非参数假设检验
数学建模方法-非参数假设检验

两相关样本的非参数检验(2 Related Samples Test)
【例12】clinical trial.sav 比较试验药组(group=1) 治疗前血红蛋白含量(hb1)和治疗后血红蛋白含量(hb2) 有无差异.
这是两组相关计量资料的比较. 结论:P=0.018,有显著性差异.
多个相关样本的非参数检验(K Related Samples Test) 【例13】nonpara_7.sav 分析药物是否有效
两相关样本的非参数检验(2 Related Samples Test) 多个相关样本的非参数检验(K Related Samples Test)
两独立样本的非参数检验(2 Independent Samples Test) 检验两个独立样本间是否具有相同的分布. 【例8】nonpara_3.sav 比较两组人群的RD值有无差别 这是两组计量资料的比较. 选择要检验的变量和分 类变量,定义分类值(1-2),其它使用默认选项即可.从负二项分 布的结论.
单样本的K_S拟合优度检验
检验一计量资料是否服从某种理论分布,这里的分布可以 是正态分布(Normal),均匀分布(Uniform),泊松分布(Poisson), 指数分布(Exponential).
【例7】diameter_sub.sav 检验是否服从正态分布
多个独立样本的非参数检验(K Independent Samples Test) 【例10】nonpara_5.sav 比较三种药物的效果有无差别 这是三组计量资料的比较. 选择要检验的变量和分 类变量,定义分类值(1-3),其它使用默认选项即可. 结论:三组的秩和12.6,7.6,3.8,P=0.008,三种药物的 效果有显著性差异,以甲药效果最好. 【例11】nonpara_6.sav 比较三种固定钉治疗骨折的疗效 这是三组等级/频数资料的比较. 先说明频数变量, 再选择要检验的变量和分类变量,定义分类值(1-3),其它 使用默认选项即可. 结论:P=0.129,故三组无显著性差异.
参数检验和非参数检验

参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。
参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。
本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。
参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。
然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。
常见的参数检验方法有t检验、F检验和卡方检验等。
以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。
假设我们有两组样本数据,分别服从正态分布。
可以使用t检验来计算两组样本均值的差异是否显著。
t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。
参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。
此外,参数检验通常具有较好的效率和统计性质。
然而,参数检验也有一些限制和缺点。
首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。
另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。
此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。
与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。
它适用于更广泛的数据类型和样本分布。
常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。
以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。
这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。
非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。
此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。
非参数检验的检验方法

非参数检验的检验方法非参数检验是一种假设检验的方法,它不依赖于总体分布的具体形式,而是基于样本数据进行推断。
相比于参数检验,非参数检验更加灵活和普适,可以适用于更广泛的情况。
非参数检验的主要思想是通过对样本数据的排序或者秩次变换,来推断总体的性质。
下面将介绍几种常见的非参数检验方法:1. Mann-Whitney U检验(又称Wilcoxon秩和检验):Mann-Whitney U检验用于比较两个独立样本的总体中位数是否相等。
它的基本思想是将两组样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。
然后计算两组数据秩次和之差的绝对值,该值即为检验统计量U,根据U的大小可以进行推断。
2. Kruskal-Wallis H检验:Kruskal-Wallis H检验用于比较多个独立样本的总体中位数是否相等。
它的基本思想是将所有样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。
然后计算每个样本的秩次和,以及总体的秩次和。
根据这些秩次和的差异来进行推断。
3. 秩和检验:秩和检验是一类常见的非参数检验方法,包括Wilcoxon符号秩检验和符号秩和检验。
这两种方法都是用来比较两个相关样本的总体中位数是否相等。
基本思想是将两个样本的差的符号进行标记,并用秩次表示绝对值大小的顺序。
然后根据秩次和的大小来进行推断。
4. Friedman检验:Friedman检验用于比较多个相关样本的总体中位数是否相等。
它的基本思想是将所有样本的数据进行秩次变换,并计算每个样本的秩次和。
然后根据秩次和的差异来进行推断。
在进行非参数检验时,需要注意以下几点:1. 样本独立性:非参数检验通常要求样本之间是独立的,即样本之间的观测值不受其他样本观测值的影响。
如果样本之间存在相关性,应考虑使用相关性检验或者非参数检验的相关版本。
2. 样本大小:非参数检验对样本的大小没有严格要求,但样本大小较小时可能会影响检验的统计功效。
非参数假设检验.pptx

计算每分钟内通过收费站的汽车为0辆、1辆、2辆、3 辆、4辆或更多的概率。
第12页/共43页
e 各概率乘以观测总数n=100,便得到理论频数 ,具体结果见下表: i ei
计算 2统计量的值:
2 (14.96 10)2 (28.42 26)2 (27.0 35)2
H0 :汽车通过收费站的辆数服从泊松分布; H1 :不服从泊松分布。
观测值分为5组,且有 u0 10,u1 26,u2 35,u4 5
第11页/共43页
回忆泊松分布
P{X x} e x , x 0,1, 2,
x!
其中 为泊松分布的期望值,是未知的,需要用样
本观测值来估计。由于100分钟内观测到190辆汽车, 所以平均每分钟观测到190/100=1.9辆汽车,故
第9页/共43页
计算 2统计量的值:
2 6 (ui ei )2
i1
ei
(27 25)2 (18 25)2 (15 25)2 (24 25)2
25
25
25
25
(36 25)2 (30 25)2 12
25
25
在本例的情况下, 统2 计量的自由度为m-1=6-1=5。
第8页/共43页
解:本例中的观测值以月为组,共分为m=6组,
每 月的销售台数即为观测的频v数i ,观测的总次
数为n=150。现欲检验是否服从(离散的)均匀 分布,即每月的销售量是否为
ei
nPi
150 6
25(台),
Pi
1 6
,i
1,
,6
为此,设
H0 :洗衣机销售量服从均匀分布;
H1 :并不服从均匀分布;
非参数假设检验方法

非参数假设检验方法
非参数假设检验方法,那可真是个超棒的统计利器!咱先说说它的步骤吧。
嘿,你想想看,就像搭积木一样,第一步得先明确问题,确定咱要检验啥。
然后收集数据,这数据就像是建筑材料,得好好收集。
接着计算检验统计量,这就如同给积木搭出形状。
最后根据统计量判断是否拒绝原假设。
这步骤简单易懂吧?
注意事项也不少呢!数据得有代表性,不然就像盖房子用了劣质材料,那可不行。
样本量也不能太小,不然就像小娃娃搭的积木城堡,风一吹就倒啦。
说到安全性和稳定性,那可是杠杠的!它不像有些方法那么娇气,对数据的分布要求不高。
就好比一辆越野车,能在各种路况下行驶,不用担心路况不好就抛锚。
应用场景那可多了去啦!当数据不满足参数检验的条件时,非参数假设检验方法就大显身手啦。
比如研究不同年龄段的人对某种产品的喜好,数据可能乱七八糟的,这时候非参数检验就像救星一样。
它的优势也很明显啊,操作简单,容易理解,不需要太多高深的数学知识。
就像玩游戏,不需要看厚厚的说明书就能上手。
给你举个实际案例吧。
有个公司想知道新推出的广告有没有效果,就用了非参数假设检验方法。
结果发现广告确实提高了产品的知名度。
这效果,哇塞,杠杠的!
非参数假设检验方法就是这么牛!它简单易用,安全稳定,应用场景广泛,优势明显。
赶紧用起来吧!。
假设检验——非参数检验

假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。
上一节我们所介绍的Z 检验、t 检验,都是参数检验。
它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。
参数检验就是要通过样本统计量去推断或估计总体参数。
然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。
这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。
非参数检验是通过检验总体分布情况来实现对总体参数的推断。
非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。
非参数检验的方法很多,分别适用于各种特点的资料。
本节将介绍几种常用的非参数检验方法。
一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。
22检验的方法主要包括适合性检验和独立性检验。
(一)2检验概述2是实得数据与理论数据偏离程度的指标。
其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。
分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。
观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。
当 f 0 与 f e 完全相同时,2值为零。
际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。
参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。
本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。
一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。
它通常要求总体分布服从特定的概率分布,如正态分布。
参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。
2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。
3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。
4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。
参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。
但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。
二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。
非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。
2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。
3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。
非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。
它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。
三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。
2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。
非参数检验的场景与方法

非参数检验的场景与方法非参数检验是一种统计方法,用于对数据进行假设检验,而不需要对数据的分布做出任何假设。
相比于参数检验,非参数检验更加灵活,适用于更广泛的场景。
本文将介绍非参数检验的场景和常用的方法。
一、非参数检验的场景非参数检验适用于以下场景:1. 数据不满足正态分布:在一些实际问题中,数据的分布可能不满足正态分布假设,例如长尾分布、偏态分布等。
此时,非参数检验可以更好地适应数据的特点。
2. 样本量较小:参数检验通常要求样本量较大,以保证统计推断的准确性。
而非参数检验对样本量的要求较低,即使样本量较小,也可以进行有效的假设检验。
3. 数据类型不确定:非参数检验可以适用于各种数据类型,包括连续型数据、离散型数据、有序数据等。
而参数检验通常对数据类型有一定的要求。
二、常用的非参数检验方法1. Wilcoxon符号秩检验:适用于两个相关样本的比较。
该方法将两个样本的差异转化为秩次,通过比较秩次的大小来进行假设检验。
2. Mann-Whitney U检验:适用于两个独立样本的比较。
该方法将两个样本的观测值合并后,通过比较秩次的大小来进行假设检验。
3. Kruskal-Wallis检验:适用于多个独立样本的比较。
该方法将多个样本的观测值合并后,通过比较秩次的大小来进行假设检验。
4. Friedman检验:适用于多个相关样本的比较。
该方法将多个样本的观测值转化为秩次,通过比较秩次的大小来进行假设检验。
5. Kolmogorov-Smirnov检验:适用于两个样本的分布比较。
该方法通过比较两个样本的累积分布函数来进行假设检验。
三、非参数检验的优缺点非参数检验相比于参数检验具有以下优点:1. 不需要对数据的分布做出任何假设,更加灵活。
2. 对样本量的要求较低,适用于小样本数据。
3. 适用于各种数据类型,更加通用。
然而,非参数检验也存在一些缺点:1. 相对于参数检验,非参数检验的统计效率较低。
2. 非参数检验通常需要更多的计算资源和时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(, t1 ], (t1 , t 2 ], , (t k 1 ,)
…,
t1
t2
tk-1
对随机变量取值数轴的分割
记 pi为总体在第 i 个区间上的概率值, 则有
p1 = P (X t1) = F(t1) p2 = P (t1 < X t2) = F(t2) - F(t1)
……
pk-1 = P (tk-2 < X tk-1) = F(tk-1) - F(tk-2) pk = P (X > tk-1) =1 - F(tk-1)
是由 n, m, (显著性水平)所决定的. 威尔可逊 ( Wilcoxon ) 给出了 W 的概率分布表, 对于给定 的显著性水平 , 可以由威尔可逊概率分布表, 依据n, m, 查出 W1 , W2 . 若W W1 或 W W2 , 则拒绝H0: F(x) = G(x) (认为两个 总体分布不同) 反之, 若W1 < W < W2 , 则接受H0: F(x) = G(x) (认为两 个总体分布相同).
U1 nm n(n 1) w1 2
U 2 nm
m(m 1) w2 2
对给定 , 查U 值表, 得 U. 若U < U , 则总体分布相同. 注意: 方法 (1), (2), (3) 是两个总体分布的比较, 与分布的具 体形式无关, 所以, 理论上可以用来检验两个任意形式的分 布是否相同.
(2) 大样本情况下, 正负号个数检验法的处理
在大样本情况下( 即 mp 10 ), 可以近似地用正态分布 来处理. 现在 p =0.5, 所以只要 m 20 即可. 用统计量:
Z U p ~ N (0,1) p (1 p ) m
在计算统计量 Z 的值z 时, 在式中要用 u (即n+ /m)代替U.
3. 检验两个总体的分布是否相同的第三种方法: Whitney 秩和检验法 ( 序号和检验法 )
Mann-
问题: 有两个总体的样本观测值 x1,x2,·,xn 与y1,y2 ,·,ym , · · · · 可能m n . 两组样本是可以各自独立颠倒顺序的. 检验这 两组样本是否来自同一个总体 (或两组样本的总体分布是 否相同). 同样, 把两组样本放在一起, 按样本观测值的大小重新排 序, 那么每个观测值就有一个序号( 秩 ). 把第一组样本x1, x2,·,xn的序号(秩) 加总起来, 记为 w1 .把第二组样本y1 · · ,y2 ,·,ym的序号(秩) 加总起来, 记为 w2 . · · Mann-Whitney U检验的统计量是: U = min {U1, U2 } 式中:
(1) 小样本情况下, 正负号个数检验法的处理
小样本情况下, 正负号个数检验法的处理, 与 5.3.1 小节 的处理原理相同, 只不过 5.3.1 节是单尾检验, 我们现在要做 双尾检验 (检验两个方向的备择假设). 以计算“xi - yi>0的个数为 r ”的概率为例, 对给定 的, 在假设p = 0.5 (H0假设)的前提下, 按照B(m, p) 的概率 计算公式, 对 r 从小到大, 求累积概率:
第六章
非参数假设检验
§ 6.1 总体分布的非参数假设检验
非参数假设检验(分布检验)所处理的问题是: (1)两个总体的分布未知,它们是否相同(用两组 样本来检验); (2)(由一组样本)猜出总体的分布(假设),然 后用(另一组)样本检验它是否正确。
需要注意的问题是,两种分布是否相同,一般包 含了参数(均值、方差等)是否相同的问题。如果两 个总体的分布函数形式相同,而参数不同,也将被判 别为概率分布不同。
记 ni 为样本 x1,x2,·,xn 中落在区间 i 中的个数(频次或频 · · 数),那么,频率ni /n (n 至少为50, 最好100 以上)与 概率 pi 之差应当很小,否则就应当拒绝假设H0 (总体的累 积概率分布函数为 F(x) ).
可以证明 (K. Pearson), 在 H0 成立的条件下, 统计量:
如果我们把xi = yi 的个数记为n0, 并从样本总数 n 中扣 除, 则 m = n – n0 , 表示了n 个样本中 xi yi的个数。 m 个样本对中, 把xi - yi > 0的个数记为n+ , xi - yi < 0 的个数记为n- , 则有m = n+ + n- . 设整数 r 满足: 0 r m, 则可以由下式计算出 “xi - yi > 0的个数为n+ ” 的概率 :
配对样本:
是按照问题本身的属性,“天然”配对的。也就是说, 不能各自独立地颠倒顺序。
例:用两套问卷测量 20 个管理人员的素质,两套问卷的满 分都是200分,两套问卷测得的结果如表:
卷A
卷B
147 150 152 148
146 151 154 147
155
152
146
147
149
148
148
146
151
于是, 我们又假设检验:
H0 : p = 0.5 ( 即 F(x) = G(x) )
H1 : p 0.5 (即 F(x) G(x)) . 对于显著性水平, 只要判断 | z |是否大于 z /2 ( 或者z的显 著性水平是否小于), 就可以得出拒绝还是接受H0: p = 0.5 ( 即 F(x) = G(x) )了.
P(r k1 )
2
确保k1的外侧概率小于等于/2, 从而求出k1.
进而, 在假设p = 0.5 (H0假设) 的前提下, 按照B(m, p) 的概率计算公式, 对 r 从小到大, 求累积概率:
P(r k
2
)
2
确保 k2 的外侧概率小于等于/2, 从而求出k2 .
如果实际的“xi - yi > 0的个数n+ ”在(k1 ,k2)中就接受 H0 : p = 0.5 ( 即 F(x) = G(x) ), 否则拒绝H0 ,认为p 0.5, 即 F(x) G(x) .
根据上表, 算得正负号如下表:
+ + + + + + + + + + + 0 +
此时, 正负号的个数 m =19, 所要检验的参数 p =0.5 , mp10,我们这里按大样本类型来处理. 统计出正号的个数 n+ =12 . 设定随机变量 U , 若xi - yi > 0出现, 令U = 1 , 若xi - yi < 0出 现, 令 U = 0 . 于是可以计算出 z 统计量的值如下:
16.40
16.00
17.10
16.90
问: 两种激励法的效果有无显著性差异(两种激励方法 的总体分布是否相同)?
该检验问题可以用参数检验的方法来检验两种激励方 法的平均效果有无显著性差异.
2. 检验两个总体的分布是否相同的另一种方法: Wilcoxon 秩和检验法 (序号和检验法)
设有两个总体的样本观测值 x1,x2,·,xn 与y1,y2 ,·, · · · · ym , 可能 m n . 两组样本是可以各自独立颠倒顺序的. 不妨设 n m , 把两组样本放在一起, 按样本观测值的大 小重新排序, 那么每个观测值就有一个序号, 称为秩. 把样 本个数少的这组样本x1,x2,·,xn的序号(秩) 加总起来, · · 记为 W . 如果两个总体的分布相同, 那么样本x1,x2,·, · · xn与y1,y2 ,·,ym 应当是均匀混合的, 也就是说, W 不能太 · · 小, 也不能太大. W 太小, 说明样本x1,x2,·,xn较多地集 · · 中在左段. W 太大, 说明样本 x1,x2,·,xn 较多地集中在 · · 右段. 由于n m , W 应当比另一组样本的序号之和小一些. 也 就是说, W应当在某两个数字之间: W1 < W < W2. W1 , W2
§ 6.2 一个总体分布的非参数假设检验
1、检验总体分布是否与猜想的分布 F(x) 相同: 拟合优度 2 检验法 问题: 假设(猜测)总体的概率密度函数为 f (x) ( 若总体 为离散型, 则假设总体的概率分布列为 P {X = xi}= Pi ), 用 一组样本 x1,x2,·,xn来检验假设是否成立. · · 作法: (1) 零假设H0 :总体的累积概率分布函数为 F(x) , 备择假设H1 :总体的累积概率分布函数不是 F(x). (2) 在数轴上选取 k-1 个分点 t1,t2,·, t k-1 , 将数轴上分 · · 为 k 个区间(可以是不等区间):
152
150
150
卷A
卷B
147 148 147 150
146 146 148 153
149
147
149
146
152
148
147
149
154
152
153
150
正负号检验的一个重要的前提是:样本xi 或 yi 不能各自独 立地颠倒顺序。
ቤተ መጻሕፍቲ ባይዱ
例:用两套问卷测量 20 个管理人员的素质,两套问卷的 满分都是200分,测得结果如上表。问:两套问卷有无显 著性差异(本质是两套问卷的结果的分布是否相同)?
解:依据关于正负号的二项分布B(m,p)来检验 p 是 否为0.5 , 即 H0 : p = 0.5 ( 即 F(x) = G(x) ) H1 : p 0.5 ( 即 F(x) G(x) ) .
如果接受 p = 0.5 的假设, 就接受F(x) = G(x)的假设, 否则 就拒绝F(x) = G(x)的假设. 这种解决问题的思路是: 把非参数检验的问题转化为参 数检验问题来处理.
例: 用两种激励方法, 分别对同样工种的两个班组(每个班 组 7 个人)进行激励, 测得激励后业绩增长 (%), 数据如表: