布尔代数的常用公式
布尔代数法则

最小项
最小项的定义和性质 定义:如果一个具有n个变量的函数的"与项"包 含全部n个变量,每个变量都以原变量或反变量形 式出现,且仅出现一次,则该"与项"被称为最小 项。 例,4变量W,X,Y,Z的最小项有W'X'Y'Z', WXY'Z,W'X'YZ' 性质:①任意一个最小项,其相应变量有且仅有 一种取值使这个最小项的值为1。 ②相同变量构成的两个不同最小项相"与"为0。 ③n个变量的全部最小项相"或"为1。 ④n个变量构成的最小项有n个相邻最小项。
F(X,Y,Z)=XY+Y'Z'+YZ ROW X 0 0 1 0 2 0 3 0 4 1 5 1 6 1 7 1 Y 0 0 1 1 0 0 1 1 Z 0 1 0 1 0 1 0 1 F 1 0 0 1 1 0 1 1
若干名词
字母:表示变量 与项:变量用"与"运算连接的项。例,Z', W?X?Y等。 与或式:用或运算连接与项而生成的表达式。 例,Z'+WXY+XY'Z+W'Y'Z 或项:变量用"或"运算连接的项。例,Z', W+Y+Z等。 或与式:用与运算连接或项而生成的表达式。 例,Z'(W+X+Y)(X+Y'+Z)(W'+Y'+Z)
①真值表 ②标准"与-或"式,F(X,Y)=X'Y ③用? 表示的标准"与-或",? XY(1) ④标准"或-与"式,F(X,Y)=(X+Y)(X'+Y)(X'+Y') ⑤用? 表示的标准"或-与"式,? XY(0,2,3) 一个逻辑函数既可以用标准"与-或"表示,也可 以用标准“ 或-与” 式表示。 ? A,B,C(0,1,2,3)=? A,B,C (4,5,6,7) ? X,Y(1)=? X,Y(0,2,3) ? W,X,Y,Z(0,1,2,3,5,7,11,13)=? W,X,Y,Z(4,6,8,9,1 0,12,14,15) 注意:最小项和最大项的编号是互补的。
德摩根公式的解释

德摩根公式的解释
德摩根公式,也称为德摩根定律,是布尔代数中的基本定理之一。
它描述了与逻辑运算符(与、或、非)相关的关系:对于任意两个布尔变量A和B,德摩根公式说明了逻辑与运算和逻辑或运算的补运算之间的关系。
德摩根公式有两种形式:
1. 逻辑与的德摩根公式:¬(A∧B) = ¬A∨¬B
这个式子说明了逻辑与运算的补运算是逻辑或运算,即两个变量同时为真的补运算等价于至少一个变量为假。
2. 逻辑或的德摩根公式:¬(A∨B) = ¬A∧¬B
这个式子说明了逻辑或运算的补运算是逻辑与运算,即两个变量至少有一个为真的补运算等价于两个变量都为假。
德摩根公式的实用意义在于将复杂的逻辑表达式转化为更简单的形式,从而便于理解和分析。
通过应用德摩根公式,我们可以将复杂的逻辑运算简化为更简单的形式,同时也有助于发现逻辑推理中的错误或矛盾。
逻辑代数的运算法则

逻辑代数的运算法则逻辑代数又称布尔代数。
逻辑代数与普通代数有着不同概念,逻辑代数表示的不是数的大小之间的关系,而是逻辑的关系,它仅有0、1两种状态。
逻辑代数有哪些基本公式和常用公式呢?1.变量与常量的关系与运算公式 一、基本公式A·1=AA·0=0或运算公式A+0=A A+1=101律2.与普通代数相似的定律与运算公式A·B=B·A 或运算公式A+B=B+A交换律A·(B·C)=(A·B)·C A+(B+C)=(A+B)+C 结合律A·(B+C)=A·B+A·C A+(B·C)=(A+B)(A+C)分配律3.逻辑代数特有的定律与运算公式或运算公式互补律重叠律(同一律) 反演律(摩根定律)0=⋅A A 1=+A A BA B A +=⋅BA B A ⋅=+ 非非律(还原律)AA =A A A =⋅A A A =+真值表证明摩根定律0001101111111100结论:BA B A +=⋅ 以上定律的证明,最直接的办法就是通过真值表证明。
若等式两边逻辑函数的真值表相同,则等式成立。
【证明】公式1AB A AB =+B A AB +)(B B A += 互补律1⋅=A 01律A= 合并互为反变量的因子【证明】公式2AAB A =+AB A +)(B A +=1 01律A= 吸收多余项【证明】公式3BA B A A +=+B A A +BA AB A ++=B A A A )(++= 互补律BA += 消去含有另一项的反变量的因子【证明】CA AB BC C A AB +=++BC A A C A AB )(+++=BC C A AB ++ 分配律BC A ABC C A AB +++= 吸收多余项公式2互补律CA AB += 公式2逻辑代数的运算法则一、基本公式二、常用公式A·1=AA·0=0A+0=A A+1=1 1.变量与常量的关系01律2.与普通代数相似的定律交换律A·B=B·A A+B=B+A结合律 分配律3.逻辑代数特有的定律互补律A·A=A A+A=A 重叠律(同一律)反演律(摩根定律)0=⋅A A 1=+A A BA B A +=⋅BA B A ⋅=+非非律(还原律)AA =AB A AB =+.1AAB A =+.2BA B A A +=+.3CA AB BC C A AB +=++.4A·(B·C )=(A·B )·C A+(B+C )=(A+B )+C A·(B+C )=A·B+A·CA +(B·C )=(A+B )(A+C )谢谢!。
布尔代数的基本公式和规则

7.分配律 8.吸收律1 9.吸收律2 10.吸收律3 11.多余项定律 12.求反律 13.否否律
AB C AB AC A BC A BA C
( A B)( A B) A
AA B A
AA B AB
AB AB A A AB A A AB A B
(A B)(AC)(B C) (A B)(AC) AB AC BC AB AC
AB A B
A B AB
A A
1. 求反律(摩根定律) 摩根定律的真值表
AB
AB
A B
A B
AB
00
1
1
1
1
01
1
1
0Leabharlann 01011
0
0
11
0
0
0
0
由真值表可知:
AB A B
A B AB
2. 多余项定律
常用的为表2.1中的后一种形式,即 AB AC BC AB AC
它的正确性可用基本公式中的 A A 1 A1 1来证明
证明:
左端 AB AC BC 1 AB AC BC A A
AB AC ABC ABC
AB ABC AC ABC
AB1 C AC1 B AB AC 右端即
AB AC BC AB AC
在基本公式中,我们应当牢记以下几个常用结论: ● 1加任何变量,结果都为1;0乘任何变量,结果都为0。
● 多个同一变量的和仍然是它本身,例如:A A A A
多个同一变量的积仍然是它本身,例如:A A A A
●同一变量的原变量与反变量之和恒为1, 例如: x x 1
同一变量的原变量与反变量之积恒为0,例如: x x 0
第三章 逻辑函数化简

一:布尔代数的基本公式公式名称公式1、0-1律A*0=0 A+1=12、自等律A*1=A A+0=A3、等幂律A*A=A A+A=A4、互补律A*A=0 A+A=15、交换律A*B=B*A A+B=B+A6、结合律A*(B*C)=(A*B)*C A+(B+C)=(A+B)+C7、分配律A(B+C)=AB+AC A+BC=(A+B)(A+C)8、吸收律1(A+B)(A+B)=A AB+AB=A9、吸收律2A(A+B)=A A+AB=A10、吸收律3A(A+B)=AB A+AB=A+B11、多余项定律(A+B)(A+C)(B+C)=(A+B)(A+C)AB+AC+BC=AB+AC12、否否律()=A13、求反律AB=A+B A+B=A*B下面我们来证明其中的两条定律:(1)证明:吸收律1第二式AB+AB=A左式=AB+AB=A(B+B)=A=右式(因为B+B=1)(2)证明:多余项定律AB+AC+BC=AB+AC左式=AB+AC+BC=AB+AC+BC(A+A)=AB+AC+ABC+ABC=AB(1+C)+AC(1+B)=AB+AC=右式证毕注意:求反律又称为摩根定律,它在逻辑代数中十分重要的。
二:布尔代数的基本规则代入法则它可描述为逻辑代数式中的任何变量A,都可用另一个函数Z 代替,等式仍然成立。
对偶法则它可描述为对任何一个逻辑表达式F,如果将其中的“+”换成“*”,“*”换成“+”“1”换成“0”,“0”换成“1”,仍保持原来的逻辑优先级,则可得到原函数F的对偶式G,而且F与G互为对偶式。
我们可以看出基本公式是成对出现的,二都互为对偶式。
反演法则有原函数求反函数就称为反演(利用摩根定律),我们可以把反演法则这样描述:将原函数F中的“*”换成“+”,“+”换成“*”,“0”换成“1”,“1”换成“0”;原变量换成反变量,反变量换成原变量,长非号即两个或两个以上变量的非号不变,就得到原函数的反函数。
布尔代数基础

布尔代数基础和布尔函数的化简和实现布尔代数是分析和设计数字逻辑电路的数学工具。
因此这里从应用的角度向读者介绍布尔代数,而不是从数学的角度去研究布尔代数。
一、布尔代数的基本概念1、布尔代数的定义域和值域都只有“0”和“1”。
布尔代数的运算只有三种就是“或”(用+表示),“与”(用·表示)和“非”(用 ̄表示,以后用’表示)。
因此布尔代数是封闭的代数系统,可记为B=(k,+,·, ̄,0,1),其中k表示变量的集合。
2、布尔函数有三种表示方法。
其一是布尔表达式,用布尔变量和“或”、“与”和“非”三种运算符所构成的式子。
其二是用真值表,输入变量的所有可能取值组合及其对应的输出函数值所构成的表格。
其三是卡诺图,由表示逻辑变量所有可能取值组合的小方格所构成的图形。
3、布尔函数的相等可以有两种证明方法,一种是从布尔表达式经过演绎和归纳来证明。
另一种就是通过列出真值表来证明,如两个函数的真值表相同,则两个函数就相等。
二、布尔代数的公式、定理和规则1、基本公式有交换律、结合律、分配律、0—1律、互补律、重叠律、吸收律、对合律和德·摩根律。
值得注意的是分配律有两个是:A·(B+C)=A·B+A·C和A+B·C=(A+B)·(A+C),另外就是吸收律,A+AB=A;A+A’B=A+B它们是代数法化简的基本公式。
2、布尔代数的主要定理是展开定理(教材中称为附加公式)。
3、布尔代数的重要规则有对偶规则和反演规则。
三、基本逻辑电路1、与门F=A·B2、或门F=A+B3、非门F=A’(为了打字的方便,以后用单引号“’”表示非运算,不再用上划线表示非运算)4、与非门F=(A·B)’5、或非门F=(A+B)’6、与或非门F=(A·B+C·D)’7、异或门F=A’B+AB’=A⊕B8、同或门F=A’B’+AB=A⊙B四、布尔函数的公式法化简同一个布尔函数可以有许多种布尔表达式来表示它,一个布尔表达式就相应于一种逻辑电路。
布尔代数的常用公式

布尔代数的常用公式在布尔代数上的运算被称为AND(与)、OR(或)和NOT(非)。
代数结构要是布尔代数,这些运算的行为就必须和两元素的布尔代数一样(这两个元素是TRUE(真)和FALSE(假))。
亦称逻辑代数.布尔(Boole,G.)为研究思维规律(逻辑学)于1847年提出的数学工具,布尔代数是指代数系统B=〈B,+,·,′〉它包含集合B连同在其上定义的两个二元运算+,·和一个一元运算′,布尔代数具有下列性质:对B中任意元素a,b,c,有:1.a+b=b+a,a·b=b·a.2.a·(b+c)=a·b+a·c,a+(b·c)=(a+b)·(a+c).3.a+0=a,a·1=a.4.a+a′=1,a·a′=0.布尔代数也可简记为B=〈B,+,·,′〉.在不致混淆的情况下,也将集合B称作布尔代数.布尔代数B的集合B称为布尔集,亦称布尔代数的论域或定义域,它是代数B所研究对象的全体.一般要求布尔集至少有两个不同的元素0和1,而且其元素对三种运算+,·,′ 都封闭,因此并非任何集合都能成为布尔集.在有限集合的情形,布尔集的元素个数只能是2n,n=0,1,2,…二元运算+称为布尔加法,布尔和,布尔并,布尔析取等;二元运算·称为布尔乘法,布尔积,布尔交,布尔合取等;一元运算′ 称为布尔补,布尔否定,布尔代数的余运算等.布尔代数的运算符号也有别种记法,如∪,∩,-;∨,∧,?等.由于只含一个元的布尔代数实用价值不大,通常假定0≠1,称0为布尔代数的零元素或最小元,称1为布尔代数的单位元素或最大元.布尔代数通常用亨廷顿公理系统来定义,但也有用比恩公理系统或具有0与1的有补分配格等来定义的。
布尔代数表达式

AB
0 01 ;1 0 11
Y 最大项 最大项名称
MQ
0 A+B )
1 A + B"
0 A+B 1 A+
M2 )
M3
*=(,+■)(月 + 8) =Mr\M2 =n(o, 2)
Y = AB + AB
=mi + mo
【例1】宁宁正在野餐,如果天气下雨或者那儿有蚂蚁的话, 宁宁将不能继续野餐,请设计一个电路,使得在宁宁能够野餐 的时候输出为真。
定义
•乘积项(蕴涵):一个或多个项的“与”,如:ABC. C. BC •最小项:包含全部输入项的乘积,如:ABC. ABC •求和项:一个或多个项的"或”,如:A+C, A +5+C •最大项:包括全部输入项的和,如:A+ B +C, A+B+C
最小项表达式
•每行都对应一个最小项
-每个最小项对该行值为真(并且成等式,成为最小项表达 式
A B Y 最小项 最小项名称
000
m0
d 1 1 AB
1 0 0 A百
m2
(1 1
1 AB
)
Y = AB +AB =m1 + m3
=£(1, 3)
最大项表达式
•每一行有一个最大项 -每一行对应了为假的一个最大项(并且只有该行) •将每一个输出为假的最大项相与
【解】 ① 定义输入和输出
输入是•和R,它们分别表示有蚂蚁和下雨
输出为表示宁宁享受野餐 ② 列真值表
ARE
0
0
1
0
1
0
③由真值表写出逻辑函数表达式(最小项表达式或最大 项表达式)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
布尔代数的常用公式
在布尔代数上的运算被称为AND(与)、OR(或)和NOT(非)。
代数结构要是布尔代数,这些运算的行为就必须和两元素的布尔代数一样(这两个元素是TRUE(真)和FALSE(假))。
亦称逻辑代数.布尔(Boole,G.)为研究思维规律(逻辑学)于1847年提出的数学工具,布尔代数是指代数系统
B=〈B,+,·,′〉
它包含集合B连同在其上定义的两个二元运算+,·和一个一元运算′,布尔代数具有下列性质:对B中任意元素a,b,c,有:
1.a+b=b+a,a·b=b·a.
2.a·(b+c)=a·b+a·c,
a+(b·c)=(a+b)·(a+c).
3.a+0=a,a·1=a.
4.a+a′=1,a·a′=0.
布尔代数也可简记为B=〈B,+,·,′〉.在不致混淆的情况下,也将集合B称作布尔代数.布尔代数B的集合B称为布尔集,亦称布尔代数的论域或定义域,它是代数B所研究对象的全体.一般要求布尔集至少有两个不同的元素0和1,而且其元素对三种运算+,·,′ 都封闭,因此并非任何集合都能成为布尔集.在有限集合的情形,布尔集的元素个数只能是2n,n=0,1,2,…二元运算+称为布尔加法,布尔和,布尔并,布尔析取等;二元运算·称为布尔乘法,布尔积,布尔交,布尔合取等;一元运算′ 称为布尔补,布尔否定,布尔代数的余运算等.布尔代数的运算符号也有别种记法,如∪,∩,-;∨,∧,?等.由于只含一个元的布尔代数实用价值不大,通常假定0≠1,称0为布尔代数的零元素或最小元,称1为布尔代数的单位元素或最大元.布尔代数通常用亨廷顿公理系统来定义,但也有用比恩公理系统或具有0与1的有补分配格等来定义的。