武侯区2015-2016学年度下期八年级数学期末试卷
2015-2016学年江苏省常州市八年级(下)期末数学试卷

2015-2016学年江苏省常州市八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.(2分)下列图形中,必然事件是()A.随意翻到一本书的某页,页码是偶数B.度量三角形的三个内角,和是180°C.掷一次骰子,向上一面的点数是2D.买一张电影票,座位号是偶数3.(2分)下列计算正确的是()A.B.C.D.4.(2分)分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=05.(2分)在一次有10000名八年级学生参加的数学质量监测的成绩中,随机抽取1000名学生的数学成绩进行分析,则在该抽样中,样本指的是()A.所抽取的1000名学生的数学成绩B.10000名学生的数学成绩C.1000名学生D.10006.(2分)已知点(﹣1,y 1),(2,y2),在反比例函数y=﹣的图象上,则下列关系式正确的是()A.y3<y2<y1B.y2<y3<y1C.y3<y1<y2D.y2<y1<y37.(2分)如图,将平行四边形ABCD折叠,使顶点D落在AB边上的点E处,折痕为AF,下列说法中不正确的是()A.EF∥BC B.EF=AE C.BE=CF D.AF=BC8.(2分)如图,△OAB中,∠ABO=90°,点A位于第一象限,点O为坐标原点,点B在x轴正半轴上,若双曲线y=(x>0)与△OAB的边AO、AB分别交于点C、D,点C为AO的中点,连接OD、CD.若S△OBD=3,则S△OCD为()A.3 B.4 C.D.6二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)若二次根式有意义,则x的取值范围是.10.(2分)分式,,的最简公分母为.11.(2分)在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:由此估计这种作物种子发芽率约为(精确到0.01).12.(2分)菱形具有矩形不一定具有的性质是(写出一条即可)13.(2分)若两个连续整数x、y满足x<+1<y,则x+y的值是.14.(2分)如图,O是矩形ABCD对角线BD的中点,M是CD的中点,若AB=12,AD=5,则四边形AOMD的周长是.15.(2分)一次函数y=kx+b与反比例函数的图象交于A、B两点(如图),则0<<kx+b的解集是.16.(2分)如图,在平面直角坐标系中,等腰直角三角形AOB的直角顶点A在第四象限,顶点B(0,﹣2),点C(0,1),点D在边AB上,连接CD交OA于点E,反比例函数的图象经过点D,若△ADE和△OCE的面积相等,则k的值为.三、解答题17.(8分)计算:(1);(2).18.(8分)(1)化简:;(2)先化简,再求值:,其中.19.(8分)解方程:(1);(2).20.(6分)某校为了解学生每周课外阅读时间的情况,对3000名学生采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”,“2小时~3小时”,“3小时~4小时”和“4个小时以上”四个等级,分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)x=,样本容量是;(2)将不完整的条形统计图补充完整;(3)请估计该校3600学生中每周课外阅读时间在“2个小时以上”的人数.21.(6分)如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.试说明:(1)AE=DC;(2)四边形ADCE为矩形.22.(6分)先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简经过思考,小张解决这个问题的过程如下:=①=②=③=④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简.23.(8分)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式.并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多20%,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?24.(8分)如图,在平面直角坐标系中,正比例函数y=kx(k>0)与反比例函数y=的图象分别交于A、C两点,已知点B与点D关于坐标原点O成中心对称,且点B的坐标为(m,0).其中m>0.(1)四边形ABCD的是.(填写四边形ABCD的形状)(2)当点A的坐标为(n,3)时,四边形ABCD是矩形,求m,n的值.(3)试探究:随着k与m的变化,四边形ABCD能不能成为菱形?若能,请直接写出k的值;若不能,请说明理由.25.(10分)如图,已知一次函数y=2x的图象与反比例函数y=(x>0),y=(x >0)的图象分别交于P,Q两点,点P为OQ的中点,Rt△ABC的直角顶点A是双曲线y=(x>0)上一动点,顶点B,C在双曲线y=(x>0)上,且两直角边均与坐标轴平行.(1)直接写出k的值;(2)△ABC的面积是否变化?若不变,求出△ABC的面积;若变化,请说明理由;(3)直线y=2x是否存在点D,使得以A,B,C,D为顶点的四边形是平行四边形,若存在,求出点A的坐标;若不存在,请说明理由.2015-2016学年江苏省常州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2分)下列图形中,必然事件是()A.随意翻到一本书的某页,页码是偶数B.度量三角形的三个内角,和是180°C.掷一次骰子,向上一面的点数是2D.买一张电影票,座位号是偶数【分析】必然事件就是一定发生的事件,据此即可判断.【解答】解:A、随意翻到一本书的某页,页码是偶数是随机事件,选项错误;B、度量三角形的三个内角,和是180°是必然事件,选项正确;C、掷一次骰子,向上一面的点数是2是随机事件,选项错误;D、买一张电影票,座位号是偶数是随机事件,选项错误.故选:B.【点评】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(2分)下列计算正确的是()A.B.C.D.【分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答】解:A、﹣=2﹣=,本选项正确;B、+≠,本选项错误;C、3﹣=2≠3,本选项错误;D、3+2≠5,本选项错误.故选:A.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2分)分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=0【分析】分式的值为零:分子等于零,且分母不等于零.【解答】解:由题意,得x2﹣4=0,且x+2≠0,解得x=2.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(2分)在一次有10000名八年级学生参加的数学质量监测的成绩中,随机抽取1000名学生的数学成绩进行分析,则在该抽样中,样本指的是()A.所抽取的1000名学生的数学成绩B.10000名学生的数学成绩C.1000名学生D.1000【分析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.【解答】解:根据一次有10000名八年级学生参加的数学质量监测的成绩中,随机抽取1000名学生的数学成绩进行分析,那么样本是:所抽取的1000名学生的数学成.故选:A.【点评】此题主要考查了样本确定方法,根据样本定义得出答案是解决问题的关键.6.(2分)已知点(﹣1,y 1),(2,y2),在反比例函数y=﹣的图象上,则下列关系式正确的是()A.y3<y2<y1B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点(2,y 2),的纵坐标的大小即可.【解答】解:∵反比例函数的比例系数为﹣k2﹣1,∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点(﹣1,y1)在第二象限,点(2,y2)和(,y3)在第四象限,∴y1最大,∵2<,y随x的增大而增大,∴y2<y3,∴y1>y3>y2.故选:B.【点评】本题考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y随x的增大而增大.7.(2分)如图,将平行四边形ABCD折叠,使顶点D落在AB边上的点E处,折痕为AF,下列说法中不正确的是()A.EF∥BC B.EF=AE C.BE=CF D.AF=BC【分析】根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠FEA,再利用等量代换可得∠B=∠FEA,然后根据平行线的判定方法可得EF∥BC,可以证明四边形AEFD是平行四边形,再根据折叠可得AE=DA,进而可证出四边形AEFD为菱形,再根据菱形的性质可得EF=AE,BE=CF,不能得出AF=BC;即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠FEA,∴∠B=∠FEA,∴EF∥BC;选项A正确;∵四边形ABCD是平行四边形,∴DF∥AE,AD∥BC,∵EF∥BC,∴AD∥EF,∴四边形AEFD是平行四边形,根据折叠可得AE=DA,∴四边形AEFD为菱形,∴EF=AE;选项B正确;∵AB﹣AE=CD﹣DF,∴BE=CF ;选项C 正确;没有条件证出AF=BC ,选项D 错误.故选:D .【点评】此题主要考查了翻折变换,以及平行四边形的判定与性质,菱形的判定与性质,关键是找准折叠以后哪些线段是对应相等的,哪些角是对应相等的.8.(2分)如图,△OAB 中,∠ABO=90°,点A 位于第一象限,点O 为坐标原点,点B 在x 轴正半轴上,若双曲线y=(x >0)与△OAB 的边AO 、AB 分别交于点C 、D ,点C 为AO 的中点,连接OD 、CD .若S △OBD =3,则S △OCD 为( )A .3B .4C .D .6【分析】根据反比例函数关系式与面积的关系得S △COE =S △BOD =3,由C 是OA 的中点得S △ACD =S △COD ,由CE ∥AB ,可知△COE ∽△AOB ,由面积比是相似比的平方得=,求出△ABC 的面积,从而求出△AOD 的面积,得出结论.【解答】解:过C 作CE ⊥OB 于E ,∵点C 、D 在双曲线y=(x >0)上,∴S △COE =S △BOD ,∵S △OBD =3,∴S △COE =3,∵CE ∥AB ,∴△COE ∽△AOB , ∴=,∵C 是OA 的中点,∴OA=2OC , ∴=,∴S △AOB =4×3=12,∴S △AOD =S △AOB ﹣S △BOD =12﹣3=9,∵C 是OA 的中点,∴S △ACD =S △COD ,∴S △COD =,故选:C .【点评】本题考查了反比例函数系数k 的几何意义,即在反比例函数y=的图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |,所成的三角形的面积是定值|k |,且保持不变.二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)若二次根式有意义,则x 的取值范围是 x ≥﹣1 .【分析】根据二次根式有意义的条件可得x +1≥0,再解不等式即可.【解答】解:由题意得:x +1≥0,解得:x ≥﹣1,故答案为:x ≥﹣1.【点评】此题主要考查了二次根式的意义.关键是二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2分)分式,,的最简公分母为x2yz.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的最简公分母为x2yz,故答案是:x2yz.【点评】本题考查了最简公分母,确定最简公分母的方法一定要掌握.11.(2分)在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:由此估计这种作物种子发芽率约为0.94(精确到0.01).【分析】把每次做实验的总的个数作为整体,求出发芽率,根据总体与样本的关系,即可认为就是这种作物种子发芽率.【解答】解:×100%=0.939≈0.94.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.容易出现的错误是(94÷100+187÷200+282÷300+376÷400)÷4=94%,即把每次试验的发芽率的平均数作为这种作物种子发芽率.12.(2分)菱形具有矩形不一定具有的性质是菱形的对角线互相垂直(写出一条即可)【分析】根据菱形的性质与矩形的性质写出即可.【解答】解:菱形的对角线互相垂直,菱形的对角线平分一组对角,菱形的四条边都相等.故答案为:菱形的对角线互相垂直(答案不唯一).【点评】本题考查了菱形的性质,矩形的性质,熟练掌握两个图形的性质是解题的关键.13.(2分)若两个连续整数x、y满足x<+1<y,则x+y的值是7.【分析】先估算的范围,再估算+1,即可解答.【解答】解:∵,∴,∵x<+1<y,∴x=3,y=4,∴x+y=3+4=7.故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.14.(2分)如图,O是矩形ABCD对角线BD的中点,M是CD的中点,若AB=12,AD=5,则四边形AOMD的周长是20.【分析】由矩形的性质和勾股定理求出BD,再证明OM是△ABD的中位线,得出OM=,BC=2.5,即可得出四边形AOMD的周长.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠BAD=90°,BC=AD=5,CD=AB=12,∴BD===13,∵O是CD的中点,∴OA=BD=6.5,∵M是CD的中点,∴DM=CD=6,OM是△CBD的中位线,∴OM=BC=2.5,∴四边形AOMD的周长=OA+AD+DM+OM=6.5+5+6+2.5=20;故答案为:20.【点评】本题考查了矩形的性质、三角形中位线定理、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.15.(2分)一次函数y=kx+b与反比例函数的图象交于A、B两点(如图),则0<<kx+b的解集是x<﹣1.【分析】结合函数图象,直接可得0<<kx+b的解集.【解答】解:由图象可知,只有x<﹣1时,y=kx+b的图象在y=的图象的上方,且函数值都大于0,即0<<kx+b.所以0<<kx+b的解集是:x<﹣1.故填:x<﹣1.【点评】解决此类问题的关键是认真观察图形,根据函数图象的特点直接确定不等式的解集.16.(2分)如图,在平面直角坐标系中,等腰直角三角形AOB的直角顶点A在第四象限,顶点B(0,﹣2),点C(0,1),点D在边AB上,连接CD交OA于点E,反比例函数的图象经过点D,若△ADE和△OCE的面积相等,则k的值为﹣.【分析】先过点D作DF⊥OB于F,构造等腰直角三角形BDF,再根据△ADE和△OCE的面积相等,得出△BCD和△AOB的面积相等,最后根据△BCD的面积求得点D的坐标,即可得出k的值.【解答】解:如图,过点D作DF⊥OB于F,∵等腰直角三角形AOB的顶点B(0,﹣2),点C(0,1),∴OB=2,AO=AB=,BC=3,DF=BF,∴△AOB的面积=××=1,又∵△ADE和△OCE的面积相等,∴△BCD和△AOB的面积相等,∴△BCD的面积为1,即×BC×DF=1,∴×3×DF=1,解得DF=∴BF=,∴OF=2﹣=,∴D(,﹣),∵反比例函数的图象经过点D,∴k=×(﹣)=﹣.故答案为:﹣【点评】本题主要考查了反比例函数图象上点的坐标特征,解决问题的关键是运用数形结合思想,将点D的坐标与比例系数k联系起来.三、解答题17.(8分)计算:(1);(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)运用平方差公式去括号,再计算根式的乘方即可得.【解答】解:(1)原式=3﹣3+2=5﹣3;(2)原式=(2)2﹣(3)2=20﹣18=2.【点评】本题主要考查二次根式的混合运算,学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.18.(8分)(1)化简:;(2)先化简,再求值:,其中.【分析】(1)根据二次根式的性质把原式进行化简即可;(2)先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:(1)原式===(x+y);(2)原式=•=,当a=时,原式==6.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.19.(8分)解方程:(1);(2).【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x﹣x+2=0,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)去分母得:x2+x﹣1=x2﹣x,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.20.(6分)某校为了解学生每周课外阅读时间的情况,对3000名学生采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”,“2小时~3小时”,“3小时~4小时”和“4个小时以上”四个等级,分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)x=30,样本容量是400;(2)将不完整的条形统计图补充完整;(3)请估计该校3600学生中每周课外阅读时间在“2个小时以上”的人数.【分析】(1)根据统计图可以求得x的值以及样本容量,本题得以解决;(2)根据第(1)问中的样本容量和统计图可以求得B等级和C等级的人数,从而可以将条形统计图补充完整;(3)根据统计图可以求得该校3600学生中每周课外阅读时间在“2个小时以上”的人数.【解答】解:(1)由扇形统计图,得x%=1﹣45%﹣10%﹣15%=30%,样本容量是:180÷45%=400,故答案为:30,400;(2)B等级的人数是:400×30%=120,C等级的人数是:400×10%=40,补全的条形统计图如右图所示,(3)由题意可得,该校3600学生中每周课外阅读时间在“2个小时以上”的人数是:3600×(1﹣45%)=1980,即该校3600学生中每周课外阅读时间在“2个小时以上”的有1980人.【点评】本题考查条形统计图、扇形统计图、样本容量、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.21.(6分)如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.试说明:(1)AE=DC;(2)四边形ADCE为矩形.【分析】(1)根据已知条件可以判定四边形ABDE是平行四边形,则其对边相等:AE=BD.结合中点的性质得到AE=CD;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论.【解答】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.【点评】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.22.(6分)先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简经过思考,小张解决这个问题的过程如下:=①=②=③=④在上述化简过程中,第④步出现了错误,化简的正确结果为﹣;(2)请根据你从上述材料中得到的启发,化简.【分析】(1)根据算术平方根的性质=|a|即可进行判断;(2)把被开方数化成完全平方的形式,然后利用二次根式的性质即可化简求解.【解答】解:(1)在化简过程中④步出现了错误,化简的正确结果是﹣.故答案是:④,﹣;(2)原式====+.【点评】本题考查了二次根式的化简求值,正确把被开方数化成完全平方的形式是本题的关键.23.(8分)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式.并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多20%,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?【分析】(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;【解答】解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,则自变量的取值范围为:2≤x≤3,则y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(1+20%)x万米3,根据题意得:﹣=24,解得:x=2.5经检验x=2.5为原方程的根,2.5×(1+20%)=3(万米3).答:原计划每天运送2.5万米3,实际每天运送3万米3.【点评】本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.24.(8分)如图,在平面直角坐标系中,正比例函数y=kx(k>0)与反比例函数y=的图象分别交于A、C两点,已知点B与点D关于坐标原点O成中心对称,且点B的坐标为(m,0).其中m>0.(1)四边形ABCD的是平行四边形.(填写四边形ABCD的形状)(2)当点A的坐标为(n,3)时,四边形ABCD是矩形,求m,n的值.(3)试探究:随着k与m的变化,四边形ABCD能不能成为菱形?若能,请直接写出k的值;若不能,请说明理由.【分析】(1)根据正、反比例函数的对称性即可得出点A、C关于原点O成中心对称,再结合点B与点D关于坐标原点O成中心对称,即可得出对角线BD、AC 互相平分,由此即可证出四边形ABCD的是平行四边形;(2)由点A的纵坐标结合反比例函数图象上点的坐标特征即可求出n值,进而得出点A的坐标以及OA的长度,再根据矩形的性质即可得出OB=OA,由点B的坐标即可求出m值;(3)由点A在第一象限内,点B在x轴正半轴上,可得出∠AOB<90°,而菱形的对角线互相垂直平分,由此即可得知四边形ABCD不可能成为菱形.【解答】解:(1)∵正比例函数y=kx(k>0)与反比例函数y=的图象分别交于A、C两点,∴点A、C关于原点O成中心对称,∵点B与点D关于坐标原点O成中心对称,∴对角线BD、AC互相平分,∴四边形ABCD的是平行四边形.故答案为:平行四边形.(2)∵点A(n,3)在反比例函数y=的图象上,∴3n=3,解得:n=1,∴点A(1,3),∴OA=.∵四边形ABCD为矩形,∴OA=AC,OB=BD,AC=BD,∴OB=OA=,∴m=.(3)四边形ABCD不可能成为菱形,理由如下:∵点A在第一象限内,点B在x轴正半轴上,∴∠AOB<90°,∴AC与BD不可能互相垂直,∴四边形ABCD不可能成为菱形.【点评】本题考查了正比例函数的性质、反比例函数的性质、矩形的性质以及菱形的性质,解题的关键是:(1)找出对角线BD、AC互相平分;(2)根据矩形的性质找出OA=OB;(3)找出∠AOB<90°.本题属于中档题,难度不大,解决该题型题目时,根据四边形对角线的相交情况(互相平分、相等且互相平分、互相垂直平分)来判定图形的形状是关键.25.(10分)如图,已知一次函数y=2x的图象与反比例函数y=(x>0),y=(x >0)的图象分别交于P,Q两点,点P为OQ的中点,Rt△ABC的直角顶点A是双曲线y=(x>0)上一动点,顶点B,C在双曲线y=(x>0)上,且两直角边均与坐标轴平行.(1)直接写出k的值;(2)△ABC的面积是否变化?若不变,求出△ABC的面积;若变化,请说明理由;(3)直线y=2x是否存在点D,使得以A,B,C,D为顶点的四边形是平行四边形,若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)设点P(m,),Q(n,),根据P为OQ的中点,即可得出m、n之间的关系,由此即可得出k值;(2)△ABC的面积不变,设A(a,)(a>0),根据AB、AC与坐标轴平行找出点B、C的坐标,由此即可得出AB、AC,再根据三角形的面积公式即可得出结论;(3)假设存在,设A(a,)(a>0),则C(a,),B(,).以A,B,C,D为顶点的四边形分别是以AB、AC、BC为对角线的平行四边形,根据平行四边形对角线互相平分的性质找出点D的坐标,再根据点D在直线y=2x上找出关于a的方程,解方程求出a值,将其代入A点坐标中即可得出结论.【解答】解:(1)∵点P在反比例函数y=(x>0)上,点Q在反比例函数y=(x>0)上,∴设点P(m,),Q(n,),∵点P为OQ的中点,∴n=2m,=2•,∴k=8.(2)△ABC的面积不变,设A(a,)(a>0),则C(a,),令y=中y=,则x=,∴点B(,),∴AB=a﹣=,AC=﹣=,=AB•AC=••=.∴S△ABC(3)假设存在,设A(a,)(a>0),则C(a,),B(,).以A,B,C,D为顶点的四边形是平行四边形分三种情况:①以AB为对角线,则点D(a+﹣a,+﹣),即(,),∵点D在y=2x上,∴=2•,解得:a=2或a=﹣2(舍去),此时点A(2,);②以AC为对角线,则点D(a+a﹣,+﹣),即(,),∵点D在y=2x上,∴=2•,解得:a=或a=﹣(舍去),此时点A(,4);③以BC为对角线,则点D(+a﹣a,+﹣),即(,),∵点D在y=2x上,∴=2•,解得:a=2或a=﹣2(舍去),此时点A(2,4).故直线y=2x存在点D,使得以A,B,C,D为顶点的四边形是平行四边形,点A 的坐标为(2,)、(,4)或(2,4).【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及平行四边形的性质,解题的关键是:(1)根据点P为OQ的中点找出m、n的关系;(2)求出S为定值;(3)分别以AB、AC、BC为对角线找出点D的坐标.本△ABC题属于中档题,难度不大,解决该题型题目时,根据平行线的性质﹣﹣对角线互相平分,由平行四边形的三个顶点坐标表示出第四个顶点的坐标是关键.。
2015-2016学年四川省成都市武侯区八年级(下)期末数学试卷

2015-2016学年四川省成都市武侯区八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个汽车标志图案中是中心对称图形的是()A.B.C.D.2.(3分)已知a>b,下列各式中,错误的是()A.a﹣3>b﹣3 B.5﹣a>5﹣b C.﹣a<﹣b D.a﹣b>03.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°4.(3分)如图,△ABC中,AC=AD=BD,∠DAC=40°,则∠B的度数是()A.35°B.30°C.25°D.20°5.(3分)化简÷的结果是()A.m B.C.m﹣1 D.6.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.7.(3分)下列因式分解正确的是()A.x3﹣x=x(x2﹣1)B.﹣a2+6a﹣9=﹣(a﹣3)2C.x2+y2=(x+y)2D.a3﹣2a2+a=a(a+1)(a﹣1)8.(3分)关于y的方程的解正确的是()A.y=﹣2 B.y=2 C.y=﹣2或y=2 D.方程无解9.(3分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.710.(3分)如图,四边形ABCD是矩形,四边形AEFG是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若∠BCF=30°,CD=4,CF=6,则正方形AEFG的面积为()A.1 B.2 C.3 D.4二、填空题(每小题4分,共16分)11.(4分)若分式有意义,则x的取值范围为.12.(4分)如图所示,在Rt△ABC中,∠A=90°,BC的垂直平分线交AB于E,垂足为D,连接CE.若CE平分∠ACB,则∠B的度数为.13.(4分)函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.14.(4分)如图所示,△ABC中,AH⊥BC于H,点E,D,F分别是AB,BC,AC的中点,HF=10cm,则ED的长度是cm.三、解答题(本大题共6个小题,共54分)15.(15分)(1)分解因式:4x2(y﹣2)﹣9(y﹣2)(2)解不等式,并求出它的正整数解.(3)计算:.16.(6分)如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.17.(6分)已知实数x,y满足|x+y﹣1|+|xy+3|=0,求代数式xy3+x3y+2x2y2的值.18.(8分)已知:如图,在△ABC中,∠BAC的平分线AP与BC的垂直平分线PQ相交于点P,过点P分别作PM⊥AC于点M,PN⊥AB交AB延长线于点N,连接PB,PC.求证:BN=CM.19.(9分)已知关于x的不等式组无解.(1)求a的取值范围;(2)若a为正整数,请先化简再求值:.20.(10分)如图,在△ABC中,点D,E分别是边BC,AC上的中点,连接DE,并延长DE至点F,使EF=ED,连按AD,AF,BF,CF,线段AD与BF相交于点O,过点D作DG⊥BF,垂足为点G.(1)求证:四边形ABDF是平行四边形;(2)当AE=DF时,试判断四边形ADCF的形状,并说明理由;(3)若∠CBF=2∠ABF,求证:AF=2OG.一、填空题(每小题4分,共20分)21.(4分)若2x2﹣5x+n=(2x﹣3)(x﹣1),则n=.22.(4分)已知关于x的分式方程的解为非负数,则m的取值范围为.23.(4分)已知实数x,y满足x+2y=4,并且x≤3,y<2,现有m=x﹣2y,则m 的取值范围是.24.(4分)在矩形ABCD中,点P在AD上,AB=,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图1).(1)当点E与点B重合时,点F恰好与点C重合(如图2),则PC的长为;(2)将直角尺从图2中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,从开始到停止,线段EF的中点所经过的路径(线段)长为.25.(4分)如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF 垂直平分AB,垂足为点E,连接BF,CE,且BC=2.下面四个结论:①BF=;②∠CBF=45°;③∠CED=30°;④△ECD的面积为,其中正确的结论有.二、解答题(本大题共3个小题,共30分)26.(8分)已知实数a,b,c满足(a﹣b)2+b2+c2﹣8b﹣10c+41=0.(1)分别求a,b,c的值;(2)若实数x,y,z满足,,,求的值.27.(10分)供给侧改革就是压产量、去库存、促销售.武侯区某轿车销售公司为龙泉工业区代销A款轿车,为了吸引购车族,销售公司打出降价牌,今年5月份A款轿车每辆售价比去年同期每辆售价低1万元,如果卖出相同数量的A 款轿车,去年的销售额为100万元,今年销售额只有90万元.(1)今年5月份A款轿车每辆售价为多少元?(2)为了增加收入,该轿车公司决定再为龙泉工业区代销B款轿车.已知A款轿车每辆进价为7.5万元,B款轿车每辆进价为6万元,公司预计用不多于105万元的资金购进这两款轿车共15辆,但A款轿车不少于6辆,试问共有几种进货方案?(3)在(2)的条件下,B款轿车每辆售价为8万元,为打开B款轿车的销路,公司决定每售出一辆B款轿车,返还顾客现金a(0<a≤1)万元.假设购进的15辆车能够全部卖出去,试讨论采用哪种进货方案可以使该轿车销售公司卖出这15辆车后获得最大利润?28.(12分)(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2015-2016学年四川省成都市武侯区八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2016春•武侯区期末)下面四个汽车标志图案中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.2.(3分)(2016春•武侯区期末)已知a>b,下列各式中,错误的是()A.a﹣3>b﹣3 B.5﹣a>5﹣b C.﹣a<﹣b D.a﹣b>0【解答】解:A、∵a>b,∴a﹣3>b﹣3,正确;B、∵a>b,3>0,∴﹣a<﹣b,∴5﹣a<5﹣b,故本选项错误;C、∵a>b,∴﹣a<﹣b,正确;D、∵a>b,∴a﹣b>0,正确.故选B.3.(3分)(2011•嘉兴)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.4.(3分)(2016春•武侯区期末)如图,△ABC中,AC=AD=BD,∠DAC=40°,则∠B的度数是()A.35°B.30°C.25°D.20°【解答】解:∵△ABC中,AC=AD,∠DAC=40°,∴∠ADC==70°,∵AD=BD,∠ADC=∠B+∠BAD=70°,∴∠B=∠BAD=()°=35°.故选A.5.(3分)(2014•济南)化简÷的结果是()A.m B.C.m﹣1 D.【解答】解:原式=•=m.故选:A.6.(3分)(2016春•武侯区期末)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【解答】解:,由①,得x>﹣2,由②,得x≤1,不等式组的解集为﹣2<x≤1,在数轴上表示为,故选C.7.(3分)(2016春•武侯区期末)下列因式分解正确的是()A.x3﹣x=x(x2﹣1)B.﹣a2+6a﹣9=﹣(a﹣3)2C.x2+y2=(x+y)2D.a3﹣2a2+a=a(a+1)(a﹣1)【解答】解:﹣a2+6a﹣9=﹣(a﹣3)2.故选B8.(3分)(2016春•武侯区期末)关于y的方程的解正确的是()A.y=﹣2 B.y=2 C.y=﹣2或y=2 D.方程无解【解答】解:去分母得:y2﹣4+4=4y﹣8+4,整理得:y2﹣4y+4=0,即(y﹣2)2=0,解得:y1=y2=2,经检验y=2是增根,原分式方程无解,故选D9.(3分)(2017•正定县一模)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.7【解答】解:设该多边形的边数为n则:(n﹣2)•180°=900°,解得:n=7.故:选D10.(3分)(2016春•武侯区期末)如图,四边形ABCD是矩形,四边形AEFG是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若∠BCF=30°,CD=4,CF=6,则正方形AEFG的面积为()A.1 B.2 C.3 D.4【解答】解:∵四边形ABCD是矩形,四边形AEFG是正方形,∴AD∥EF∥BC,AB=CD=4,∠B=90°,又∵EH∥FC,∴四边形EFCH平行四边形,∠BHE=∠BCF=30°,∴EH=CF=6,∴BE=EH=3,∴AE=AB﹣BE=4﹣3=1,∴正方形AEFG的面积=AE2=1;故选:A.二、填空题(每小题4分,共16分)11.(4分)(2017•海淀区二模)若分式有意义,则x的取值范围为x≠2.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.12.(4分)(2016春•武侯区期末)如图所示,在Rt△ABC中,∠A=90°,BC的垂直平分线交AB于E,垂足为D,连接CE.若CE平分∠ACB,则∠B的度数为30°.【解答】解:∵BC的垂直平分线交AB于E,垂足为D,∴BE=CE,∴∠B=∠BCE,∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠B=∠BCE=∠ACE,∵在Rt△ABC中,∠A=90°,∴3∠B=90°,∴∠B=30°,故答案为:30°.13.(4分)(2015•盘锦)函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b <0的解集为x<1.【解答】解:根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,﹣2);即当x<1时,函数值y的范围是y<0;因而当不等式kx+b<0时,x的取值范围是x<1.故答案为:x<114.(4分)(2016春•武侯区期末)如图所示,△ABC中,AH⊥BC于H,点E,D,F分别是AB,BC,AC的中点,HF=10cm,则ED的长度是10cm.【解答】解:∵AH⊥BC,F是AC的中点,∴FH=AC=10cm,∴AC=20cm,∵点E,D分别是AB,BC的中点,∴ED=AC,∴ED=10cm.故答案为:10.三、解答题(本大题共6个小题,共54分)15.(15分)(2016春•武侯区期末)(1)分解因式:4x2(y﹣2)﹣9(y﹣2)(2)解不等式,并求出它的正整数解.(3)计算:.【解答】解:(1)原式=(y﹣2)(4x2﹣9)=(y﹣2)(2x+3)(2x﹣3);(2)去分母,得3(x﹣2)≤2(7﹣x)去括号,得3x﹣6≤14﹣2x,移项,得3x+2x≤14+6合并同类项,得5x≤20系数化为1,得x≤4,正整数解为1、2、3、4;(3)原式=•﹣=﹣=.16.(6分)(2016春•武侯区期末)如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.17.(6分)(2016春•武侯区期末)已知实数x,y满足|x+y﹣1|+|xy+3|=0,求代数式xy3+x3y+2x2y2的值.【解答】解:∵|x+y﹣1|+|xy+3|=0,∴,则原式=xy(x2+y2+2xy)=xy(x+y)2=﹣3.18.(8分)(2016春•武侯区期末)已知:如图,在△ABC中,∠BAC的平分线AP与BC的垂直平分线PQ相交于点P,过点P分别作PM⊥AC于点M,PN⊥AB 交AB延长线于点N,连接PB,PC.求证:BN=CM.【解答】证明:∵AP是∠BAC的平分线,PM⊥AC,PN⊥AB,∴PM=PN,∵PQ是线段BC的垂直平分线,∴PB=PC,在Rt△PBN和Rt△PCM中,,∴Rt△PBN≌Rt△PCM(HL),∴BN=CM.19.(9分)(2016春•武侯区期末)已知关于x的不等式组无解.(1)求a的取值范围;(2)若a为正整数,请先化简再求值:.【解答】解:(1)由2(x﹣1)≤a﹣2,∴x≤a,由2x﹣1>0,∴x>,又关于x的不等式组无解,∴a≤1.(2)=(﹣)÷()=•=,∵a≤1,a为正整数,∴a=1,∴原式==1.20.(10分)(2016春•武侯区期末)如图,在△ABC中,点D,E分别是边BC,AC上的中点,连接DE,并延长DE至点F,使EF=ED,连按AD,AF,BF,CF,线段AD与BF相交于点O,过点D作DG⊥BF,垂足为点G.(1)求证:四边形ABDF是平行四边形;(2)当AE=DF时,试判断四边形ADCF的形状,并说明理由;(3)若∠CBF=2∠ABF,求证:AF=2OG.【解答】(1)证明:∵点D,E分别是边BC,AC上的中点,∴ED∥AB,AE=CE,∵EF=ED,∴四边形ADCF是平行四边形,∴AF∥BC,∴四边形ABDF是平行四边形;(2)四边形ADCF是矩形.理由:∵AE=DF,EF=ED,∴AE=EF=DE,∴∠EAF=∠AFE,∠DAE=∠ADE,∴∠DAF=∠EAF+∠EAD=×180°=90°,由(1)知:四边形ADCF是平行四边形;∴四边形ADCF是矩形;(3)证明:作AM⊥DG 于M,连接BM.∵四边形ABDF是平行四边形,∴OA=OD,∵OG∥AM,∴GM=GD,∴AM=2OG,∵BG⊥DM,GM=GD,∴BM=BD,∴∠CBF=∠MBG,∵∠CBF=2∠ABF,∴∠ABM=∠ABF,∵AM∥BF,∴∠MAB=∠ABF,∴∠MAB=∠MBA,∴AM=BM=BD=AF=2OG,∴OG=AF.一、填空题(每小题4分,共20分)21.(4分)(2016春•武侯区期末)若2x2﹣5x+n=(2x﹣3)(x﹣1),则n=3.【解答】解:∵右边=2x2﹣2x﹣3x+3=2x2﹣5x+3,∴n=3.故答案为:3.22.(4分)(2016春•武侯区期末)已知关于x的分式方程的解为非负数,则m的取值范围为m≥3且m≠5.【解答】解:去分母,得:m﹣2﹣3=x﹣2,移项、合并,得:x=m﹣3,∵分式方程的解为非负数,∴m﹣3≥0且m﹣3≠2,解得:m≥3且m≠5,故答案为:m≥3且m≠5.23.(4分)(2016春•武侯区期末)已知实数x,y满足x+2y=4,并且x≤3,y<2,现有m=x﹣2y,则m的取值范围是﹣4<m≤2.【解答】解:∵x+2y=4,∴y=(4﹣x),∵y<2,∴(4﹣x)<2,解得x>0,又∵x≤3,∴0<x≤3,∵m=x﹣2y=x﹣2×(4﹣x)=2x﹣4,当x=0时,m=﹣4;当x=3时,m=2×3﹣4=2,∴﹣4<m≤2.故答案为:﹣4<m≤2.24.(4分)(2016春•武侯区期末)在矩形ABCD中,点P在AD上,AB=,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图1).(1)当点E与点B重合时,点F恰好与点C重合(如图2),则PC的长为2;(2)将直角尺从图2中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,从开始到停止,线段EF的中点所经过的路径(线段)长为.【解答】解:(1)如图2,在矩形ABCD中,∠A=∠D=90°,∵AP=1,AB=,∴PB==2,∵∠ABP+∠APB=90°,∠BPC=90°,∴∠APB+∠DPC=90°,∴∠ABP=∠DPC,∴△APB∽△DCP,∴AP:CD=PB:CP,即1:=2:PC,∴PC=2,(2)设线段EF的中点为O,连接OP,OB,如图1,在Rt△EPF中,OP=EF,在Rt△EBF中,OB=EF,∴OP=OB,∴O点在线段BP的垂直平分线上,如图2,当点E与点B重合时,点F与点C重合时,EF的中点为BC的中点O,当点E与点,A重合时,EF的中点为PB的中点O,∴OO′为△PBC的中位线,∴OO′=PC=,∴线段EF的中点经过的路线长为.故答案为2,.25.(4分)(2016春•武侯区期末)如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF垂直平分AB,垂足为点E,连接BF,CE,且BC=2.下面四个结论:①BF=;②∠CBF=45°;③∠CED=30°;④△ECD的面积为,其中正确的结论有①②④.【解答】解:∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,∴CF=CB=2,∠BCF=90°,∴△CBF为等腰直角三角形,∴BF=BC=2,∠CBF=45°,所以①②正确;∵直线DF垂直平分AB,∴FA=FB,BE=AE,∴∠A=∠ABF,而∠BFC=∠A+∠ABF=45°,∴∠A=22.5°,∵CE为斜边AB上的中线,∴EC=EA,∴∠ECA=∠A=22.5°,∴∠CEF=180°﹣90°﹣2×22.5°=45°,所以③错误;作EH⊥BD于H,如图,∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,∴CD=CA=2+2,∵点E为AB的中点,∴EH=AC=+1,∴△ECD的面积=•(+1)•(2+2)=2+3,所以④正确.故答案为①②④.二、解答题(本大题共3个小题,共30分)26.(8分)(2016春•武侯区期末)已知实数a,b,c满足(a﹣b)2+b2+c2﹣8b ﹣10c+41=0.(1)分别求a,b,c的值;(2)若实数x,y,z满足,,,求的值.【解答】解:(1)已知等式整理得:(a﹣b)2+(b﹣4)2+(c﹣5)2=0,∴a﹣b=0,b﹣4=0,c﹣5=0,解得:a=b=4,c=5;(2)把a=b=4,c=5代入已知等式得:=﹣4,即+=﹣;=,即+=;=﹣,即+=﹣,∴++=﹣,则原式==﹣8.27.(10分)(2016春•武侯区期末)供给侧改革就是压产量、去库存、促销售.武侯区某轿车销售公司为龙泉工业区代销A款轿车,为了吸引购车族,销售公司打出降价牌,今年5月份A款轿车每辆售价比去年同期每辆售价低1万元,如果卖出相同数量的A款轿车,去年的销售额为100万元,今年销售额只有90万元.(1)今年5月份A款轿车每辆售价为多少元?(2)为了增加收入,该轿车公司决定再为龙泉工业区代销B款轿车.已知A款轿车每辆进价为7.5万元,B款轿车每辆进价为6万元,公司预计用不多于105万元的资金购进这两款轿车共15辆,但A款轿车不少于6辆,试问共有几种进货方案?(3)在(2)的条件下,B款轿车每辆售价为8万元,为打开B款轿车的销路,公司决定每售出一辆B款轿车,返还顾客现金a(0<a≤1)万元.假设购进的15辆车能够全部卖出去,试讨论采用哪种进货方案可以使该轿车销售公司卖出这15辆车后获得最大利润?【解答】解:(1)设今年5月份A款汽车每辆售价x万元.根据题意得:=,解得:x=9,经检验知,x=9是原方程的解.所以今年5月份A款汽车每辆售价9万元.(2)设A款汽车购进y辆.则B款汽车每辆购进(15﹣y)辆.根据题意得:解得:6≤y≤10,所以有5种方案:方案一:A款汽车购进6辆;B款汽车购进9辆;方案二:A款汽车购进7辆;B款汽车购进8辆;方案三:A款汽车购进8辆;B款汽车购进7辆;方案四:A款汽车购进9辆;B款汽车购进6辆;方案五:A款汽车购进10辆;B款汽车购进5辆.(3)设利润为W则:W=(8﹣6)×(15﹣y)﹣a(15﹣y)+(9﹣7.5)y=30﹣2y﹣a(15﹣y)+1.5y=30﹣a(15﹣y)﹣0.5y=(a﹣0.5)y+30﹣15a.①当a=0.5时,5种方案利润一样.②当a>0.5时,y=10时,利润最大,此时方案五利润最大.③当a<0.5时,y=6时,利润最大,此时方案一利润最大.28.(12分)(2016春•武侯区期末)(1)如图1,在矩形ABCD中,对角线AC 与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.参与本试卷答题和审题的老师有:gbl210;lantin;wangjc3;守拙;sks;CJX;mayanq;家有儿女;2300680618;zjx111;1987483819;知足长乐;星期八;弯弯的小河;三界无我;gsls(排名不分先后)菁优网2017年6月13日。
2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。
2015武侯区八年级下期末数学

A. B. 2.如果 a b ,那么下列各式中正确的是() A. a 1 b 1 B. a b
16. (本小题满分 6 分)化简求值:
(1)画出 △ABC 关于原点对称的三角形 △A ' B ' C ' ;
(2)将 △ABC 绕坐标原点 O 逆时针旋转 90 . 画出图形,直接写出点 B 的对应点的坐 标; (3)请直接写出:以 A、B、C 为顶点的平行四边形的第四个顶点 D 的坐标.
18. (本小题满分 8 分)已知 x y 4 , xy 12 ,求
C. C. 2a 2b
D.
a b 2 2
D.
3.下列图形中,既是轴对称图形又是中心对称图形的有()
A.4 个 4.如果代数式
B.3 个
C.2 个
D.1 个
x 1 有意义,那么 x 的取值范围是() x2 A. x 2 B x 1 C. x 1 D. x 1 ,且 x 2 5.某多边形的内角和是其外角和的 3 倍,则此多边形的边数是() A.8 B.7 C.6 D.5 6.下列运算正确的是() y y x 2y 2 B. A. x y x y x 3y 3
27. (本小题满分 10 分)如图(1) ,在矩形 ABCD 中,把 B 、 D 分别翻折,使点 B、D 恰好落在对角线 AC 上的点 E、F 处,折痕分别为 CM、AN. (1)求证: DAN BCM ; (2)请连接 MF、NE,证明四边形 MFNE 是平行四边形; (3) P、 Q 是矩形的边 CD、 AB 上的两点, 连接 PQ、 CQ、 MN, 如图 (2) 所示, 若 PQ CQ , PQ / / MN ,且 AB 4cm , BC 3cm ,求 PC 的长度.
2015—2016学年人教版八年级下期末数学试题及答案

2015—2016学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1x 的取值范围是 A.3x 2≥ B. 3x 2> C. 2x 3≥ D. 2x 3> 2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是A.平行四边形B. 菱形C.正方形D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米 10.如图,已知ABCD 的面积为48,E 为AB连接DE ,则△ODE 的面积为 第4题图第10题图 B DA.8B.6C.4D.3二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
2015-2016学年度(下)八年级数学期末试题(最新精品)

AFE D CB2015-2016学年度(下)八年级数学期末测试试卷一、选择题(每题3分,共30分)1、下列计算结果正确的是: (A)(B)(C) (D)2、已知,那么的值为( )A .一lB .1C .32007D .3、在△ABC 中AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42或32 D .37或334、△ABC 中,若AB=15,AC=13,高AD=12,则△ABC 的周长是( )A.42B.32C.42或32D.37或33 5、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点,则下列式子中,一定成立的是( ) A. B. C.D.6、已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-3x +b 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3<y 1<y 27、一次函数y=mx+n 与y=mnx (mn ≠0),在同一平面直角坐标系的图像是……( )A . B. C. D. 9、某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,811、8名学生在一次数学测试中的成绩为80,82,79,69,74,78,,81,这组成绩的平均数是77,则的值为( )A .76B .75C .74D .73 10、如图、已知梯形ABCD 中,AD ∥BC,AB=CD=AD,AC 、BD 相交于点O ,∠BCD=60°,有下列说法:(1)梯形ABCD是轴对称图形。
(2)BC=2AD.(3)梯形ABCD是中心对称图形。
(4)AC平分∠DCB.其中正确的说法有()A、1个B、2个C、3个D、4个二、填空题(每题3分,共30分)11、直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________,面积为________ .12、已知a,b,c为三角形的三边,则= .13、如图所示,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下滑了__________米.14、直角三角形的两边为3和4,则该三角形的第三边为 .15、在长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=cm.16、如图,已知正方形ABCD的边长为1,连接AC,BD,相交于点O,CE平分∠ACD 交BD于点E,则DE= .17、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。
【最新】2015-2016学年人教版数学八年级下册期末测试卷及答案
5.使分式
x 2x
1 有.意.义.的
x 的取值范围是(
▲
C.不 变 )
D .不确定
2015-2016 学年度八年级下期末考试
数学试卷
(考试时间 120 分钟,满分 150 分)
本试卷分 A 卷和 B 卷, A 卷满分 100 分, B 卷满分 50 分;考试时间 120 分钟。 A 卷分第 I 卷和第 II 卷,第 I 卷为选择题,第 II 卷为其他类型的题。第Ⅰ卷 1 至 2 页, 第Ⅱ卷和 B 卷 3 至 6 页。考试结束时 , 监考员 将第Ⅰ卷及第Ⅱ卷和 B 卷的答题卡收回。 注意事项:
5.使分式
x 2x
1 有.意.义.的
x 的取值范围是(
▲
C.不 变 )
D .不确定
2015-2016 学年度八年级下期末考试
数学试卷
(考试时间 120 分钟,满分 150 分)
本试卷分 A 卷和 B 卷, A 卷满分 100 分, B 卷满分 50 分;考试时间 120 分钟。 A 卷分第 I 卷和第 II 卷,第 I 卷为选择题,第 II 卷为其他类型的题。第Ⅰ卷 1 至 2 页, 第Ⅱ卷和 B 卷 3 至 6 页。考试结束时 , 监考员 将第Ⅰ卷及第Ⅱ卷和 B 卷的答题卡收回。 注意事项:
A 卷(满分 100 分)
第 I 卷(选择题,共 30 分)
2015-2016学年八年级下期末质量数学试题含答案
21.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.22.如图:已知:AD是△ ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.求证:四边形AEDF是菱形;23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ ADE=75°,求∠AEB的度数.25.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的 3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.2.分解因式:2244423x xy y x y ++---2.如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),C (b ,0),并且a ,b 满足b=++16.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒)(1)求B 、C 两点的坐标;(2)当t 为何值时,四边形PQCB 是平行四边形?并求出此时P 、Q 两点的坐标;(3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.八年级下学期期末学业水平考试数学试题【答案】1、选择题(每小题3分,共36分)∴∠FDB=∠B∴DF=BF ..............3分∴DE+DF=AB=AC;..............4分(2)图②中:AC+DE=DF.. ............6分图③中:AC+DF=DE...............8分(3)当如图①的情况,DF=AC-DE=6-4=2;..............9分当如图②的情况,DF=AC+DE=6+4=10...............10分27、(1)证明:如图1,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);..............3分(2)证明:如图1,∵BE平分∠DBC,OD是正方形ABCD的对角线,∴∠EBC=∠DBC=22.5°,..............4分由(1)知△BCE≌△DCF,∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理),∴∠BGF=90°;..............5分在△DBG和△FBG中,,BD==,BF=,BC=﹣(﹣,﹣)、(,).每个坐标:(1), ,, 故;:,,:,,当时,:,;(3)当时,过Q作,根据题意得:,计算得出:,故,,当时,过P作轴,根据题意得:,,则,计算得出:,,故P( ,12),. .............12分。
2015-2016学年八年级下学期期末考试数学试题带答案(精品)
CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
2015-2016学年度八年级第二学期期末考试数学试题及参考答案
2015-2016学年度第二学期期末考试八年级数学试题(时间:120分钟 满分:150分)请注意:所有试题的答案均填写在答题卡上,答案写在试卷上无效。
一、选择题:(本大题共6小题,每小题3分,计18分) 1.下列式子中,为最简二次根式的是 ( ▲ ) A .10B .8C .21D .212.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B . C.D.3.与分式x--11的值相等的是( ▲ ) A .11--xB .x+-11 C .x+11D .11-x 4. 已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03>aB .03<-aC .03>+aD .03>a5.矩形具有而平行四边形不一定具有的性质是( ▲ ) A .对角线互相平分 B .两组对角相等 C .对角线相等D .两组对边相等6.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函数xky =在第一象限内的图象与△ABC 有公共点,则k 的取值范围是( ▲ ) A .32≤≤k B .42≤≤k C .43≤≤kD .5.32≤≤k二、填空题:(本大题共10小题,每小题3分,计30分)7x 的取值范围是 ▲ .8.如图,将△ABC 绕点A 按顺时针方向旋转60°得△ADE ,则∠BAD= ▲ °.9.若分式392+-x x 的值为0,则x 的值为 ▲ .10.若b a <,则2)(b a -可化简为 ▲ .11.若一元二次方程020162=-+bx ax 有一根为1-=x ,则b a -的值为 ▲ .12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是 ▲ . 13.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=5,则EF 的长为 ▲ .第8题图 第13题图 第16题图14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x ,根据题意可列方程为 ▲ . 15.已知)2,(m A 与)3,1(-m B 是反比例函数xky =图像上的两个点,则m 的值为 ▲ . 16.如图,矩形ABCD 中,AB=7cm,BC=3cm,P 、Q 两点分别从A 、B 两点同时出发,沿矩形ABCD 的边逆时针运动,速度均为1cm/s ,当点P 到达B 点时两点同时停止运动,若PQ 长度为5cm 时,运动时间为 ▲ s . 三、解答题:(本大题共10小题,计102分) 17.(本题10分)计算:(1)0)21()12(8+-+(2))32)(32(-+18.(本题10分)解下列一元二次方程: (1)x x 3322=-(用公式法解) (2)93)3(2-=-x x19.(本题8分)先化简,再求值:121441222+-÷-+-+-a a a a a a ,其中12+=a20.(本题8分)一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.21.(本题10分)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观。