).同理可得E也满足题意.综上得定点为E,定值为(13分)【考点】直线和圆的方程的应用,圆锥曲线的定义、性质与方程,轨迹方程的问题.7.已知椭圆的焦点为,点是椭圆上的一点,与轴的交点恰为的中点, .(1)求椭圆的方程;(2)若点为椭圆的右顶点,过焦点的直线与椭圆交于不同的两点,求面积的取值范围.【答案】(1)(2)【解析】(1)根据已知分析可得点横坐标为1,纵坐标为,,即点。
2024全国高考真题数学汇编:椭圆(1)精选全文完整版

2024全国高考真题数学汇编椭圆一、单选题1.(2024全国高考真题)已知曲线C :2216x y (0y ),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A .221164x y(0y )B .221168x y (0y )C .221164y x (0y )D .221168y x (0y )二、解答题2.(2024天津高考真题)已知椭圆22221(0)x y a b a b椭圆的离心率12e .左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △(1)求椭圆方程.(2)过点30,2的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ .若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.3.(2024北京高考真题)已知椭圆E : 222210x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点 0,t t 且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和 0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.4.(2024全国高考真题)已知(0,3)A 和33,2P 为椭圆2222:1(0)x yC a b a b上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.5.(2024全国高考真题)已知椭圆2222:1(0)x y C a b a b的右焦点为F ,点31,2M 在C 上,且MF x 轴.(1)求C 的方程;(2)过点 4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y 轴.参考答案1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ,因为M 为PP 的中点,所以02y y ,即(,2)P x y ,又P 在圆2216(0)x y y 上,所以22416(0)x y y ,即221(0)164x y y ,即点M 的轨迹方程为221(0)164x y y .故选:A2.(1)221129x y (2)存在 30,32T t t,使得0TP TQ 恒成立.【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx, 1122,,,,0,P x y Q x y T t ,联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ,再根据0TP TQ 可求t 的范围.【详解】(1)因为椭圆的离心率为12e,故2a c,b ,其中c 为半焦距,所以2,0,0,,0,2A c B C,故122ABC S c △故ca ,3b ,故椭圆方程为:221129x y .(2)若过点30,2的动直线的斜率存在,则可设该直线方程为:32y kx ,设 1122,,,,0,P x y Q x y T t ,由22343632x y y kx可得223412270k x kx ,故 222Δ144108343245760k k k 且1212221227,,3434k x x x x k k而 1122,,,TP x y t TQ x y t,故121212123322TP TQ x x y t y t x x kx t kx t22121233122kx x k t x x t22222731231342342k k k t t kk2222222327271812332234k k k t t t k k22223321245327234t t k t k,因为0TP TQ 恒成立,故 223212450332702t t t,解得332t .若过点30,2的动直线的斜率不存在,则 0,3,0,3P Q 或 0,3,0,3P Q ,此时需33t ,两者结合可得332t.综上,存在 30,32T t t,使得0TP TQ 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.3.(1)221,422x y e(2)2t 【分析】(1)由题意得b c a ,由此即可得解;(2)设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k ,而 121112:y y AD y x x y x x ,令0x ,即可得解.【详解】(1)由题意b c,从而2a ,所以椭圆方程为22142x y,离心率为e;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立22142x y y kx t,化简并整理得222124240k x ktx t ,由题意 222222Δ1682128420k t k t k t ,即,k t 应满足22420k t ,所以2121222424,1221kt t x x x x k k ,若直线BD 斜率为0,由椭圆的对称性可设 22,D x y ,所以 121112:y y AD y x x y x x,在直线AD 方程中令0x ,得 2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt ,所以2t ,此时k 应满足222424200k t k k,即k应满足2k或2k ,综上所述,2t满足题意,此时2k或2k .4.(1)12(2)直线l 的方程为3260x y 或20x y .【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设 00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx ,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得2239941b a b,解得22912b a ,所以12e .(2)法一:3312032APk,则直线AP 的方程为132y x ,即260x y ,AP 1)知22:1129x y C ,设点B 到直线AP 的距离为d,则d则将直线AP 沿着与AP 此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ,6C 或18C ,当6C 时,联立221129260x y x y,解得03x y 或332x y ,即 0,3B 或33,2,当 0,3B 时,此时32l k,直线l 的方程为332y x ,即3260x y ,当33,2B时,此时12l k ,直线l 的方程为12y x ,即20x y ,当18C 时,联立2211292180x y x y得22271170y y ,227421172070 ,此时该直线与椭圆无交点.综上直线l 的方程为3260x y 或20x y .法二:同法一得到直线AP 的方程为260x y ,点B 到直线AP 的距离d设 00,B x y,则220012551129x y,解得00332x y 或0003x y ,即 0,3B 或33,2,以下同法一.法三:同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d设,3sin B ,其中 0,2联立22cos sin 1,解得cos 21sin 2或cos 0sin 1,即 0,3B 或33,2,以下同法一;法四:当直线AB 的斜率不存在时,此时 0,3B ,16392PAB S ,符合题意,此时32l k ,直线l 的方程为332y x ,即3260x y ,当线AB 的斜率存在时,设直线AB 的方程为3y kx ,联立椭圆方程有2231129y kx x y,则2243240k x kx ,其中AP k k ,即12k ,解得0x 或22443kx k,0k ,12k ,令22443k x k ,则2212943k y k ,则22224129,4343k k B k k同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d,解得32k =,此时33,2B,则得到此时12l k ,直线l 的方程为12y x ,即20x y ,综上直线l 的方程为3260x y 或20x y .法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x,令 1122,,,P x y B x y ,223(3)21129y k x x y,消y 可得 22224324123636270k x k k x k k ,2222Δ24124433636270k kk k k ,且AP k k ,即12k ,21222122241243,36362743k k x x k PB k k x x k,A 到直线PB距离192PAB d S,12k或32,均满足题意,1:2l y x 或332y x ,即3260x y 或20x y .法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当直线l 斜率存在时,设3:(2l y k x,设l 与y 轴的交点为Q ,令0x ,则30,32Q k,联立223323436y kx k x y,则有2223348336362702k x k k x k k ,2223348336362702k xk k x k k,其中22223Δ8343436362702k k k k k,且12k ,则2222363627121293,3434B B k k k k x x k k,则211312183922234P B k S AQ x x k k,解的12k 或32k =,经代入判别式验证均满足题意.则直线l 为12y x或332y x ,即3260x y 或20x y .5.(1)22143x y (2)证明见解析【分析】(1)设 ,0F c ,根据M 的坐标及MF x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x , 11,A x y , 22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y ,结合韦达定理化简前者可得10Q y y ,故可证AQ y 轴.【详解】(1)设 ,0F c ,由题设有1c 且232b a ,故2132a a ,故2a,故b ,故椭圆方程为22143x y .(2)直线AB 的斜率必定存在,设:(4)AB y k x , 11,A x y , 22,B x y,由223412(4)x y y k x 可得 2222343264120k x k x k ,故 422Δ102443464120k k k ,故1122k ,又22121222326412,3434k k x x x x k k ,而5,02N,故直线225:522y BN y x x ,故22223325252Qy y y x x,所以 1222112225332525Q y x y y y y y x x12224253425k x x k x x222212122264123225825834342525k k x x x x k k k kx x2222212824160243234025k k k k k x ,故1Q y y ,即AQ y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为 1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意 的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x 、12x x (或12y y 、12y y )的形式;(5)代入韦达定理求解.。
2024年高考数学题源追溯专题12 椭圆(解析版)

专题12 椭圆目录一览2023真题展现考向一 椭圆的性质考向二 直线与椭圆相交问题真题考查解读近年真题对比考向一 椭圆的性质考向二 直线与椭圆相交问题命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 椭圆的性质1.(2023•新高考Ⅰ•第5题)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =( )A .233B .2C .3D .6【答案】A解:由椭圆C 2:x 24+y 2=1可得a 2=2,b 2=1,∴c 2=4−1=3,∴椭圆C 2的离心率为e 2=32,∵e 2=3e 1,∴e 1=12,∴c 1a 1=12,∴a 21=4c 21=4(a 21−b 21)=4(a 21−1),∴a =233或a =−233(舍去).考向二 直线与椭圆相交问题2.(2023•新高考Ⅱ•第5题)已知椭圆C :x 23+y 2=1的左焦点和右焦点分别为F 1和F 2,直线y =x +m 与C 交于点A ,B 两点,若△F 1AB 面积是△F 2AB 面积的两倍,则m =( )A .23B .23C .−23D .−23【答案】C解:记直线y =x +m 与x 轴交于M (﹣m ,0),椭圆C :x 23+y 2=1的左,右焦点分别为F 1(−2,0),F 2(2,0),由△F 1AB 面积是△F 2AB 的2倍,可得|F 1M |=2|F 2M |,∴|−2−x M |=2|2−x M |,解得x M =23或x M =32,∴﹣m =23或﹣m =32,∴m =−23或m =﹣32,y 2=1x +m可得,4x 2+6mx +3m 2﹣3=0,∵直线y =x +m 与C 相交,所以Δ>0,解得m 2<4,∴m =﹣32不符合题意,故m =−23.【命题意图】考查椭圆的定义、标准方程、几何性质、直线与椭圆.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【考查要点】椭圆的定义、方程、性质、直线与椭圆是高考常考内容,以小题形式出现,常规题,难度中等.【得分要点】一、椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.注:在椭圆的定义中必须要注意以下两个问题(1)定义中到两定点的距离之和是常数,而不能是变量.(2)常数(2a )必须大于两定点间的距离,否则轨迹不是椭圆.①若1212||||||MF MF F F +=,M 的轨迹为线段21F F ;②若1212||||||MF MF F F +<,M 的轨迹无图形二、椭圆的方程及简单几何性质x 2y 2y 2x 2椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.以椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c,0),F 2(c,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,则(1)椭圆的定义:|PF 1|+|PF 2|=2a .(2)余弦定理:4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ.(3)面积公式:S △PF 1F 2=12|PF 1||PF 2|·sin θ,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值,为bc .重要结论:S △PF 1F 2=2tan2b θ推导过程:由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ得2224||+||-2||||(1cos 121c PF PF PF PF θ=+())2212442||||(1cos )c a PF PF θ=-+2122||||1cos b PF PF θ=+由三角形的面积公式可得S △PF 1F 2=121|PF ||PF |sin 2θ=222222sincos12sin 22sin tan 21cos 1cos 2cos 2b b b b θθθθθθθθ⋅⋅===++注:S △PF 1F 2=2tan2b θ=||p y c =r c a )(+(r 是三角形内切圆的半径)(4)焦点三角形的周长为2(a +c ).(5)在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意的一点,当点P 在短轴端点时,12F PF ∠最大.四、点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系:点P 在椭圆上⇔x 20a 2+y 20b 2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1;点P 在椭圆外部⇔x 20a 2+y 20b2>1.五、直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系,判断方法:联立Error!消y 得一元二次方程.当Δ>0时,方程有两解,直线与椭圆相交;当Δ=0时,方程有一解,直线与椭圆相切;当Δ<0时,方程无解,直线与椭圆相离.六、直线与椭圆相交的弦长公式1.定义:连接椭圆上两个点的线段称为椭圆的弦.2.求弦长的方法(1)交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求.(2)根与系数的关系法:如果直线的斜率为k ,被椭圆截得弦AB 两端点坐标分别为(x 1,y 1),(x 2,y 2),则弦长公式为:|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+1k 2·(y 1+y 2)2-4y 1y 2.y考向一 椭圆的性质3.(2021•新高考Ⅰ)已知F 1,F 2是椭圆C :+=1的两个焦点,点M 在C 上,则|MF 1|•|MF 2|的最大值为( )A .13B .12C .9D .6【解答】解:F 1,F 2是椭圆C :+=1的两个焦点,点M 在C 上,|MF 1|+|MF 2|=6,所以|MF 1|•|MF 2|≤=9,当且仅当|MF 1|=|MF 2|=3时,取等号,所以|MF 1|•|MF 2|的最大值为9.故选:C .4.(2022•新高考Ⅱ)已知直线l +=1在第一象限交于A ,B 两点,l 与x 轴、y 轴分别相交于M ,N 两点,且|MA |=|NB |,|MN |=2,则l 的方程为 .【解答】解:设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为E ,由+=1,+=1,相减可得:=﹣,则k OE •k AB =•==﹣,设直线l 的方程为:y =kx +m ,k <0,m >0,M (﹣,0),N (0,m ),∴E (﹣,),∴k OE =﹣k ,∴﹣k•k=﹣,解得k=﹣,∵|MN|=2,∴=2,化为:+m2=12.∴3m2=12,m>0,解得m=2.∴l的方程为y=﹣x+2,即x+y﹣2=0,故答案为:x+y﹣2=0.考向二直线与椭圆相交问题5.(2022•新高考Ⅰ)已知椭圆C:+=1(a>b>0),C的上顶点为A,两个焦点为F1,F2,离心率为.过F1且垂直于AF2的直线与C交于D,E两点,|DE|=6,则△ADE的周长是 .【解答】解:∵椭圆C:+=1(a>b>0)的离心率为,∴不妨可设椭圆C:,a=2c,∵C的上顶点为A,两个焦点为F1,F2,∴△AF1F2为等边三角形,∵过F1且垂直于AF2的直线与C交于D,E两点,∴,由等腰三角形的性质可得,|AD|=|DF2|,|AE|=|EF2|,设直线DE方程为y=,D(x1,y1),E(x2,y2),将其与椭圆C联立化简可得,13x2+8cx﹣32c2=0,由韦达定理可得,,,|DE|====,解得c=,△ADE的周长等价于|DE|+|DF2|+|EF2|=4a=8c=.故答案为:13.根据近几年考查形式推测以小题形式出现,常规题,难度中等.椭圆的定义、方程、性质、直线与椭圆是高考常考内容。
高考数学真题专题九 解析几何第二十六讲 椭圆答案

3c 3 6 1 2 yPAF 1 OF 2x专题九 解析几何第二十六讲 椭圆答案部分1. D 【解析】由题意可得椭圆的焦点在 x 轴上,如图所示,设| F 1F 2 |= 2c ,所以∆PF 1F 2 为等腰三角形,且∠F 1F 2 P =120 ,∴| PF 2 |=| F 1F 2 |= 2c ,∵| OF 2 |= c ,∴点 P 坐标为(c + 2c cos60 , 2c sin 60 ) ,即点P (2c , 3c ).∵点P 在过点 A ,且斜率为 3 的直线上,6c 1 1∴ = ,解得 = .∴ e = ,故选 D .2c + a 6a 4 42. C 【解析】由题意a 2= 5 , a = .由椭圆的定义可知, P 到该椭圆的两个焦点的距离之和为2a = 2 ,故选C .3.B 【解析】由题意可知 a 2= 9 , b 2= 4 ,∴ c 2= a 2- b 2= 5 ,∴离心率e =c= 5, a 3选 B4. A 【解析】以线段 A A 为直径的圆是 x2+ y 2 = a 2 ,直线bx - ay + 2ab = 0 与圆相切,所以圆心到直线的距离d == a ,整理为a 2 = 3b 2 ,c 22 c即 a 2= 3(a 2- c2) ⇒ 2a2= 3c 2,即 = , e = = ,故选A .a 2 3 a 35.A 【解析】设 E (0, m ) ,则直线 AE 的方程为- x + y = 1 ,由题意可知 M (-c , m - mc) ,a b a5 5 a 2 + b 22 2 2 ⎨ m - mc - m m m(0, ) 和 B (a ,0) 三点共线,则 2a 2 =- c 2 ,化简得 a = 3c ,则C 的离心率 -a c 1e = = .故选 A .a 36. A 【解析】由题意知m2-1 = n 2 +1,即m 2 = n 2 + 2 ,2m 2 - 1 n 2 + 1 n 2 + 1 n 2 + 1 n 4 + 2n 2 + 1 1(e 1e 2 ) = m 2 ⋅ n2 = n 2 + 2 ⋅ n 2 = n 4 + 2n 2 = 1 + n 4 + 2n 2 > 1, 所以e 1e 2 > 1.故选 A .7. D 【解析】由题意可设Q ( 10 cos α,sin α) ,圆的圆心坐标为C (0, 6) ,圆心到Q 的距离为| CQ |= 当sin α =- 2时取等号,所以| PQ |= ≤| CQ |≤+r = 5 2 + = 6= 5 ,当且仅,所以 P ,Q3两点间的最大距离是6 .max max8.D 【解析】设 A (x 1, y 1), B (x 2 , y 2 ) ,则 x 1 + x 2 =2, y 1 + y 2 =-2,x 2y 2x 2 y 21 + 1= 1 ①2 + 2 = 1 ②a 2b2 a2b2①-②得(x 1 + x 2 )(x 1 - x 2 ) + ( y 1 + y 2 )( y 1 - y 2 ) = 0 ,y - y a 2 - b 2 (x b 2+ x ) b 2 0 +1 1 b 212 2 2∴ k = 1 2 = 1 2 = ,又k = = ,∴ = ,又 9= c = a - b , AB x - x a 2 ( y + y ) a 2 AB3 -1 2a 2 2 1 2 1 222x 2 + y 2 =解得b =9, a =18,∴椭圆方程为 18 91,故选D.9.C 【解析】∆ F 2 PF 1 是底角为30 的等腰三角形⇒ PF = F F =3 - c ) = 2c ⇔ e = c = 32 2 12( a 2 a 410.5【解析】设 A (x , y ) , B (x , y ) ,由 AP = 2PB ,得⎧-x 1 = 2x 2,1 12 2 ⎩1- y 1 = 2( y 2 -1)( 10 cos α)2 + (sin α - 6)2 50 - 9(sin α + 2)2350 23 3c 3 3 3 3 c m 2 + n 2m 22 3 ⎪ x + 2 + = c 2⎧ 4x 2⎪ 2 + (3 - x 2 ) = m 即 x = -2x , y = 3 - 2y .因为点 A , B 在椭圆上,所以⎨4 ,得 1 2 1 2 2 2y = m⎩⎪ 4 2y = 1 m + 3 ,所以 x 2 = m - (3 - 2 y )2 = - 1 m 2 + 5 m - 9 = - 1(m - 5)2 + 4 ≤ 4 , 2 4 4 2 24 2 4 4所以当m = 5 时,点 B 横坐标的绝对值最大,最大值为 2.11.-1 ;2 【解析】设椭圆的右焦点为 F (c , 0) ,双曲线 N 的渐近线与椭圆 M 在第一象c 限内的交点为 A ,由题意可知 A ( , ) ,由点 A 在椭圆 M 上得, 2 2c 2 4a 2 3c 24b 2 1 ,∴ b 2c 2 + 3a 2c 2 = 4a 2b 2 , b 2 = a 2 - c 2 ,∴ (a 2 - c 2 )c 2 + 3a 2c 2 = 4a 2 (a 2 - c 2 ),∴ 4a 4 - 8a 2c 2 + c 4 = 0 ,∴ e 4 - 8e 2 +4 = 0 ,∴ e2= 4 ± 2 ,椭椭椭∴ e 椭 = +1(舍去)或e 椭 = -1,∴椭圆 M 的离心率 -1,∵双曲线的渐近线过点A ( , ),渐近线方程为 y = 2 2故双曲线的离心率e 双 = = 2 .3x ,12.6 【解析】由题意得 F (c ,0) ,直线 y = b 与椭圆方程联立可得 B ⎛ - 3a b ⎫ , ,32 2 2 ⎪C ⎛ 3a , b ⎫ ,由∠BFC = 90︒ 可得 BF ⋅ CF = 0 , BF = ⎛ c + ⎝ ⎭3a b ⎫ , - ,2 2 ⎪ 2 2 ⎪ ⎝ ⎭ ⎛ CF = c - ⎝ ⎭3a , - b ⎫ ,则c 2 - 3 a 2 + 1 b 2 = 0 ,由b 2 = a 2 - c 2 可得 3 c 2 = 1 a 2 ,2 2 ⎪ 4 4 4 2 ⎝ ⎭则e = c = = 6 .a3 yAO Fx33 - 2a1 AD F B13.(x - 3)2+ y 2= 25 2 4【解析】 由题意圆过(4, 0),(0, 2),(0,- 2) 三个点,设圆心为(a , 0),其中a > 0 ,由4 - a = ,解得a = 3 ,所以圆的方程为(x - 3)2 + y 2 = 25. 2 2 414. 2【解析】设 A (x , y ) , B (x , y ) ,分别代入椭圆方程相减得21 12 2 (x 1 - x 2 )(x 1 + x 2 ) + ( y 1 - y 2 )( y 1 + y 2 ) = 0 ,根据题意有 x + x = 2, y + y= 2 ,a 2b 21 2 1 2且 y 1 - y 2 =- 1 ,所以 2 + 2 ⨯(- 1) = 0 ,得a 2 = 2b 2 ,整理a 2 = 2c 2 , x - x 2 a 2 b 221 2所以e =2 .215.12【解析】设 MN 交椭圆于点 P ,连接 F 1P 和 F 2 P ,利用中位线定理可得 AN + BN =2 F 1P + 2 F 2 P = 2⨯ 2a = 4a = 12 .3b 2 b 216.【解析】由题意可得 A (c , ) , B (c , - ) ,由题意可知点 D 为 F B 的中点,所 3 a a 1b 2 以点 D 的坐标为(0, ) ,由 AD ⊥ F B ,所以k ⋅ k = -1,整理得 1 3b 2= 2ac ,解得e =3 .317. x 2+ 3y 2= 1【解析】由题意得通径 AF = b 2,∴点B 坐标为 B (-5c , - 1 b 2) 2将点B 坐标带入椭圆方程得(- 5c )2+ 32(- 1b 2 )2 3 b 2 3 3= 1 , ⎧b 2 = 2又b 2 = 1- c 2,解得⎪ 3 ∴椭圆方程为 x 2 + 3 y 2 = 1.⎨⎪c 2 = 12 ⎩ 318.-1【解析】由题意可知, ∆MF 1F 2 中, ∠MF 1F 2 = 60︒, ∠MF 2 F 1 = 30︒, ∠F 1MF 2 = 90︒,a 2 + 4⎪2 222+ n 2 x 2 1⎧MF 2 + MF 2 = F F 2 = (2c )2⎪ 1 2 1 2 c所以有⎨MF 1 + MF 2 = 2a ,整理得e = = a 3 -1,故答案为 3 -1. ⎪MF = 3MF ⎩ 2 119. 5【解析】由椭圆的性质可知: AF = a - c ,F F = 2c ,F B = a + c .又已知 AF ,511 211F 1F 2 , FB 成等比数列,故(a - c )(a + c ) = (2c ) ,即 a - c = 4c ,则 a = 5c . 2 2 2 2 2 2故e = c =5 .即椭圆的离心率为5 .a5520.(0, ±1)【解析】设点 A 的坐标为(m , n ),B 点的坐标为(c , d ) .F 1 (- 2, 0), F 2 ( 2, 0) ,可得 F 1 A = (m + 2, n ) , F 2 B = (c - 2, d ) ,∵ F 1 A = 5F 2 B , ∴ c =m + 6 2 , d = n,又点 A , B 在椭圆上, 5 5∴ m + n 2 = 1, ( m + 6 2 )25 ( ) =1,解得m = 0, n = ±1, 3 3 5∴点 A 的坐标是(0, ±1) .21.【解析】(1)由已知得 F (1, 0) ,l 的方程为 x = 1 . 由已知可得,点 A 的坐标为(1, 2 ) 或(1, - 2 2) . 2所以 AM 的方程为 y = -x + 或 y = 2 x - . 2(2)当l 与 x 轴重合时, ∠OMA = ∠OMB = 0︒ .当l 与 x 轴垂直时, OM 为 AB 的垂直平分线,所以∠OMA = ∠OMB .当l 与 x 轴不重合也不垂直时,设l 的方程为 y = k (x -1)(k ≠ 0) ,A (x 1, y 1), B (x 2 , y 2 ) ,则 x <, x <,直线 MA , MB 的斜率之和为k+ k =y 1+y 2.12MAMB- 2x 2 - 2由 y 1 = kx 1 - k , y 2 = kx 2 - k 得2 2 1FA |= (x -1)2 + y 2 1 1 FB |= 2 -x 2 3 yk + k= 2kx 1x 2 - 3k (x 1 + x 2 ) + 4k .MAMB(x - 2)(x - 2)1 2将 y = k (x -1) 代入 x 2 + 22= 1得(2k 2 +1)x 2 - 4k 2 x + 2k 2 - 2 = 0 .4k 22k 2 - 2所以, x 1 + x 2 = 2k 2 +1 , x 1 x 2 = 2k 2 +1.则2kx 1x 2 - 3k (x 1 + x 2 ) + 4k = 4k 3 - 4k -12k 3 + 8k 3 + 4k2k 2+1= 0 .从而k MA + k MB = 0,故 MA , MB 的倾斜角互补,所以∠OMA =∠OMB . 综上, ∠OMA = ∠OMB .x 2y 2x 2y 222.【解析】(1)设 A (x , y ) ,B (x 2 , y 2 ) ,则 1 + 1 = 1, 2 + 2 = 1. 114 3 4 3两式相减,并由y 1 - y 2= k 得 x 1 + x 2 + y 1 + y2 ⋅ k = 0 . x 1 - x 2 4 3由题设知x 1 + x 2= 1, y 1 + y2 = m ,22于是k =-.①4m3 1由题设得0 < m < ,故k <- .2 2 (2)由题意得 F (1, 0) ,设 P (x3 , y 3 ) ,则(x 3 -1, y 3 ) +(x 1 -1, y 1) +(x 2 -1, y 2 ) = (0,0) .由(1)及题设得 x 3 = 3-(x 1 + x 2 ) =1, y 3 = -(y 1 + y 2 ) = -2m <0 . 又点 P 在C 上,所以m = 3 ,从而 P (1, - 3) ,| FP |= 3.4 2 2x 于是| =同理| . 21= 2 - 1 . 2所以| FA | + | FB |= 4 - 2(x 1 + x 2 ) = 3 .(x -1) + 3(1- ) 2 1 x 21 41 2(x + x )2 - 4x x 1 2 1 2AQ PQ y ⎨x + y - 2 = 0故2 | FP |=| FA | + | FB | ,即| FA |,| FP |,| FB | 成等差数列.设该数列的公差为d ,则2 | d |=|| FB | - | FA ||= 1| x - x |= .②2 1 2 将 m = 3代入①得k = -1 .4所以l 的方程为 y = -x + 7 ,代入C 的方程,并整理得7x 2-14x + 1 = 0 .4 4故 x + x = 2, x x = 1,代入②解得| d |= 3 21 .1 2 1 22828所以该数列的公差为3 21 或-3 21.282823. 【解析】设椭圆的焦距为 2c ,由已知知ca 2= 5,又由a 2 = b 2 + c 2 ,可得2a = 3b .9由已知可得,FB = a ,AB =2b , 由 FB ⋅ AB = 6 ,可得 ab = 6 ,从而a = 3 ,b = 2 .所以,椭圆的方程为 x 2+ = 1.9 4(2)设点 P 的坐标为(x 1, y 1) ,点Q 的坐标为(x 2 ,y 2 ) . 由已知有 y 1 > y 2 > 0 ,故 PQ sin ∠AOQ = y 1- y 2 .又因为 AQ =y 2sin ∠OAB π ,而∠OAB = , 故 AQ = 42 y 2 . 由= 5 2 sin ∠AOQ ,可得5y = 9y . 41 2⎧ y = kx , ⎪ 6k 由方程组⎨ x 2y 2 消去 x ,可得 y 1 = . ⎪+ = 1, 9k 2 + 4 ⎩ 9 4易知直线 AB 的方程为 x + y - 2 = 0 ,由方程组⎧ y = kx ,⎩消去 x ,可得 y = 2k.由5y = 9y ,可得5(k +1) = 3 9k 2 + 4 ,2 k + 11 2 两边平方,整理得56k 2 - 50k +11 = 0 ,解得k = 1 ,或k = 11.2 282 2 21 3 所以, k 的值为 1 或112 2824. 【解析】(1)由于 P 3 , P 4 两点关于 y 轴对称,故由题设知 C 经过 P 3 , P 4 两点.又 由 1 + 1> 1 + 3 知,C 不经过点 P ,所以点 P 在 C 上.a 2b 2 a2⎧ 1 = 1 ⎪b 24b 2 1 2⎧⎪a 2 = 4 因此⎨⎪ + = 1 ,解得⎨ . ⎪⎩b 2 = 1 ⎪⎩ a 2 4b 2x 2 +2故 C 的方程为 4 y = 1 .(2)设直线 P 2 A 与直线 P 2 B 的斜率分别为k 1 , k 2 ,如果l 与 x 轴垂直,设l : x = t ,由题设知t ≠ 0 ,且| t |< 2 ,可得 A ,B 的坐标分别为(t,(t , .则 k 1 + k 2 =l= -1 ,得t = 2 ,不符合题设.x 2 2 从而可设 : y = kx + m ( m ≠ 1 ).将 y = kx + m 代入 + y 4= 1 得(4k 2 + 1)x 2 + 8kmx + 4m 2 - 4 = 0由题设可知∆=16(4k 2 - m 2 + 1) > 0 .B (x , y )8km4m 2 - 4设 A (x 1, y 1) ,22,则 x 1 + x 2 = - 4k 2 + 1, x 1 x 2 = .4k 2 + 1而 k + k = y 1 - 1 + y 2 - 1 = kx 1 + m -1 + kx 2 + m -1 x 1 x 2 x 1 x 2 = 2kx 1x 2 + (m -1)(x 1 + x 2 ) .x 1x 2由题设k 1 + k 2 = -1 ,故(2k +1)x 1x 2 + (m -1)(x 1 + x 2 ) = 0 .4m 2 - 4-8km 即(2k + 1) ⋅+ (m -1) ⋅= 0 .4k 2+ 1 4k 2+ 1解得k =- m +1.2当且仅当m > -1时, ∆> 0 ,欲使l : y = - m + 1 x + m ,即 y + 1 = - m + 1(x - 2) ,2 2 所以l 过定点(2, -1 )1 2NP = 2 NM y x y 12y y25.【解析】(1)设 P (x , y ) , M (x 0 , y 0 ) ,则 N (x 0,0) , NP = (x - x 0 , y ) , NM = (0.y 0 ) .由得 x 0 = x , y 0 = 2y . 22 2因为 M (x 0 , y 0 ) 在C 上,所以 2 + 2= 1.因此点 P 的轨迹方程为 x 2 + y 2 = 2 .(2)由题意知 F (-1, 0) .设Q (-3,t ) , P (m , n ) ,则OQ = (-3,t ), PF = (-1- m , -n ) , OQ ⋅ PF = 3+ 3m - tn ,OP = (m , n ), PQ = (-3- m ,t - n ) ,由OP ⋅ PQ = 1得-3m - m 2+ tn - n 2= 1,又由(1)知m 2+ n 2= 2 , 故3 + 3m - tn = 0 .所以OQ ⋅ PF = 0 ,即OQ ⊥PF .又过点 P 存在唯一直线垂直与OQ ,所以过点 P 且垂直于OQ 的直线l 过C 的左焦点 F .26. 【解析】(1)设椭圆的半焦距为c .因为椭圆 E 的离心率为 12,两准线之间的距离为 8,所以 c a = 1 , 2 2a 2 c = 8 ,解得a = 2, c = 1,于是b = = 3 ,因此椭圆 E 的标准方程是 x 2+ = 1.4 3(2)由(1)知, F 1(-1, 0), F 2 (1, 0) .设 P (x 0 , y 0 ) ,因为点 P 为第一象限的点,故 x 0 > 0, y 0 > 0 . 当 x 0 =1时, l 2 与l 1 相交于 F 1 ,与题设不符.当x ≠1时,直线 PF 的斜率为 y 0,直线PF 的斜率为 y 0.x 0 + 1 x 0 -1因为l ⊥PF , l ⊥PF ,所以直线l 的斜率为-x 0 +1 ,直线l 的斜率为-x 0 -1,112212a 2 - c 2 24 7 3 7 ⎪⎪ y从而直线l 的方程: y = -x 0 +1(x +1) , ①y 0直线l 的方程: y = -x 0 -1(x -1) . ②y 01- x 21- x 2由①②,解得 x = -x 0 , y = 0 ,所以Q (-x ,) . y 0 0 1- x 2因为点Q 在椭圆上,由对称性,得0 = ± y ,即 x 2 - y 2 =1或 x 2 + y 2= 1.x 2 y 2又 P 在椭圆 E 上,故+ 0 = 1.4 3⎧x 2 - y 2= 1⎧x 2 + y 2 = 1 ⎪ 0 0 ⎪ 0 0由⎨ x 2 y 2,解得 x 0 = , y 0 = ; ⎨ x 2 y 2 ,无解. 0 + 0 = 1 ⎩ 4 3 7 7 0 + 0= 1 ⎩ 4 3因此点 P 的坐标为(4 7 , 3 7) . 7 727. 【解析】(Ⅰ)设 F 的坐标为(-c , 0) .依题意, c = 1 , p = a ,a - c = 1,解得a = 1 ,a 2 2 2c = 1 , p = 2 ,于是b 2 = a 2 - c 2 = 3.2 42 4 y 22所以,椭圆的方程为 x + = 1,抛物线的方程为 y 3= 4x .(Ⅱ)设直线 AP 的方程为 x = my +1(m ≠ 0) ,与直线l 的方程 x = -1 联立,可得点2 2 24 y 2 P (-1, - ) ,故Q (-1, ) .将 x = my +1与 x + = 1 联立,消去 x ,m m3 整理得(3m 2+ 4)y 2+ 6my = 0 ,解得 y = 0 ,或 y =-6m .3m 2+ 4-3m 2 + 4 由点 B 异于点 A ,可得点 B ( 3m 2 + , -6m ) .4 3m + 42由Q (-1, ),可得直线 BQ 的方程为m -6m 2 -3m 2 + 4 2 2 - 3m 2 (3m 2 + 4 - )(x +1) - ( m 3m 2 + 4 +1)( y - ) = 0 ,令 y = 0 ,解得 x = m, 3m 2+ 2 2 12y6 6 ⎨ 1 1 1 111y 22 - 3m 2 2 - 3m 26m 2 故 D ( , 0) .所以| AD |= 1- = .3m 2 + 2 3m 2 + 2 3m 2 + 21 6m 22 又因为△APD 的面积为,故 ⨯ ⨯ = , 2 2 3m 2 + 2 | m | 2整理得3m 2 - 2 | m | +2 = 0 ,解得| m |=6 ,所以m =± .33所以,直线 AP 的方程为3x + 28. 【解析】(I )由题意知e = c=a6y - 3 = 0 ,或3x - 2 , 2c = 2 ,26y - 3 = 0 .所以a = 2,b = 1 ,x 2 + 2因此椭圆 E 的方程为 2y = 1 .(Ⅱ)设A ( x 1 , y 1 ),B (x 2 , y 2 ) ,⎧ x 2 + 2联立方程⎪ 2= 1, ⎪ y = k x - 3 ,⎩⎪12得(4k 2+ 2) x 2 - 4 3k x -1 = 0 ,由题意知∆> 0 ,且 x + x = 2 3k 1 , x x = - 1 , 1 2 2k 2+ 1 1 2 2(2k 2 + 1)所 以 AB = x 1 - x 2 = .1+2k2由题意可知圆 M 的半径r 为r = 2AB =由题设知k 1k 2 = 4, 332k 2 + 1所以k 2 =2 4k 1因此直线OC 的方程为 y =x .4k 16 6 1 + k 21 2 1 11 + k2 1 + 8k 2 2 21 11 + k2 1 + 8k 22x 2+ y 21 + 8k 21 1 + 4k 211 +OC OC 2 2 ⎪ 2 ⎨1 1 t2 = ⎪ = ⎧ x 2 + 联立方程⎪⎪ y =y 2= 1, x ,⎩⎪4k 18k 2 得 x 2= 1, y 2 =1 + 4k 21 ,1 + 4k 211因此 OC = = .由题意可知sin ∠SOT = 2r = 1 ,r + OC r3 2 1 + 2k 2而 =r = 1 , 4令t = 1 + 2k 2,则t > 1,1∈(0,1) ,t因此 OC = 3 t= 31 =3 1≥ 1,r 2 2t 2 + t -122 + 1 - 1t t 22 ⎛ 1 1 ⎫2 9 - - ⎪ +⎝ ⎭4当且仅当1 = 1,即t = 2 时等号成立,此时k = ± ,t 2 12所以sin ∠SOT ≤ 1,2 2因此∠SOT ≤ π , 2 6所以∠SOT 最大值为 π.3综上所述: ∠SOT 的最大值为 π,取得最大值时直线l 的斜率为 k = ± .312⎧ c 3⎪ a 2 ⎪ 1 ⎪29. 【解析】(Ⅰ)由题意得 ab 1, 解得a = 2, b = 1.⎨ 2 ⎪a 2 = b 2 + c 2 , ⎪⎩2 1 + 8k 21 11 + 4k 22 21 + k2 1 + 8k 2 1 1 1 + 4k 2 1 + k 21 1 ,2 y 0 x 0 - 2x 0y 0-19所以椭圆C 的方程为 x 4+ y 2 = 1 .(Ⅱ)由(Ⅰ)知, A (2,0), B (0,1) ,设 P (x , y ) ,则 x 2 + 4 y 2 = 4.当 x 0 ≠ 0时,直线 PA 的方程为 y = yx - 2 (x - 2) .令 x = 0 ,得 y= - 2 y 0 0.从而 BM = 1- y= 1+ .x 0 - 2直线 PB 的方程为 y =y 0 -1 x +1.x 0令 y = 0 ,得 x N = - x 0y -1 .从而 AN = 2 - x N = 2 + .所 以 AN ⋅ BM 0= 2+⋅ 1+= 4 . 当 x 0 = 0 时, y 0 = -1, BM = 2, AN = 2,所以 AN ⋅ BM = 4 .综上, AN ⋅ BM 为定值.30.【解析】(Ⅰ)设直线l : y = kx + b (k ≠ 0,b ≠ 0), A (x 1, y 1) , B (x 2 , y 2 ) , M (x M , y M ) .将 y = kx + b 代入9x 2+ y 2= m 2得(k 2 + 9)x 2 + 2kbx + b 2 - m 2 = 0 ,故 x M = x 1 + x 2 = - 2 kbk 2 + 9, y M = kx M + b = 9b . k 2 + 9于是直线OM 的斜率k= y M = - ,即k ⋅ k = -9 . x M k所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点 m( , m ) , 3所以l 不过原点且与C 有两个交点的充要条件是k > 0 , k ≠ 3 .x 0y 0 -1 2 y 0 x 0 - 22MM OMOM7 OM OQOQ ON⎨ ay ⎨ 由(Ⅰ)得OM 的方程为 y =- 9x .设点 P 的横坐标为 x .⎧ y =- 9 x ,kk 2m 2P±km由⎪k得 x P= 2,即 x P = .⎪⎩9x 2 + y 2 = m 2 ,9k + 813 k 2 + 9将点( m , m ) 的坐标代入直线l 的方程得b =m (3 - k ) ,因此 x= mk (k - 3) .33M3(k 2 + 9)四边形OAPB 为平行四边形当且仅当线段 AB 与线段OP 互相平分,即 x P = 2x M .±km于是= 2 ⨯ mk (k - 3) .解得k = 4 - 7 , k = 4 + .3(k 2 + 9) 1 2 因为k i > 0, k i ≠ 3 ,i = 1 ,2 ,所以当l 的斜率为4 - 7 或4 + 7 时,四边形OAPB 为 平行四边形.⎧b = 1,⎪ c 31. 【解析】(Ⅰ)由题意得⎪= ⎪ 2 , 解得a 2 =2. ⎪⎩a 2 = b 2 + c 2 . 故椭圆C 的方程为 x 2 + 22= 1.设 M ( x N ,0).因为m ≠ 0 ,所以-1 < n <1 . 直线 PA 的方程为 y -1 = n -1x ,m所以 x = m ,即 M ( m, 0) .M1- n 1- n(Ⅱ)因为点 B 与点 A 关于 x 轴对称,所以 B (m , -n ) ,设 N (x N , 0) ,则 x N =m .1+ n“存在点Q (0, y Q ) 使得∠OQM = ∠ONQ 等价”,“存在点Q (0, y Q ) 使得=”即 y 满足 y 2= xx .QQ MNmmm 2+2因为 x M2 3 k 2 + 92高考真题=1-n ,xN=1+n ,2n = 1,2 - 2 5 b = = ⎪ 4 2 + = 2 = ⎪ ⎩y所 以 y Q= x M x Nm 2 1- n 2 2 .所以 y Q = 或 y Q = .故在 y 轴上存在点Q ,使得∠OQM = ∠ONQ .点Q 的坐标为(0, 2) 或(0, -2) .32. 【解析】(1)由题设条件知,点 M 的坐标为( 2 a , 1 b ) ,又k = 5 b5 ,从而 ,进而得a =5b , c = 3 3 OM10 = 2b ,故e = c = 2 5. 2a 10a 5(2) 由题设条件和(I )的计算结果可得,直线 AB 的方程为x + y= 1,点 N 的坐 b 标为(5b , - 1 b ),设点 N 关于直线 AB 的对称点 S 的坐标为(x , 7) ,则线段 NS 的 2 2 12中点T 的坐标为( 5 b + x 1 , - 1 b + 7) .又点T 在直线 AB 上,且k 4 2 4 4 NS ⋅ k AB = -1,从而⎧ 5 b +x 1⎪- 1 b + 7 + 4 4 = 1 ⎪ 5bb 有⎨ 7 + 1 b⎪2 2 = ,解得b =3 ,所以b = 3 5 , ⎪⎪ x 1 - 5b 2x 2 + y 2 =故椭圆 E 的方程为 1 .45 93. 【解析】(Ⅰ)由题意知2a = 4 ,则a = 2,又c =a3 , a 2 - c 2 = b 2,2可得b = 1,所以椭圆C 的方程为 x 2 + 24= 1 .x 2 y 2 (Ⅱ)由(I )知椭圆 E 的方程为 1 . 16 4a 2- b 252 (16k 2 + 4 - m 2 )m 2 (4 - m 2 1 + 4k 2 1 + 4k 2 ) m 2 (4 - t )t - t 2 + 4t3 1(i )设 P ( x , y ),| OQ |= λ ,由题意知Q (-λx ,-λy ),| OP |0 0x 22(-λx )2 (-λy )2λ x 2因 为 0+ y = 1,又0 + 0 = 1,即( 0 + y 2 ) = 1 ,416 4 4 4 0所以λ = 2 ,即| OQ |= 2 .| OP |(ii )设 A ( x 1, y 1 ), B ( x 2 , y 2 ) ,将 y = kx + m 代入椭圆 E 的方程, 可得(1+ 4k 2 )x 2 + 8kmx + 4m 2 -16 = 0 , 由∆ > 0,可得 m 2 < 4 +16k 2 ,则 有 x + x = - 8km, x x =1 21 + 4k2 1 24m 2 - 16 ,1 + 4k 2所以| x 1 - x 2 |= 16k 2 + 4 - m 2. 1 + 4k 2因为直线 y = kx + m 与 y 轴交点的坐标为(0, m ) ,所以∆OAB 的面积 S = 2 | m || x 1 - x 2 | ==16k 2 + 4 - m 2 | m | 1 + 4k 2= 1 + 4k 22 m 2令1 + 4k 2= t ,将 y = kx + m 代入椭圆C 的方程, 可得 (1+ 4k 2 )x 2 + 8kmx + 4m 2 - 4 = 0 , 由∆ ≥ 0 ,可得 m 2≤ 1+ 4k 2,由①②可知 0 < t ≤1,因此 S = 2 = 2 , 故 S ≤2 3 ,当且仅当t = 1时,即m 2 = 1+ 4k 2 时取得最大值2 ,由(i )知,∆ABQ 面积为3S , 4 23 k 2+14k 2- 3 7 y y 所以∆ABQ 面积的最大值为6 .34.【解析】(I )设F (c, 0)2 = 2 3,得c = 3.,由条件知,c 3又 c = a , 所以a =2, 2b 2 = a 2 -c 2 = 1. 故E 的方程为 x 2 + 2 4 = 1.(Ⅱ)当l ⊥ x 轴时不合题意,故设l : y =kx - 2, P (x 1, y 1),Q (x 2 , y 2 ).将y = kx - 2代入 x 2 + 24= 1得 (1+ 4k 2 )x 2 -16kx +12 = 0.223 8k ± 2 4k 2 - 3当∆=16(4k - 3) > 0,即k > 4 时,x 1,2 =4k 2 +1 .4 k 2 +1 ⋅ 4k 2 - 3从而 PQ = x 1 - x 2 = 4k 2+1 .又点O 到直线PQ 的距离d =2.所以∆OPQ 的面积1 4 4k2 -3 S ∆OPQ = 2 d ⋅ PQ = 4k 2 +1 .设 = t ,则t > 0, S∆OPQ = 4t t 2+ 4 = 4 .t + 4t因为t + 4 ≥ 4,当且仅当t = 2,即k = ± t 7时等号成立,且满足∆ > 0.2所以,当∆OPQ 的面积最大时,ι的方程为y = x - 2或y = - 2 2x - 2 .⎧ y = kx + m ⎪35. 【解析】(Ⅰ)设直线l 的方程为 y = kx + m (k < 0) ,由⎨ x 2 + y 2 =,⎪⎩ a 2 b21 消去y 得, (b 2 + a 2k 2) x2+ 2a 2kmx + a 2m 2 - a 2b 2 = 0 ,由于直线l 与椭圆C 只有一个公共点 P ,故∆ = 0 ,即b 2 - m 2 + a 2k 2= 0 ,3 k 2 +1 7b ⎛ a 2km b 2m ⎫解得点 P 的坐标为 - b 2 +2 2 , 2 2 2 ⎪ ,由点 P 在第一象限, ⎝a kb + a k ⎭⎛ a 2k b 2⎫故点 P 的坐标为 - ;⎝(Ⅱ)由于直线l 1 过原点O ,且与l 垂直,故直线l 1 的方程为 x + ky = 0 ,所以点 P 到直线l 1 的距离d =,a 2 - b2 2 2b 2 整理得d = a k + ≥ 2ab ,k2a 2 -b 2≤ 2 2= a - b,当且仅当k 2 = b 时等号成立, a所以点 P 到直线l 1 的距离的最大值为a - b . 36. 【解析】(Ⅰ)根据c=b 2M (c , ), 2b a= 3ac 将b 2= a 2- c 2代入2b 2= 3ac ,解得 c = 1 , c= -2 (舍去) a 2 a故 C 的离心率为 1.2(Ⅱ)由题意,原点O 为 F 1F 2 的中点, MF 2 ∥ y 轴,所以直线 MF 1 与 y 轴的交点 D (0, 2)2 是线段 MF 1 的中点,故 a= 4 ,即b = 4a①由 MN = 5 F 1N 得 DF 1 = 2 F 1N 。
专题三:椭圆高考真题赏析解析版

专题三:椭圆高考真题赏析一、单选题1.2017年全国普通高等学校招生统一考试理科数学(全国卷3正式版)的圆与直线20bx ay ab -+=相切,则C 的离心率为【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所2.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B 【解析】 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =. 【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991 cos2233n n nF ABn n+-∠==⋅⋅.在12AF F△中,由余弦定理得2214422243n n n n+-⋅⋅⋅=,解得3n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.法二:由已知可设2F B n=,则212,3AF n BF AB n===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F△和12BF F△中,由余弦定理得2221222144222cos4,422cos9n n AF F nn n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F∠∠互补,2121cos cos0AF F BF F∴∠+∠=,两式消去2121cos cosAF F BF F∠∠,,得223611n n+=,解得32n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.3.2018年全国普通高等学校招生统一考试理数(全国卷II)已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左,右焦点,A是C的左顶点,点P在过A3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为A .23B .12C .13D .14【答案】D 【解析】 【分析】 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos 6PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2221=4,54sin()3c a c e a c PAF =∴==+-∠,故选D. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 4.2019年全国统一高考数学试卷(理科)(新课标Ⅱ) 若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D . 【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养. 二、填空题5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________. 【答案】22325()24x y -+= 【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程6.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)【答案】( 【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y ,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.三、解答题7.2020年全国统一高考数学试卷(文科)(新课标Ⅰ)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解. (2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)xE y aa+=>可得:(),0A a-,(),0B a,()0,1G∴(),1AG a=,(),1GB a=-∴218AG GB a⋅=-=,∴29a=∴椭圆方程为:2219xy+=(2)证明:设()06,P y,则直线AP的方程为:()()363yy x-=+--,即:()039yy x=+联立直线AP的方程与椭圆方程可得:()221939xyyy x⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y+++-=,解得:3x=-或223279yxy-+=+将223279yxy-+=+代入直线()039yy x=+可得:0269yyy=+所以点C的坐标为20022003276,99y yy y⎛⎫-+⎪++⎝⎭.同理可得:点D的坐标为2002200332,11y yy y⎛⎫--⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭.【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.8.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】 【分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】 (1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,3b c =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533cMF c c =+==,解得3c =. 因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =. 【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.9.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)AM 的方程为2y x =-+2y x =;(2)证明见解析. 【解析】 【分析】(1)首先根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为1x =,代入椭圆方程求得点A 的坐标为1,2⎛⎫ ⎪ ⎪⎝⎭或1,2⎛⎫-⎪ ⎪⎝⎭,利用两点式求得直线AM 的方程; (2)分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果. 【详解】(1)由已知得()1,0F ,l 的方程为1x =.由已知可得,点A 的坐标为1,2⎛ ⎝⎭或1,2⎛-⎝⎭.所以AM 的方程为2y x =-+2y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<直线MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+. 从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论. 10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.【答案】(1)12k <-(2)28或28- 【解析】分析:(1)设而不求,利用点差法进行证明.(2)解出m,进而求出点P 的坐标,得到FP ,再由两点间距离公式表示出,FA FB ,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设()()1122,,,A x y B x y ,则222211221,14343x y x y +=+=.两式相减,并由1212y y k x x -=-得 1212043x x y y k +++⋅=. 由题设知12121,22x x y y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-.(2)由题意得()1,0F ,设()33,P x y ,则()()()()3311221,1,1,0,0x y x y x y -+-+-=.由(1)及题设得()()31231231,20x x x y y y m =-+==-+=-<. 又点P 在C 上,所以34m =,从而31,2P ⎛⎫- ⎪⎝⎭,32FP =.于是(122x FA x ===-. 同理222x FB =-. 所以()121432FA FB x x +=-+=. 故2FP FA FB =+,即,,FA FP FB 成等差数列. 设该数列的公差为d ,则()212112||2d FB FA x x x x =-=-=+②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得d =.所以该数列的公差为28或28-. 点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到0FP FM +=,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大. 11.2017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1) 2214x y +=.(2)证明见解析. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩.故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且2t <,可得A ,B 的坐标分别为(t,2),(t,2-).则1222122k k t t +=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得()222418440kx kmx m +++-=由题设可知()22=16410k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ ()()12121221kx x m x x x x +-+=.由题设121k k +=-,故()()()12122110k x x m x x ++-+=.即()()22244821104141m km k m k k --+⋅+-⋅=++. 解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即()1122m y x ++=--,所以l 过定点(2,1-)点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.12.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.【解析】 【分析】 【详解】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),NM 0,x y y =-=()由NP 2NM =得0002x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=.因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则()()OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,, ()OP m n PQ 3m t n ==---,,(,).由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0. 所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 13.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM 的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->2k <<.因此k 的取值范围是)2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.14.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a>b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y +=(2)2y x =-【解析】试题分析:设出F ,由直线AF 的斜率为3求得c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF的斜率为3,()0,2A -所以2c =c =又222c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即2k <-或2k >时 1212221612,1414k x x x x k k+==++. 所以PQ ===点O 到直线l 的距离d =所以21214OPQS d PQ k∆==+,0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或22y x =--. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.15.2020年全国统一高考数学试卷(理科)(新课标Ⅲ)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ的面积. 【详解】(1)222:1(05)25x yC mm+=<<∴5 a=,b m =,根据离心率22154115c b mea a⎛⎫⎛⎫==-=-=⎪ ⎪⎝⎭⎝⎭,解得54m=或54m=-(舍),∴C的方程为:22214255x y⎛⎫⎪⎝⎭+=,即221612525x y+=;(2)不妨设P,Q在x轴上方点P在C上,点Q在直线6x=上,且||||BP BQ=,BP BQ⊥,过点P作x轴垂线,交点为M,设6x=与x轴交点为N根据题意画出图形,如图||||BP BQ=,BP BQ⊥,90PMB QNB∠=∠=︒,又90PBM QBN∠+∠=︒,90BQN QBN∠+∠=︒,∴PBM BQN∠=∠,根据三角形全等条件“AAS”,可得:PMB BNQ≅△△,221612525x y+=,∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=, 根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-= ∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.6.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3m m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+.【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示; (2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kb x k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k ==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-.(2)四边形OAPB 能为平行四边形.∵直线l 过点(,)3m m ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = ∴239k =+2(3)23(9)mk k k -⨯+.解得147k =-,247k =+. ∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形.考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.。
高考数学专题《椭圆》习题含答案解析

专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( )ABC .D .【答案】B 【解析】,选B .2.(2019·北京高考真题)已知椭圆22221x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( )A .22143x y +=B .22186x y +=C .22142x y +=D .22184x y +=22194x y +=2359e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=.故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则y x =由2AB c =,可知OA c ==c =,解得x =,所以1,3A c ⎫⎪⎪⎭把点A 代入椭圆方程得到22221331c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=,因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析.【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩,或1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =.则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+>,43-,∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ 【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围.【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b+(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-.从而()12n FP FP a c a c c -≤+--=.再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤.同理,当等差数列递减时,可解得1010d -≤<,故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,=∴10AM MF +≤+当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为10.9.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>,且点A (2,1)在椭圆C 上,O 是坐标原点.(1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解.【详解】(1)由e =得:12c b a ==,,又点(21)A ,在椭圆上,所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =,因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-,与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD =10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b+=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解.【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b+=>>两个焦点,所以2224c a b =-=,①又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>,由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△即12F PF △1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A .1,12⎡⎫⎪⎢⎣⎭B.C.⎫⎪⎪⎭D.⎫⎪⎭【答案】C练提升【分析】若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin b aα=求椭圆离心率的范围.【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 45b a α=≤︒=222a c ≤,∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎭.故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤ ⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠,∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立,在2AFF V 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF emn mn mn a +-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤.故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.1 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q为短轴的端点,故离心率πcos 4c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B = ,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.和5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________..【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >,因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c ,根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a ,解得112=+PF a a ,212=-PF a a ,在12F PF ∆中,由余弦定理,可得:2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a ,整理得2221243=+c a a ,所以22121134+=e e ,又2212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH(H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y,所以点0⎫⎪⎭H y 由λ=HQ PH ,所以λ=HQPH0⎛⎫=-- ⎪⎝⎭ HQ x y y,0,0⎫=⎪⎭PH x 又λ= HQ PH,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x所以00x y y==由220014x y +=221=y 则点Q221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥所以234e ≥,则e ≥,又1e <所以⎫∈⎪⎪⎭e故答案为:⎫⎪⎪⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得.【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围.【详解】22194x y +=的焦点为1(F、2F ,如图所示:A 、B 、C 、D 四点,此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角,所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==.因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y+=的两个焦点,P是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值.【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号,∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号,∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y +=,由已知,得12||||26PF PF a +==,∴12||6||PF PF =-,∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6+②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足MN = ,求直线n 的斜率.【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x,利用根与系数的关系,结合MN =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b ,所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C,原点O 到直线0bx cy bc +-=,所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c ==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++.因为MN =,所以))2121P x x y y ⎫--⎪⎪⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-,即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.练真题1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A.⎫⎪⎪⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝D .10,2⎛⎤ ⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .2.(2018·全国高考真题(理))已知,是椭圆的左,右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( )A .B .C .D .【答案】D 【解析】因为为等腰三角形,,所以PF 2=F 1F 2=2c,由得,,1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 2312131412PF F △12120F F P ∠=︒AP 222tan sin cos PAF PAF PAF ∠=∴∠=∠=由正弦定理得,所以,故选D.3.(2019·全国高考真题(文))已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若,,则C 的方程为( )A. B. C. D.【答案】B 【解析】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.所求椭圆方程为,故选B .法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B .4.(2019·全国高考真题(文))设为椭圆的两个焦点,为上2222sin sin PF PAF AF APF ∠=∠22214,π54sin(3c a c e a c =∴==+121,01,0F F -(),()222AF F B =││││1AB BF =││││2212x y +=22132x y +=22143x y +=22154x y +=2F B n =212,3AF n BF AB n ===121224,22a BF BF n AF a AF n =+=∴=-=1AF B △22214991cos 2233n n n F AB n n +-∠==⋅⋅12AF F △2214422243n n n n +-⋅⋅⋅=n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴22132x y +=2F B n =212,3AF n BF AB n ===121224,22a BF BF n AF a AF n =+=∴=-=12AF F △12BF F △2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩2121,AF F BF F ∠∠2121cos cos 0AF F BF F ∴∠+∠=2121cos cos AF F BF F ∠∠,223611n n +=n =22224,,312,a n a b a c ∴==∴=∴=-=-=∴22132x y +=12F F ,22:+13620x y C =M C一点且在第一象限.若为等腰三角形,则的坐标为___________.【答案】【解析】由已知可得,.∴.设点的坐标为,则,又,解得,,解得(舍去),的坐标为.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>(1)证明:a;(2)若点9,10M ⎛ ⎝在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立;(2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程.【详解】12MF F △M (2222236,20,16,4a b c a b c ==∴=-=∴=11228MF F F c ∴===24MF =M ()()0000,0,0x y x y >>121200142MF F S F F y y =⋅⋅=△12014,42MF F S y =⨯=∴=△0y =20136x ∴=03x =03x =-M \((1)c e a =====b a ∴=a ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝,可得b >设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝,所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝,即y =所以,直线l0y -=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-.【解析】(Ⅰ) 椭圆()222210x ya b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ) 直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx +=,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+.将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-.。