非参数检验方法.

合集下载

非参数检验方法

非参数检验方法

非参数检验方法
1、秩和检验法的主要思想是把原始数据转化成秩,利用秩构造统计量来比较不同样本的分布。

在这里每个样本的秩是指把原始数据按从大到小的顺序排列,该数据值在原始数据中的位置。

例如:
原始数据:A组(5,7),B组(3,2)
对应的秩:A组(3,4),B组(2,1)
A组的秩和为7,B组的秩和为3,每组的秩和被用来检验两组数据是否相同。

2、中位数评分检验法的主要思想是将原始数据转换成中位数评分,利用中位数评分构造统计量比较不同样本的分布。

当计算中位数评分时,如果数据值小于等于该组数据的中位数,则中位数评分为0,如果数据值大于该组数据的中位数,则中位数评分为1。

扩展资料
非参数检验的作用:
在以前的均值T检验中,我们分析的都是连续型随机变量,并且前提条件是样本满足正态性条件。

当分析不再是连续型或者不再是正态性条件时,则应当使用非参数的方法对均值和方差进行假设检验。

在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。

非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。

由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。

非参数检验的检验方法

非参数检验的检验方法

非参数检验的检验方法非参数检验是一种假设检验的方法,它不依赖于总体分布的具体形式,而是基于样本数据进行推断。

相比于参数检验,非参数检验更加灵活和普适,可以适用于更广泛的情况。

非参数检验的主要思想是通过对样本数据的排序或者秩次变换,来推断总体的性质。

下面将介绍几种常见的非参数检验方法:1. Mann-Whitney U检验(又称Wilcoxon秩和检验):Mann-Whitney U检验用于比较两个独立样本的总体中位数是否相等。

它的基本思想是将两组样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算两组数据秩次和之差的绝对值,该值即为检验统计量U,根据U的大小可以进行推断。

2. Kruskal-Wallis H检验:Kruskal-Wallis H检验用于比较多个独立样本的总体中位数是否相等。

它的基本思想是将所有样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算每个样本的秩次和,以及总体的秩次和。

根据这些秩次和的差异来进行推断。

3. 秩和检验:秩和检验是一类常见的非参数检验方法,包括Wilcoxon符号秩检验和符号秩和检验。

这两种方法都是用来比较两个相关样本的总体中位数是否相等。

基本思想是将两个样本的差的符号进行标记,并用秩次表示绝对值大小的顺序。

然后根据秩次和的大小来进行推断。

4. Friedman检验:Friedman检验用于比较多个相关样本的总体中位数是否相等。

它的基本思想是将所有样本的数据进行秩次变换,并计算每个样本的秩次和。

然后根据秩次和的差异来进行推断。

在进行非参数检验时,需要注意以下几点:1. 样本独立性:非参数检验通常要求样本之间是独立的,即样本之间的观测值不受其他样本观测值的影响。

如果样本之间存在相关性,应考虑使用相关性检验或者非参数检验的相关版本。

2. 样本大小:非参数检验对样本的大小没有严格要求,但样本大小较小时可能会影响检验的统计功效。

两组非参数检验方法

两组非参数检验方法

两组非参数检验方法非参数统计方法是指对总体分布形式不作任何假设的一类统计检验方法。

相对于参数统计方法而言,非参数统计方法在总体参数未知或者总体分布不满足特定假设条件的情况下更能适用。

本文将介绍两组常用的非参数检验方法:符号检验和Wilcoxon秩和检验。

第一组非参数检验方法是符号检验。

符号检验是对两个独立样本进行的一种非参数假设检验方法。

它的基本原理是比较两个样本中大于(或小于)某个特定值的样本数量是否具有显著差异。

首先,我们需要定义一个零假设(H0)和一个备择假设(H1)。

然后,计算两个样本对应数据的差值。

对于差值为正的样本,给予“+”符号;对于差值为负的样本,给予“-”符号;对于差值为零的样本,可以省略不计。

最后,通过比较“+”和“-”符号的数量,使用二项分布来计算出p值。

第二组非参数检验方法是Wilcoxon秩和检验。

这是一种用于比较两个相关样本的非参数假设检验方法。

它的思想是先将两个样本进行相互配对,然后对两个样本的差异值按大小进行排列,并赋予秩次。

然后,计算出正向差异和负向差异的秩和,并取较小值作为检验统计量。

最后,根据理论分布进行显著性检验,得到p值。

这两组非参数检验方法都有自己的适用范围和优势。

符号检验适用于样本容量较小、样本分布不满足正态分布假设的情况下,对两个独立样本差异进行显著性检验。

Wilcoxon秩和检验适用于比较两个相关样本之间的差异,如前后两次测量、配对样本的差异等。

与参数检验方法相比,这两个非参数方法更加鲁棒,能够在总体分布未知或偏离正态分布的情况下给出可靠的结果。

总结起来,非参数检验方法是一类不依赖与总体参数分布假设的统计方法,常用于小样本或总体分布不明确的情况下。

符号检验和Wilcoxon秩和检验是其中两组常用的方法。

符号检验适用于比较两个独立样本的差异,通过比较“+”和“-”符号的数量来判断差异的显著性;Wilcoxon秩和检验适用于比较两个相关样本的差异,通过对差异值按大小排列,并计算秩和来判断差异的显著性。

非参数检验方法

非参数检验方法

非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。

二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。

2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。

3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。

4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。

三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。

2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。

3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。

4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。

5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。

统计学中的非参数检验方法介绍

统计学中的非参数检验方法介绍

统计学中的非参数检验方法介绍统计学是一门研究收集、分析和解释数据的科学。

在统计学中,我们经常需要进行假设检验,以确定样本数据是否代表了总体特征。

非参数检验方法是一种不依赖于总体分布假设的统计方法,它在现实世界中的应用非常广泛。

本文将介绍一些常见的非参数检验方法。

一、Wilcoxon符号秩检验(Wilcoxon Signed-Rank Test)Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数检验方法。

它的原理是将两个相关样本的差值按绝对值大小进行排序,并为每个差值分配一个秩次。

然后,通过比较秩次总和与期望总和的差异来判断两个样本是否具有统计学上的显著差异。

二、Mann-Whitney U检验(Mann-Whitney U Test)Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。

它的原理是将两个样本的所有观测值按大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较两个样本的秩次总和来判断它们是否具有统计学上的显著差异。

三、Kruskal-Wallis检验(Kruskal-Wallis Test)Kruskal-Wallis检验是一种用于比较三个或更多独立样本的非参数检验方法。

它的原理是将所有样本的观测值按大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。

四、Friedman检验(Friedman Test)Friedman检验是一种用于比较三个或更多相关样本的非参数检验方法。

它的原理类似于Kruskal-Wallis检验,但是对于相关样本,它将每个样本的观测值按照相对大小进行排序,并为每个观测值分配一个秩次。

然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。

五、秩相关系数检验(Rank Correlation Test)秩相关系数检验是一种用于检验两个变量之间相关性的非参数检验方法。

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。

本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。

一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。

它通常要求总体分布服从特定的概率分布,如正态分布。

参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。

2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。

3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。

4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。

参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。

但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。

二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。

非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。

2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。

3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。

非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。

它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。

三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。

2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。

常见的几种非参数检验方法

常见的几种非参数检验方法

常见的几种非参数检验方法非参数检验是一种不需要对数据进行假设检验的统计方法,它不需要满足正态分布等前提条件,因此被广泛应用于实际数据分析中。

在本文中,我们将介绍常见的几种非参数检验方法。

一、Wilcoxon符号秩检验Wilcoxon符号秩检验是一种用于比较两个相关样本之间差异的非参数检验方法。

它基于样本差异的符号和秩来计算统计量,并通过查表或使用软件进行显著性判断。

二、Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本之间差异的非参数检验方法。

它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。

三、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种用于比较多个独立样本之间差异的非参数检验方法。

它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。

四、Friedman秩和检验Friedman秩和检验是一种用于比较多个相关样本之间差异的非参数检验方法。

它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。

五、符号检验符号检验是一种用于比较两个相关样本之间差异的非参数检验方法。

它基于样本差异的符号来计算统计量,并通过查表或使用软件进行显著性判断。

六、秩相关检验秩相关检验是一种用于比较两个相关样本之间关系的非参数检验方法。

它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。

七、分布拟合检验分布拟合检验是一种用于检验数据是否符合某个特定分布的非参数检验方法。

它基于样本数据与理论分布之间的差异来计算统计量,并通过查表或使用软件进行显著性判断。

八、重复测量ANOVA重复测量ANOVA是一种用于比较多个相关样本之间差异的非参数检验方法。

它基于样本方差和均值来计算统计量,并通过查表或使用软件进行显著性判断。

九、Bootstrap法Bootstrap法是一种用于估计总体参数和构建置信区间的非参数方法。

它基于自助重采样技术来生成大量虚拟样本,以此估计总体参数和构建置信区间。

r语言3组非参数检验

r语言3组非参数检验

r语言3组非参数检验非参数检验在统计学中是一种重要的方法,用于比较两组或多组数据是否具有显著性差异。

在R语言中,我们可以使用多种非参数检验方法来处理三组数据。

下面我们将介绍三种常用的非参数检验方法:卡方检验、配对卡方检验和Fisher确切概率法。

一、卡方检验卡方检验是一种用于比较两个或多个样本率或构成比是否显著的统计方法。

在R语言中,我们可以使用`chisq.test()`函数来进行卡方检验。

对于三组数据,我们可以将每两组的数据进行比较。

首先,我们需要将三组数据分别存储在三个向量中,例如:`group1`、`group2`和`group3`。

然后,我们可以使用以下代码进行卡方检验:```r#导入R语言自带的数据集data(mtcars)#将三组数据分别存储在向量中group1<-mtcars$mpggroup2<-mtcars$hpgroup3<-mtcars$drat#进行卡方检验chisq.test(cbind(group1,group2,group3))```上述代码将输出每组数据之间的卡方统计量和对应的p值。

如果p值小于预设的显著性水平(通常为0.05),则我们可以拒绝原假设,认为两组数据之间存在显著差异。

二、配对卡方检验配对卡方检验是一种用于比较两个配对样本是否具有相似性的统计方法。

在R语言中,我们可以使用`paired.test()`函数来进行配对卡方检验。

对于三组数据,我们可以将每两组的数据进行配对比较。

首先,我们需要将每两组的数据配对存储在一个矩阵或数据框中,例如:`df`。

然后,我们可以使用以下代码进行配对卡方检验:```r#创建示例数据框df<-data.frame(group1=c(1,2,3,4),group2=c(5,6,7,8),group3=c(9,10,11,12))#进行配对卡方检验paired.test(df)```上述代码将输出每组数据的配对样本之间的卡方统计量和对应的p值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 连续性资料——正态分布 • 计 数 资 料——二项分布、POISSON分布等
统 计 量:有明确的理论依据(t分布、u分布) 有严格的适用条件,如:
•正态分布 •总体方差齐 •数据间相互独立 Normal Equal Variance Independent
条件不满足时——采用非参数统计的方法。
接受H1
2018/9/24
17
陈学芬
(3)确定P值并作出推断结论: 本例: n=9 , T+=15.5, T+ (5-40) T0.05(9)=5-40
所以 P>0.05,按α=0.05的检验水准,不拒绝H0 ; 尚不能认为治疗前后患者的白细胞总数差别有统 计学意义。
2018/9/24
18
陈学芬
第九章 非参数检验方法
(nonparametric test)
陈学芬
检验方法的选择及应用条件
t 检 验:
u 检 验:
方差分析:
2018/9/24
2Leabharlann 陈学芬参数检验:若样本所来自的总体分布已知(如 正态分布),对其总体参数进行假设检验,则 称为参数检验。
2018/9/24
3
陈学芬
参数检验的特点:
分析目的:对总体参数(μ π)进行估计或检验。 分 布:要求总体分布已知,如:
取较小的T作为检验的统计量T 本例取T=T+=15.5。
2018/9/24
16
陈学芬
(3)确定P值并作出推断结论: 根据T值( T+=15.5 或 T-=29.5 )查T界值表 ( P258附表8 )确定P值 原 则:如果T位于检验界值区间内,P>,不拒 绝H0;如果T位于检验界值区间外,P,拒绝H0,
秩次(rank):将数值变量值从小到大,或等级变量
值从弱到强所排列的序号。

秩和:用秩次号代替原始数据后,所得某些秩次号 之和,即按某种顺序排列的序号之和,称为秩和。
2018/9/24
9
陈学芬
秩和检验
适用资料类型:计量、计数或等级资料
基本思想:基于秩次(通过编秩,用秩次代替原始
数据信息来进行检验)即检验各组的平均秩是否相 等。如果经检验得各组的平均秩不相等,则可以推 论数据的分布不同,进一步可推论各分布间分布位 置发生了平移。
2018/9/24
31
陈学芬
(二)等级资料的秩和检验
表 9-5 两组人痰液嗜酸性粒细胞的秩和计算 嗜酸性 粒细胞 ( 1) + ++ +++ 合计 健康人 ( 2) 5 18 16 5 44 例数 病人 (3) 11 10 3 0 24 合计 (4) 16 28 19 5 84 统一编秩 秩次范围 (5) 1—16 17—44 45—63 64—88 平均秩次 ( 6) 8.5 30.5 54.0 66.0 秩和 (病人组) ⑺=(3)×⑹ 93.5 305.0 162.0 0.0 T1=560.5
凡符合或经过变换后符合参数检验条件的资料, 最好用参数检验。当资料不具备参数检验的条件 时,非参数检验是一种有效的分析方法。 注:对符合用参数检验的资料,如用非参数检验, 会丢失信息,导致检验效率下降,犯第Ⅱ类错误的 可能性比参数检验大。
2018/9/24
8
陈学芬
秩次和秩和

本章介绍的非参数统计方法均基于秩次;
n1( 较 小 n) 2 …… 10 96-154 91-159 85-165 81-169 n2-n1 0 1 2 3 4 5 6 7 8 9 10
上表中:
单侧 1行 2行 3行 4行
2018/9/24
双侧 P=0.1 P=0.05 P=0.02 P=0.01
29
P=0.05 P=0.025 P=0.1 P=0.005
相同秩次较多时的校正值(如超过25%) :
u T n(n 1) / 4 0.5
3 n(n 1)(2n 1) (t j t j ) 24 48
式中tj为第j(j=1,2…)次相同差值的个数。
注意:仍为非参数检验
2018/9/24
22
陈学芬
配对资料的编秩规则
按照配对设计,先求出对子之间的差值;

9-2
表 9-2 实行良好口腔卫生习惯 6 个月后牙周情况的变化程度 变化对应的分数 +3 +2 +1 0 -1 -2 -3 人数 4 5 6 5 4 2 2
2018/9/24
19
陈学芬
表 9-3 正负秩和计算表 d (1) 1 2 3 合计 (2) 4 2 2 8 频数 + (3) 6 5 4 15 总 (4) 10 7 6 23 秩次 范围 (5) 1-10 11-17 18-23 平均 秩次 (6) 5.5 14.0 20.5 (7) =(2)*(6) (8)=(3)*(5) 22 28 41 T-=91 33 70 82 T+=185 负秩和 正秩和
2018/9/24
4
陈学芬
非参数检验:不考虑总体的参数和总体的分布类 型,而是对样本所代表的总体的分布或分布位置 进行假设检验。由于这类方法不受总体参数的限 制,故称非参数检验,又称任意分布检验
(distribution-free test)
2018/9/24
5
陈学芬
非参数检验适用范围:
① 总体分布形式未知或分布类型不明(n<30); ② 偏态分布的资料(非正态分布的资料): ③ 等级资料:不能精确测定,只能以严重程度、优 劣等级、次序先后等表示 ——单向有序R*C资料 ④ 不满足参数检验条件的资料:各组方差明显不齐。
若选行列表资料的卡方检验,只能推断两组肺炎样本疗效构成比的差 别有无统计学意义,损失疗效的“等级”信息,应采用秩和检验,可 推断两组等级强度的差别有无统计学意义,比较两组病情的疗效。
2018/9/24
32
陈学芬
表 9-5 两组人痰液嗜酸性粒细胞的秩和计算 嗜酸性 粒细胞 ( 1) + ++ +++ 合计 健康人 ( 2) 5 18 16 5 44 例数 病人 ( 3) 11 10 3 0 24 合计 ( 4) 16 28 19 5 84 统一编秩 秩次范围 ( 5) 1—16 17—44 45—63 64—88 平均秩次 ( 6) 8.5 30.5 54.0 66.0 秩和 (病人组) ⑺ =(3)×⑹ 93.5 305.0 162.0 0.0 T1=560.5
1.建立检验假设: H0:两总体分布相同 H1:两总体分布不同 α=0.05 2.计算检验统计量 ⑴编秩 ⑵求秩和 ⑶计算u值(u=0.4974,c=0.8443,uc=0.5413) 3.确定P值;做出推断结论
2018/9/24
20
陈学芬
正态近似法
n>25时,T分布近似正态分布可用正态近似法作 u检验:
u
T T
T
| T n(n 1) / 4 | 0.5 n(n 1)(2n 1) / 24
注意:这里的正态近似仍属非参数检验。
2018/9/24
21
陈学芬
正态近似法(校正)
2018/9/24
27
陈学芬
计量资料两样本比较的秩和检验
(3)确定P值作出推断结论 查T界值表(两样本比较的秩和检验用): 先从左侧找到n1(n1和n2中的较小者),本例为10;再从表 上方找两组例数的差(n2-n1),本例,n2-n1=4; 在两者交叉处即为T的临界值; 将检验统计量T值与T临界值相比,若T值在界值范围内,其P 值大于相应的概率,若T值等于界值或在界值范围外,其P值 等于或小于相应的概率;
按其差值的绝对值,从小到大进行排序,其序号即 秩次,并在秩次之前保持原差值的正负号不变;
编秩遇到差值为零时则舍去不编秩; 对绝对值相等的差值若符号不同取平均值,并在秩 次之前保持原差值的正负号;
2018/9/24
23
陈学芬
第二节 两样本比较的秩和检验 Wilcoxon秩和检验法
计量资料的两样本比较 等级资料的两样本比较
12
陈学芬
例2
某医院对9例苯中毒患者用中草药抗苯一号治
疗,得白细胞总数如表1,问该药是否对患者的白 细胞总数有影响?
2018/9/24
13
陈学芬
表1 9名苯中毒患者治疗前后白细胞总数结果 病人号 (1 )
1 2 3 4
治疗前 (2 )
6.0 4.8 4.5 3.4
治疗后 (3 )
4.2 5.5 6.3 3.8
2018/9/24
10
陈学芬
内容提要:
配对资料的符号秩和检验
两样本比较的秩和检验
多个样本比较的秩和检验
2018/9/24
11
陈学芬
第一节 配对资料的符号秩和检验
由Wilcoxon于1945年提出 又称 Wilcoxon 符号秩和检验 常用于检验差值的总体中位数是否等于零
2018/9/24
n1=10
T1=162
2018/9/24
26
陈学芬
计量资料两样本比较的秩和检验 例3 检验步骤:
(1)建立假设,确定检验水准
H0:两总体分布相同
H1:两总体分布不同 α=0.05
(2)计算检验统计量
① 将两组数据由小到大统一编秩,遇同组相同数据按顺序去 秩次,遇不同组相同数取平均秩次;
② 以样本例数小者为n1,计算其秩和为T=162。
本例, 概率为双侧0.05对应的T界值为91~159;T=162超出 该范围,故P<0.05;按α=0.05检验水准,不拒绝H0 。尚可 认为两组患者的生存时间的差异有统计学意义,无….高于 有…。
相关文档
最新文档