经济数学教案

合集下载

经济数学 教案

经济数学 教案

经济数学教案教案标题: 经济数学教案教案目标:1. 使学生了解经济数学的基本概念和原理。

2. 培养学生运用数学方法解决经济问题的能力。

3. 提高学生的数学逻辑思维和问题解决能力。

教学内容:1. 经济数学的基本概念和原理介绍。

2. 数学模型在经济学中的应用。

3. 利用数学方法解决经济问题。

教学步骤:引导:1. 向学生介绍经济数学的基本概念和原理,并解释数学在经济学中的重要性。

探究:2. 通过案例分析引导学生理解经济数学的应用,并提醒学生注意数学模型的局限性。

实践:3. 提供一些经济问题给学生,在教师的指导下,学生尝试利用数学方法解决这些问题。

总结:4. 总结经济数学的基本概念和原理,重点突出数学在经济学中的应用价值。

评价:5. 设计一些评价活动,检测学生对经济数学概念的理解程度以及运用数学方法解决问题的能力。

教学资源:1. PowerPoint演示文稿,包含经济数学的基本概念和原理。

2. 经济问题案例。

3. 针对评价活动的评分标准。

教学方法:1. 探究式学习:通过案例分析和自主解决问题,激发学生的兴趣和主动性。

2. 合作学习:鼓励学生小组合作,共同解决经济问题。

Differentiation(说明个性化教育措施):为了满足不同学生的学习需求,可以采取以下个性化教育措施:1. 将经济数学概念分解为更具体易懂的语言,帮助学习困难的学生理解。

2. 对于高水平学生,提供更复杂的经济问题挑战其数学解决能力。

拓展活动:1. 邀请经济学领域的专家来给学生讲座,分享实际应用案例。

2. 组织学生参加经济数学竞赛,提供更多实践机会和竞争体验。

评估方式:1. 记录学生在探究环节中的参与情况和解决问题的能力。

2. 综合评价评测学生对经济数学概念的掌握程度和数学方法的应用能力。

以上是一个初步的经济数学教案,根据具体教学环境和学生特点,可以进一步调整和完善。

高职高专经济数学教学教案

高职高专经济数学教学教案

高职高专经济数学教学教案教案标题:高职高专经济数学教学教案教案目标:1. 确保学生掌握经济数学的基本概念和方法,能够运用数学工具解决经济问题。

2. 培养学生的逻辑思维和问题解决能力,提高他们在经济领域的应用能力。

3. 培养学生的团队合作和沟通能力,通过小组讨论和合作解决实际经济问题。

教学内容:1. 经济数学基础知识梳理:包括微积分、线性代数、概率论等数学工具的基本概念和应用。

2. 经济数学模型的建立和求解:通过实际经济问题,引导学生学习如何建立数学模型,并运用数学方法求解。

3. 经济数学在市场分析、成本分析、供求关系等方面的应用:通过案例分析和实例演练,让学生了解经济数学在实际经济问题中的应用。

教学步骤:1. 导入:通过引入一个实际经济问题,激发学生对经济数学的兴趣和学习动机。

2. 知识讲解与示范:对经济数学的基本概念和方法进行讲解,并通过示例演示如何应用数学工具解决经济问题。

3. 练习与巩固:提供一系列练习题,让学生通过实际操作巩固所学知识,并培养他们的问题解决能力。

4. 案例分析与讨论:选取一些实际经济案例,组织学生进行小组讨论和分析,引导他们将所学的数学工具应用于实际问题的解决。

5. 总结与评价:对本节课所学内容进行总结,并对学生的学习情况进行评价和教学方法:1. 讲授法:通过讲解和示范,向学生传授经济数学的基本概念和方法。

2. 实践法:通过练习和案例分析,让学生通过实际操作来巩固所学知识和培养问题解决能力。

3. 合作学习法:通过小组讨论和合作解决问题,培养学生的团队合作和沟通能力。

评价方式:1. 课堂表现评价:包括学生的参与度、回答问题的准确性和深度等。

2. 练习与作业评价:通过批改学生的练习和作业,评价他们对所学知识的掌握程度。

3. 案例分析评价:评价学生在案例分析和讨论中的表现,包括问题解决能力、团队合作和沟通能力等。

教学资源:1. 教材:选择适合高职高专经济数学教学的教材,包括相关的理论知识和实例分析。

高中数学经济实际问题教案

高中数学经济实际问题教案

高中数学经济实际问题教案
教学内容:数学经济实际问题
适用年级:高中
教学资源:教科书、教案、作业
教学目标:
1.了解数学在经济学领域的应用,并能够解决一些实际的经济问题。

2.运用数学知识解决经济领域中的实际问题,培养学生的综合分析和解决问题的能力。

3.培养学生的数学思维和逻辑推理能力。

教学步骤:
1.导入:通过介绍调查统计的概念,引导学生思考如何利用数学方法解决实际的经济问题。

2.授课:介绍数学经济实际问题的基本概念和方法,包括利润最大化、成本最小化等经济
学原则。

3.实践:通过实际案例分析和计算练习,让学生应用所学知识解决经济问题,培养解决问
题的能力。

4.讨论:组织学生讨论归纳总结所学知识,在班级中展示解决问题的过程和方法。

5.作业:布置相关的练习题目,巩固学生的知识,检验学生的掌握程度。

评价与反馈:通过课堂表现和作业成绩,评价学生对数学经济实际问题的理解和掌握程度,并及时反馈给学生,指导他们进一步提高。

教学评估:通过课堂讨论、练习和作业检测,检验学生对经济实际问题的理解和应用能力,评估学生的学习成果。

大学第一节课经济数学教案

大学第一节课经济数学教案

课程名称:经济数学授课对象:大学一年级学生教学目标:1. 使学生了解经济数学的基本概念和研究对象。

2. 培养学生运用数学方法分析和解决经济问题的能力。

3. 帮助学生建立数学与经济学的联系,为后续课程学习打下基础。

教学重点:1. 经济数学的基本概念。

2. 经济数学在经济学中的应用。

教学难点:1. 经济数学与实际经济问题的结合。

2. 学生对数学方法的理解和应用。

教学准备:1. 教师准备PPT课件,包括经济数学的基本概念、应用案例等。

2. 学生预习教材,了解经济数学的基本概念。

教学过程:一、导入新课1. 教师简要介绍经济数学的定义和研究对象。

2. 引导学生思考:为什么在经济学中需要运用数学方法?二、讲授新课1. 经济数学的基本概念- 介绍经济数学的定义、发展历程以及其在经济学中的应用。

- 讲解经济数学的主要研究内容,如数学建模、数学分析、运筹学等。

2. 经济数学在经济学中的应用- 通过具体案例,展示经济数学在经济学中的应用,如成本分析、利润最大化、市场均衡等。

- 分析经济数学方法在解决实际经济问题中的作用和优势。

三、课堂练习1. 教师给出一些简单的经济数学问题,让学生运用所学知识进行解答。

2. 学生分组讨论,共同解决练习题,教师巡视指导。

四、总结与反思1. 教师总结本节课的重点内容,强调经济数学在经济学中的重要性。

2. 学生分享自己在课堂练习中的收获和困惑,教师进行解答和指导。

五、布置作业1. 阅读教材相关章节,加深对经济数学概念的理解。

2. 完成课后习题,巩固所学知识。

教学反思:1. 本节课通过讲解经济数学的基本概念和应用案例,使学生初步了解经济数学在经济学中的重要性。

2. 在课堂练习环节,学生积极参与,提高了运用数学方法解决经济问题的能力。

3. 在教学过程中,注意引导学生思考,培养学生的创新意识和实践能力。

板书设计:一、经济数学1. 定义2. 研究内容3. 应用领域二、经济数学在经济学中的应用1. 成本分析2. 利润最大化3. 市场均衡三、课堂练习1. 问题一2. 问题二四、总结与反思1. 经济数学的重要性2. 学生收获与困惑。

经济数学基础教案

经济数学基础教案

经济数学基础教案教学目标:1.掌握经济数学的基本概念与方法;2.了解利润、成本、需求、供给等经济概念的数学表示方法;3.能够运用经济数学的知识解决实际经济问题。

教学内容:1.经济数学的基本概念-利润、成本、需求、供给等经济概念的定义与数学表示方法;-边际利润、边际成本、边际需求、边际供给的概念与计算方法。

2.利润最大化与成本最小化问题-利润最大化与成本最小化的数学表达;-利润最大化与成本最小化的条件与方法;-通过示例演示利润最大化与成本最小化问题的求解过程。

3.需求与供给的相互关系-需求曲线与供给曲线的定义与数学表达;-市场均衡点的数学求解;-外部因素对需求与供给曲线的影响。

教学方法:1.讲授:由教师通过课堂讲解向学生介绍经济数学的基本概念、利润最大化与成本最小化问题以及需求与供给的相互关系的知识。

2.案例分析:教师提供一些实际经济问题的案例,让学生通过运用经济数学知识进行分析和解决问题。

3.练习与讨论:教师布置相关的练习题,鼓励学生利用经济数学的方法进行求解,并在课堂上进行讨论和解答疑惑。

教学过程:一、引入(10分钟)教师通过提问或举例等方式引入经济数学的重要性和应用场景。

二、讲授经济数学的基本概念(20分钟)教师以PPT为辅助,讲解利润、成本、需求、供给等经济概念的定义与数学表示方法,帮助学生理解经济数学的基本概念。

三、利润最大化与成本最小化问题(30分钟)1.利润最大化与成本最小化的数学表达。

2.利润最大化与成本最小化的条件与方法。

3.示范案例分析与讲解。

四、需求与供给的相互关系(30分钟)1.需求曲线与供给曲线的定义与数学表达。

2.市场均衡点的数学求解。

3.外部因素对需求与供给曲线的影响。

4.示例演示与练习讨论。

五、总结与反思(10分钟)教师对本节课的内容进行总结,并引导学生回想、分析所学知识在实际经济中的应用。

教具准备:1.PPT课件;2.案例分析材料;3.练习题及答案。

教学评估:1.课堂练习:布置相关的练习题,学生利用经济数学的方法进行求解。

经济数学基础电子教案

经济数学基础电子教案

经济数学基础电子教案第一章函数主要内容及数学目的1.理解函数概念、了解函数的两要要素–定义域和对应关系,会判断两函数是否相同.2.掌握求函数定义域的方法,会求函数值,会确定函数的值域.3.了解函数的属性,掌握函数奇偶性的判断,知道它的几何特点.4.了解复合函数概念,会对复合函数进行分解,知道初等函数的概念.5.知道初等函数的概念,理解常数函数、幂函数.指数函数、对数函数和三角函数.6.了解需求、供给、成本、平均成本、收入和利润等经济分析中常见的函数.7.回列简单应用问题的函数关系式.本章重点:函数的概念,函数的奇偶性,几类基本初等函数.第二章一元函数微分学主要内容及数学目的.1.知道极限概念,知道极限存在的充分必要条件:2.了解无穷小量概念,无穷小量于无穷大量的关系,知道无穷小量的性质,如有界变量乘无穷小量仍为无穷小量.3.掌握极限的四则运算法则,掌握两个重要极限,掌握求极限的一般方法。

4.了解函数在一定连续的概念,知道左连续和右连续的概念。

知道函数在一点间断的概念,会求函数的间断点。

5.理解导数定义,会求曲线的切线。

知道可导与连续的关系。

6.熟练掌握导数基本公式、导数的四则运算法则、复合函数求导数法则,掌握求简单隐函数的导数。

7.了解微分概念,会求函数的微分。

8.知道高阶导数概念,会求函数的二阶导数。

本章重点:导数概念,极限,导数和微分的计算。

第三章导数的应用主要内容及数学目的:1.掌握函数单调性的判别方法,会求函数的单调区间。

2.了解函数极值的概念,知道极值存在的必要条件,掌握极值点的判别方法。

知道函数的极值点与驻点的区别与联系,会求函数的极值。

3.了解边际概念和需求价格弹性概念,掌握求边际函数的方法,会求需求弹性。

4.熟练掌握经济分析中的平均成本最底,收入最大和利润最大和利润最大等应用的解法,会求简单的几何问题的最大(小)问题。

本章重点:函数的极值及其应用—最值问题。

第四章一元函数积分学主要内容及数学目的:1.理解原函数与不定积分概念,会求当曲线的切线斜率以知时,满足一定条件的曲线方程,知道不定积分与导数(微分)之间的关系。

经济数学基础下教案

经济数学基础下教案

经济数学基础下教案教案标题:经济数学基础下教案教学目标:1. 理解经济学中的数学概念和方法,为学生在经济领域的学习和研究奠定基础。

2. 培养学生解决经济问题的数学思维和分析能力。

3. 培养学生运用数学工具解决经济实际问题的能力。

教学内容:1. 经济学中的数学概念和方法介绍:a. 数学模型在经济学中的应用b. 利润、成本、收入等经济指标的数学表达c. 经济曲线的数学表达和分析d. 经济方程的建立和求解e. 经济学中的最优化问题及其数学求解方法2. 数学工具在经济学中的应用:a. 微积分在经济学中的应用b. 线性代数在经济学中的应用c. 概率论与统计学在经济学中的应用教学步骤:第一课:经济学中的数学概念和方法介绍1. 引入经济学中的数学概念和方法的重要性和应用价值。

2. 介绍数学模型在经济学中的应用,并举例说明。

3. 解释利润、成本、收入等经济指标的数学表达,并进行实际案例分析。

4. 分析经济曲线的数学表达和分析方法,并进行实例演练。

5. 讲解经济方程的建立和求解方法,并进行实例讲解。

第二课:数学工具在经济学中的应用1. 介绍微积分在经济学中的应用,并讲解相关概念和方法。

2. 讲解线性代数在经济学中的应用,并进行实例演练。

3. 介绍概率论与统计学在经济学中的应用,并进行实际案例分析。

第三课:经济学中的最优化问题及其数学求解方法1. 引入经济学中的最优化问题的概念和意义。

2. 讲解最优化问题的数学建模方法,并进行实例分析。

3. 介绍最优化问题的数学求解方法,如微积分中的极值求解方法等。

教学评估:1. 课堂小测,检验学生对经济数学基础概念的理解。

2. 经济案例分析作业,要求学生运用所学数学工具解决实际经济问题。

3. 期末考试,综合考察学生对经济数学基础知识和应用能力的掌握情况。

教学资源:1. 经济学教材和参考书籍2. 数学教材和参考书籍3. 经济案例和实例分析材料4. 多媒体教学工具教学反思:根据学生的实际情况和学习进度,适当调整教学内容和教学方法,确保学生能够理解和掌握经济数学基础知识,并能够运用数学工具解决实际经济问题。

《经济数学》课时教案1-16[16页]

《经济数学》课时教案1-16[16页]
教学反馈
珠海城市职业技术学院
《经济数学》教案
序号:01-07
授课时间
授课时数
2
授课地点
5404
授课题目
2.5投资评估与决策
授课班级
17会计
教学目的与
教学要求
1.理解贴现、贴现率、现值等概念
2.掌握和分析金融计算问题的思维方法
重点难点
重点:贴现、贴现率、现值等概念
难点:掌握和分析金融计算问题的思维方法
3.教师讲解定理4.4.1
4.教师讲解定积分的性质
5.教师讲例4.4.3
参考资料
课后作业
与思考题
习题4.4
第1、2、3、5题
教学反馈
珠海城市职业技术学院
《经济数学》教案
序号:01-16
授课时间
授课时数
2
授课地点
5404
授课题目
4.5定积分的应用
授课班级
17会计
教学目的与
教学要求
1.理解和掌握定积分在多种应用
重点:需求与供给函数的形式与特点
难点:税收对供求函数产生的影响
教学方法
1讲授法,2练习法
主要内容
1.需求与供给的特点
讨论两个函数表达式的区别
均衡需求与均衡价格
2.理解影响需求与供给的市场因素
替代品,互补品,
低档品、正常品
3.税收对供求函数的影响
通过例题讲解税收对供求函数和市场的影响
讲解例1.2.2
学生自读例1.2.3
教学反馈
珠海城市职业技术学院
《经济数学》教案
序号:01-05
授课时间
授课时数
2
授课地点
5404
授课题目
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课后作业】 请查找资料,找到第三大中值定理,柯西中值定理。
10 时间控制 (分钟)
10
教学后记
纯理论的学习,对学生的高数概念其实是不可或缺的,虽然不考,学生很有兴趣。
合肥财经职业学院教案
课程名称
经济数学
授课班级
会计与审计
时 间 第八周 地 点
D201
课时数
2
课题
第二章、导数的应用
教学目的
知识目标:1、了解如何利用导数求解单调性和极值 2、会求教简单函数的极值 能力目标:会求教简单函数的极值
m M ,则由 f (a) f (b) 可知,点 m 和 M 两者之中至少有一个

f
(x)

(a,b) 内部一点
取得的.由于 y
f
(x)

(a,b)
内可导,故
由费马定理推知 f ( ) 0 .
二 学生命令练习
小结与作业
【课堂小结】罗尔中值定理是拉格朗日中值定理的一个特殊情 形.拉格朗日中值定理是罗尔中值定理的推广
(a,b) 内可导且 f (a) f (b) ,则在 (a,b) 内至少存在一点 ,使得
f ( ) 0 .
证 因为 f (x) 在[a,b] 上连续,故在[a,b] 上必取得最大值 M
与 最 小 值 m . 若 m M , 则 f (x) 在 [a,b] 上 恒 为 常 数 , 从 而
f (x) 0 .这时在 (a,b) 内任取一点作为 ,都有 f ( ) 0 ;若
合肥财经职业学院教案
课程名称
经济数学
授课班级
会计与审计
时 间 第七周 地 点
D201

课时数
2
课题
第二章、中值定理
教学目的
知识目标:1、理解中值定理的意义 2、了解中值定理在微积分中的重要性
能力目标:了解中值定理
教学重点
三大中值定理的联系
教学难点 三大中值定理的联系
教学方法 讲授法、演示法
【复习】无
教学过程设计
经济数学
授课班级
会计与审计
第八周


D201
课时数
2
第二章、导数与微分
教学目的
知识目标:1、了解如何利用导数求解最值 能力目标:能解决实际生活中的简单最值问题
教学重点 教学难点
1.掌握最值的求解方法 2.生活中最值的求解
掌握最值的求解方法
教学方法 讲授法、演示法 教学过程设计
导入
【复习】例题讲解 【新课导入】
使对一切 x U (x0 ) 有 f (x) f (x0 ) .因此当 x x0 时

50
f (x) f (x0 ) 0 ; x x0
而当 x x0 时
f (x) f (x0 ) 0 ; x x0
由于 f (x) 在 x0 可导,故按极限的不等式性质可得
f (x0 )
f
(x0 )
65 时间控制 (分钟)
5 【课后作业】
教学后记
合肥财经职业学院教案
课程名称
经济数学
授课班级
会计与审计
时 间 第九周 地 点
D201
课时数
2
课题
第三章、不定积分
教学目的
知识目标:1、理解原函数的定义 2、了解导数与积分之间的关系
能力目标:能把导数关系用不定积分表达
教学重点 教学难点
1.掌握原函数的求解 2. 能把导数关系用不定积分表达 能把导数关系用不定积分表达
教学目的
教学重点 教学难点
知识目标:1、 理解并掌握第一换元积分法
能力目标:能解决简单的积分题目 1.掌握凑微分的方法 2. 能把简单的积分题目解决 凑微分的“凑”
教学方法 讲授法、演示法
教学过程设计
导入
时间控制 (分钟)
【复习】例题讲解 【新课导入】
二 【课堂小结】
教学过程 小结与作业
【课后作业】
教学方法 讲授法、演示法
教学过程设计
导入 【复习】例题讲解 【新课导入】
教学过程
时间控制 (分钟)
5
5 时间控制 (分钟)
二 【课堂小结】
小结与作业
【课后作业】
教学后记
65 时间控制 (分钟)
5
合肥财经职业学院教案
课程名称
经济数学
授课班级
会计与审计
时 间 第十周 地 点
D201
课时数
2
课题
第三章、不定积分
得极大值或极小值,且曲线在 x0 有切线,则此切线必平行于 x 轴.
习惯上我们称使得 f (x) 0 的 x 为 f (x) 的驻点.定理 4.1.1
表明:可导函数 f (x) 在 x0 取得极值的必要条件是 x0 为 f (x) 的驻 点.
定理 3.1.2 (罗尔中值定理) 若 f (x) 在[a,b] 上连续,在
lim
x x0
f (x) f (x0 ) x x0
0

f (x0 )
f
(x0 )
lim
x x0
f (x) f (x0 ) x x0
0,
所以 f (x0 ) 0 .
若 f (x) 在 x0 取得极小值,则类似可证 f (x0 ) 0 .
y
o
x0
图 3—1
x x
x
费马定理的几何意义如图 3-1 所示:若曲线 y f (x) 在 x0 取
二 【课堂小结】
教学过程 小结与作业
【课后作业】
教学后记
时间控制 (分钟)
5
5 时间控制 (分钟)
65 时间控制 (分钟)
5
合肥财经职业学院教案
课程名称
经济数学
授课班级
会计与审计
时 间 第九周 地 点
D201
课时数
2
课题
第二章、导数在经济学中的应用
教学目的
知识目标:1、了解如何利用导数求解边际函数 2、了解如何利用导数求解弹性
教学后记
5
5 时间控制 (分钟)
65 时间控制 (分钟)
5
合肥财经职业学院教案
课程名称
经济数学
教学重点 了解极值的两种求解方法
教学难点 了解极值的两种求解方法 教学方法 讲授法、演示法
教学过程设计
导入 【复习】例题讲解 【新课导入】
教学过程 二
小结与作业 【课堂小结】
【课后作业】
教学后记
时间控制 (分钟)
5
5 时间控制 (分钟)
65 时间控制 (分钟)
5
合肥财经职业学院教案
课程名称 时间 课题
能力目标:能解决经济学中的简单边际问题,弹性。
教学重点 教学难点
1.掌握边际函数的求解方法 2.生活中弹性的求解及意义
掌握边际函数求解方法及经济学意义
教学方法 讲授法、演示法 教学过程设计
导入 【复习】例题讲解 【新课导入】
二 【课堂小结】
教学过程 小结与作业
时间控制 (分钟)
5
5 时间控制 (分钟)
导入
时间控制 (分钟)
5
【新课导入】微积分的基本公式为中值定理,下面和大家一起来看。 教学过程
引理 3.1.1(费马定理) 若 f (x) 在 x0 可导,且在 x0 取得
5
时间控制 (分钟)
极值,则 f (x0 ) 0 .
证 设 f (x) 在 x0 取得极大值,则存在 x0 的某邻域U (x0 ) ,
相关文档
最新文档