数据结构第九章图最短路径详解

合集下载

最短路径知识点总结

最短路径知识点总结

最短路径知识点总结最短路径问题的核心思想是通过某种策略找到两个节点之间的最短路径。

在图的表示方法上,最短路径问题通常使用邻接矩阵或邻接表来表示图的结构。

多种最短路径算法也可以适用于不同的图模型,包括有向图、无向图、带权图等。

常用的最短路径算法包括Dijkstra算法、Bellman-Ford算法、Floyd-Warshall算法等。

下面将对这些算法进行介绍和总结。

Dijkstra算法是一种解决单源最短路径问题的贪心算法。

它的核心思想是通过不断地确定距离源点距离最短的顶点来逐步扩展已知的最短路径集合。

具体步骤包括:初始化距离数组,设置起点距离为0,其他顶点距离为无穷大;选择未访问顶点中距离最短的顶点,并将其标记为已访问;更新与该顶点相邻的顶点的距离;不断重复以上步骤直到所有顶点都被访问。

Dijkstra算法的时间复杂度为O(V^2),其中V表示顶点的个数。

当图比较大时,可以使用堆优化的Dijkstra算法,将时间复杂度优化到O((V+E)logV)。

Bellman-Ford算法是一种解决单源最短路径问题的动态规划算法。

它的核心思想是通过对所有边进行松弛操作,不断更新顶点的最短路径估计值。

具体步骤包括:初始化距离数组,设置起点距离为0,其他顶点距离为无穷大;循环遍历所有边,不断进行松弛操作,直到没有发生变化为止。

Bellman-Ford算法的时间复杂度为O(VE),其中V表示顶点的个数,E表示边的个数。

这个算法可以解决包含负权边的图的最短路径问题,而Dijkstra算法则无法处理负权边。

Floyd-Warshall算法是一种解决多源最短路径问题的动态规划算法。

它的核心思想是通过对所有顶点之间的距离进行不断更新,找到所有顶点之间的最短路径。

具体步骤包括:初始化距离矩阵,设置顶点之间的距离为边的权重,若没有直接相连的边则设置为无穷大;循环遍历所有顶点,尝试将每个顶点作为中转点,并尝试更新所有顶点对之间的距离。

第九章-数据结构与算法基础

第九章-数据结构与算法基础

解题思路多代入法二叉树度叶子结点就是没有孩子的结点,其度为0,度为二的结点是指有两个子数的结点。

注意树的度和图的度区别叶子结点二叉排序树完全二叉树若设二叉树的深度为h,除第h 层外,其它各层(1~h-1) 的结点数都达到最大个数,第h 层所有的结点都连续集中在最左边,这就是完全二叉树。

完全二叉树——只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树;最优二叉树(就是哈弗曼树)平衡二叉树平衡二叉树,又称AVL树。

它或者是一棵空树,或者是具有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的高度之差之差的绝对值不超过1.。

满二叉树满二叉树——除了叶结点外每一个结点都有左右子叶且叶结点都处在最底层的二叉树,。

除最后一层无任何子节点外,每一层上的所有结点都有两个子结点(最后一层上的无子结点的结点为叶子结点)。

也可以这样理解,除叶子结点外的所有结点均有两个子结点。

节点数达到最大值。

所有叶子结点必须在同一层上.本题主要考查一些特殊二叉树的性质。

若二叉树中最多只有最下面两层的结点度数可以小于2,并且最下面一层的叶子结点都依次排列在该层最左边的位置上,则这样的二叉树称为完全二叉树,因此在完全二叉树中,任意一个结点的左、右子树的高度之差的绝对值不超过1。

二叉排序树的递归定义如下:二叉排序树或者是一棵空树;或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于根结点的值;(2)若右子树不空,则右子树上所有结点的值均大于根结点的值;(3)左右子树也都是二叉排序树。

在n个结点的二叉树链式存储中存在n+1个空指针,造成了巨大的空间浪费,为了充分利用存储资源,可以将这些空链域存放指向结点在遍历过程中的直接前驱或直接后继的指针,这种空链域就称为线索,含有线索的二叉树就是线索二叉树。

最优二叉树即哈夫曼树。

排序各种排序的大致思路?各种排序适用于什么情况?各种排序的时间,空间复杂度?快速排序1.快速排序(Quicksort)是对冒泡排序法的一种改进,它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列;在对一个基本有序的数组进行排序时适合采用快速排序法。

最短路径问题介绍

最短路径问题介绍

最短路径问题介绍全文共四篇示例,供读者参考第一篇示例:最短路径问题是指在一个带有边权的图中,寻找连接图中两个特定节点的最短路径的问题。

在实际生活中,最短路径问题广泛应用于交通运输、通信网络、物流配送等领域。

通过解决最短路径问题,可以使得资源的利用更加高效,节约时间和成本,提高运输效率,并且在紧急情况下可以迅速找到应急通道。

最短路径问题属于图论中的基础问题,通常通过图的表示方法可以简单地描述出这样一个问题。

图是由节点和边组成的集合,节点表示不同的位置或者对象,边表示节点之间的连接关系。

在最短路径问题中,每条边都有一个权重或者距离,表示从一个节点到另一个节点移动的代价。

最短路径即是在图中找到一条路径,使得该路径上的边权和最小。

在解决最短路径问题的过程中,存在着多种算法可以应用。

最著名的算法之一是Dijkstra算法,该算法由荷兰计算机科学家Edsger W. Dijkstra于1956年提出。

Dijkstra算法是一种贪心算法,用于解决单源最短路径问题,即从一个给定的起点到图中所有其他节点的最短路径。

该算法通过维护一个距离数组和一个集合来不断更新节点之间的最短距离,直到找到目标节点为止。

除了Dijkstra算法和Floyd-Warshall算法外,还有一些其他与最短路径问题相关的算法和技术。

例如A*算法是一种启发式搜索算法,结合了BFS和Dijkstra算法的特点,对图中的节点进行评估和排序,以加速搜索过程。

Bellman-Ford算法是一种解决含有负权边的最短路径问题的算法,通过多次迭代来找到最短路径。

一些基于图神经网络的深度学习方法也被应用于最短路径问题的解决中,可以获得更快速和精确的路径搜索结果。

在实际应用中,最短路径问题可以通过计算机程序来实现,利用各种算法和数据结构来求解。

利用图的邻接矩阵或者邻接表来表示图的连接关系,再结合Dijkstra或者Floyd-Warshall算法来计算最短路径。

图论中的最短路径算法

图论中的最短路径算法

图论中的最短路径算法图论是数学的一个分支,研究图的性质和图之间的关系。

在图论中,最短路径算法是一类重要的算法,用于寻找图中两个顶点之间的最短路径。

本文将介绍图论中的几种常见的最短路径算法。

一、Dijkstra算法Dijkstra算法是最短路径算法中最常用的一种。

它基于贪心策略,通过逐步扩展路径来求解最短路径。

算法的基本思想是,从一个起始顶点开始,逐步扩展到其他顶点,每次选择当前路径中距离起始顶点最近的顶点进行扩展,直到扩展到目标顶点或者所有顶点都被扩展完毕。

Dijkstra算法的步骤如下:1. 初始化起始顶点的距离为0,其他顶点的距离为无穷大。

2. 选择距离起始顶点最近的顶点,将其加入已扩展顶点集合。

3. 更新与新加入顶点相邻的顶点的距离,如果新的距离比原来的距离小,则更新距离。

4. 重复步骤2和步骤3,直到扩展到目标顶点或者所有顶点都被扩展完毕。

5. 根据更新后的距离,可以得到最短路径。

二、Bellman-Ford算法Bellman-Ford算法是另一种常用的最短路径算法。

它可以处理带有负权边的图,而Dijkstra算法只适用于非负权边的图。

Bellman-Ford算法的基本思想是通过对所有边进行松弛操作,逐步减小起始顶点到其他顶点的估计距离,直到得到最短路径。

Bellman-Ford算法的步骤如下:1. 初始化起始顶点的距离为0,其他顶点的距离为无穷大。

2. 对所有边进行松弛操作,即如果存在一条边(u, v),使得从起始顶点到v的距离大于从起始顶点到u的距离加上边(u, v)的权值,则更新距离。

3. 重复步骤2,直到没有顶点的距离发生变化。

4. 根据更新后的距离,可以得到最短路径。

三、Floyd-Warshall算法Floyd-Warshall算法是一种多源最短路径算法,可以求解图中任意两个顶点之间的最短路径。

该算法通过动态规划的方式,逐步更新顶点之间的距离,直到得到最短路径。

Floyd-Warshall算法的步骤如下:1. 初始化顶点之间的距离矩阵,如果两个顶点之间存在边,则距离为边的权值,否则距离为无穷大。

【转】彻底弄懂最短路径问题(图论)

【转】彻底弄懂最短路径问题(图论)

【转】彻底弄懂最短路径问题(图论)P.S.根据个⼈需要,我删改了不少问题引⼊问题:从某顶点出发,沿图的边到达另⼀顶点所经过的路径中,各边上权值之和最⼩的⼀条路径——最短路径。

解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法,另外还有著名的启发式搜索算法A*,不过A*准备单独出⼀篇,其中Floyd算法可以求解任意两点间的最短路径的长度。

笔者认为任意⼀个最短路算法都是基于这样⼀个事实:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若⼲个节点到B。

⼀.Dijkstra算法该算法在《数据结构》课本⾥是以贪⼼的形式讲解的,不过在《运筹学》教材⾥被编排在动态规划章节,建议读者两篇都看看。

(1) 迪杰斯特拉(Dijkstra)算法按路径长度递增次序产⽣最短路径。

先把V分成两组:S:已求出最短路径的顶点的集合V-S=T:尚未确定最短路径的顶点集合将T中顶点按最短路径递增的次序加⼊到S中,依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的直接路径的权值或是从V0经S中顶点到Vk的路径权值之和(反证法可证)。

(2) 求最短路径步骤1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值,若存在<V0,Vi>,为<V0,Vi>弧上的权值(和SPFA初始化⽅式不同),若不存在<V0,Vi>,为Inf。

2. 从T中选取⼀个其距离值为最⼩的顶点W(贪⼼体现在此处),加⼊S(注意不是直接从S集合中选取,理解这个对于理解vis数组的作⽤⾄关重要),对T中顶点的距离值进⾏修改:若加进W作中间顶点,从V0到Vi的距离值⽐不加W的路径要短,则修改此距离值(上⾯两个并列for循环,使⽤最⼩点更新)。

3. 重复上述步骤,直到S中包含所有顶点,即S=V为⽌(说明最外层是除起点外的遍历)。

图的最短路径与最小生成树算法实践

图的最短路径与最小生成树算法实践

图的最短路径与最小生成树算法实践在计算机科学中,图(Graph)是一种抽象的数据结构,它由节点(Vertex)和边(Edge)组成。

图的最短路径和最小生成树是图算法中的两个重要问题,它们在网络、交通、社交网络等领域有着广泛的应用。

本文将介绍图的最短路径算法和最小生成树算法的实践。

一、图的最短路径算法实践图的最短路径算法用于求解两个节点之间的最短路径,常用的算法有迪杰斯特拉算法(Dijkstra Algorithm)和弗洛伊德算法(Floyd Algorithm)。

(这里可以介绍迪杰斯特拉算法和弗洛伊德算法的思想和流程,注意使用文字和图示来说明)在实际应用中,最短路径算法可以被用于许多场景,比如导航系统中的路径规划、物流配送中的最优路线选择等。

例如,在一座城市中,我们需要规划出从A地到B地的最短路径,可以使用最短路径算法来求解。

二、图的最小生成树算法实践图的最小生成树算法用于找到一个连通图的最小生成树,最常用的算法是普里姆算法(Prim Algorithm)和克鲁斯卡尔算法(Kruskal Algorithm)。

(这里可以介绍普里姆算法和克鲁斯卡尔算法的思想和流程,注意使用文字和图示来说明)最小生成树算法在实际应用中也有很多用途,比如电力系统的最优输电线路规划、通信网络的构建等。

例如,在一个城市的交通网络中,我们希望为每个区域之间建立电缆线路,以便实现高速、稳定的通信,可以使用最小生成树算法来求解。

三、图的最短路径和最小生成树算法在实践中的应用图的最短路径和最小生成树算法在现代社会中有广泛的应用,下面将介绍一些实际应用场景。

1. 路径规划最短路径算法可以用于导航系统中的路径规划。

通过输入起点和终点,最短路径算法可以帮助我们找到从起点到终点的最短路径,以便在导航系统上为驾驶员提供准确的路线指引。

2. 物流配送在物流配送中,最短路径算法可以用于选择最优路线,以节省时间和成本。

通过计算各个配送点之间的距离和路径,可以帮助物流公司规划出最佳配送路线,提高配送效率。

最短路径问题 ppt课件

最短路径问题 ppt课件

12
图论及其应用 作业 用Dijkstra算法求出下图中从顶点a到其它所有 顶点的最短路径及及长度。
13
图论及其应用
有向图中求最短路径的Dijkstra算法
设Sj是带权有向图G中自顶点1到顶点j的最短有向路的长度 步骤1:置P={1},T={2,3,…,n}且S1=0,Sj=w1j, j=2,3,…,n 。 步骤2:在T中寻找一点k,使得Sk=min{Sj},置P=P{k}, T=T- {k}。若T=,终止;否则,转向步骤3。 步骤3:对T中每一点j,置Sj=min {Sj ,Sk+ wkj},然后转向步 骤2。 算法经过n-1 次循环结束。
6
1-6-8-B
6-8-B
13
10
5
图论及其应用
指定点到其它所有点的最短路径
解决这一问题最著名的方法是 Dijkstra算法,这个算法是由荷 兰计算机科学教授Edsger W.Dijkstra在1959年提出的。 他在1972年获得美国计算机协 会授予的图灵奖,这是计算机 科学中最具声望的奖项之一。
最终,起点上方的最短路线及权值即为起点到终点的最 短路线及长度。
3
图论及其应用
例 使用回溯法求下图中结点1到结点10的最短路径
2-6-9-10 600
1-4-6-9-10 650
4-6-9-10 500
6-9-10
300
9-10
100 5-8-10
400
8-10
150
3-5-8-10 600
7-8-10 275
定义2 已知矩阵A=(aij)m n ,B =(bij)mn,规定C=AB=(dij)mn,
其中dij=min(aij, bij)

数据结构-拓扑排序和最短路径

数据结构-拓扑排序和最短路径

Dijkstra算法
如何找到Vk?
min( D[i] + dur(i,k)) i = 0,1,…k-1
Vk
S
Dijkstra算法
V5
V0
10
30 10
V4
20
V1 V2
V3
S={V0} D[0]=0
S={V0,} D[3] = 50 S={V0,V2,V4,V3,V5}
Dijkstra算法实现
void ShortestPath_DIJ(MGraph G, int v0, PathMatrix &P, ShortestPathTable &D){ for(v=0;v<G.vexnum;++v){ final[v]=FALSE; //S中的顶点 D[v]=G.arcs[v0][v];//v0到v的路径的长度 for(w=0;w<G.vexnum;++w) p[v][w]=FALSE; if(D[v]<INFINITY){//V0的邻接点 p[v][v0]=TRUE; p[v][v]=TRUE; }//if }//for final[v0]=TRUE;
Floyd 算法
首先对顶点进行编号,n个顶点对应1……n个整 数,分别叫做V1,V2,……,Vn 显然,顶点vi和vj之间的最短路径通过了n个 顶点的某些顶点。
Floyd 算法
•偏序就是集合中的部分成员可以比较。 •全序是集合中的任何成员之间都可以比较。 B A C 偏序 D A C 全序 B D
拓扑排序
按照有向图给出的次序关系,将图中顶点排成 一个线性序列,对于有向图中没有限定次序关系 的顶点,则可以人为加上任意的次序关系。
由此所得顶点的线性序列称之为拓扑有序序 列
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a4
3
4
a5
2
2
a6
2
5
a7
6
6
a8
6
7
9.6 最短路径
一 问题的提出
交通咨询系统、通讯网、计算机网络 路径长度:路径上边的权值之和 最短路径:两结点间权值之和最小的路径
例:求V0到V4最短路径
V0到V4 路径: V0 V4
45
V0 V1 V4
60
V0 V2 V3 V4 60
V0 V2 V3 V1 V4 55
l-e 0 2
3 0 2 3 0 0 3 0 0
练习题:
a1=3
V1 a2=2
a4=3
V2
a3=2
V4 a5=4
V5 a7=2
a8=1 V6
a6=3 V3
事件Vj 最早发生时间 最晚发生时间
V1
0
0
V2
3
4
V3
2
2
V4
6
6
V5
6
7
V6
8
8
活动ak 最早发生时间 最晚发生时间
a1
0
1
a2
0
0
a3
3
4
第九章 图
9.1 图的概念 9.2 图的存储结构 9.3 图的遍历 9.4 最小生成树 9.5 图的应用 9.6 最短路径
内容回顾
最短路径
拓扑排序 关键路径
迪杰斯特拉(Dijkstra)算法 弗洛伊德(Floyd)算法
求关键路径步骤
• 求Ve(i)
• 求Vl(j)
1
• 求e(i)
• 求l(i)
v5
(v0,v4,v3,v5)
V5 100 30
60 V4
V0 10 10 20
V1 5
V2
V3 50
最 终点 v1 短 步骤1 路 径 步骤2
v5 vi
10
(v0,v2)
30
100 v2
(v0,v4) (v0,v5)
60 (v0,v2,v3)
50 (v0,v4,v3)
最 终点 v1 短 步骤1 路 径 步骤2 求 步骤3 解 步骤4 过 程
v2
v3
v4
v5
vi
10
(v0,v2)
30
100 v2
(v0,v4) (v0,v5)
60 (v0,v2,v3)
50 (v0,v4,v3)
30
100 v4
(v0,v4) (v0,v5)
90 (v0,v4,v5)
v3
60
最短路径长度值;
它们的值为原来值与新值的较小者; 新值是vi的最短路径长度值加上vi到该顶点的路径长度
不断重复选取和修改操作,直到S包含全部顶点;
迪杰斯特拉(Dijkstra)算法举例
V5 60
100
30
V4
V0
10 10
20
V1
V3
5 V2 50
带权邻接矩阵为:
10 30 100 5 50 10 20 60
• 计算l(i)-e(i)
顶点
V1 V2 V3 V4 V5 V6 V7 V8 V9
Ve Vl
00 66 46 58 77 7 10 16 16 14 14 18 18
2
7
5
9
3
8
4 a6=2 6
活动
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
el 00 02
03 66 46 58 77 77 7 10 16 16 14 14
45
50
10
V0
V1
35
20 10 20
V2 15
V3 5
V4
30 V5
9.6 最短路径
9.6.1 单源点的最短路径
给定带权有向图G和源点v,求从v到G中其余各顶点的 最短路径
例:求v0到其余顶点的最短路径
V5 60
100
30
V4
V0
10 10
20
V1
V3
5 V2 50
始点 终点 最短路径 路径长度
加入B: 6 0 2 路径: BA
BC
370
CA CAB
04 6
AB ABC
加入C: 5 0 2 路径: BCA
BC
370
CA CAB
– 逐步试着在原直接路径中增加中间顶点,若加入中间点 后路径变短,则修改之;否则,维持原值
– 所有顶点试探完毕,算法结束

6
A 4B
3 11
2
C
0 4 11
AB AC
初始: 6 0 2 路径: BA
BC
30
CA
0 4 11
AB AC
加入A: 6 0 2 路径: BA
BC
370
CA CAB
04 6
AB ABC
30
100 v4
(v0,v4) (v0,v5)
90 (v0,v4,v5)
v3
60
v5
(v0,v4,v3,v5)
V5 100 30
60 V4
V0 10 10 20
V1 5
V2
V3 50
9.6 最短路径
9.6.2 每一对顶点间的最短路径
给定带权有向图G,求G中每个顶点到其余各顶 点的最短路径
例:求有向网G的每一对顶点的最短路径
v0 v1

v2 (v0,v2)
10
v3 (v0,v4,v3)
50
v4 (v0,v4)
30
v5 (v0,v4,v3,v5) 60
算法步骤:
设置两个顶点的集合T和S;
S存放已找到最短路径的顶点 T存放还未找到最短路径的顶点
初始时,S只包含源点v0 S={V0},T={其余顶点}; 从T中选取某个顶点vi加入到S中 (要求路径长度最短) S中每加入一个顶点vi,都要修改顶点v0到T中剩余顶点的
V0 6 4 V1
3 11 2 V2
有向网G
0 4 11 602 3 0
邻接矩阵
• 方法一:每次以一个顶点为源点,重复执行Dijkstra算法n 次—— T(n)=O(n³)
• 方法二:弗洛伊德(Floyd)算法
– 算法思想:逐个顶点试探法
• 求最短路径步骤:
– 初始时设置一个n阶方阵,令其对角线元素为0,若存 在弧<Vi,Vj>,则对应元素为权值;否则为
相关文档
最新文档