高一数学立体几何练习题

合集下载

高中数学高一必修2空间立体几何试卷(有详细答案)

高中数学高一必修2空间立体几何试卷(有详细答案)

高中数学立体几何测试试卷学校:___姓名:___班级:___考号:__一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.参考答案一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.答案:A解析:解:设圆锥的母线为l,所以圆锥的底面周长为:,底面半径为:=,底面面积为:.圆锥的侧面积为:,所以圆锥的表面积为:+=a,底面面积为:=.故选A.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n答案:D解析:解:对于选项A,若m,n与α所成角相等,m,n也可能相交、平行、异面;故A错误;对于选项B,若m∥α,n∥α,直线m,n也可能平行,也可能相交,还有可能异面;故B 错误;对于选项C,若m,n与α所成角互余,如与α所成角分别为30°和60°,直线m,n所成的角有可能为30°;故C错误;对于选项D,根据线面垂直的性质,容易得到m⊥n;故D正确;故选D.3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-ABCD中,过P作PO⊥平面ABCD于O,连接AO则AO是AP在底面ABCD上的射影.∴∠PAO即为所求线面角,∵AO=,PA=1,∴cos∠PAO==.∴∠PAO=45°,即所求线面角为45°.故选C.4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④答案:B解析:解:①根据线面垂直的判定,当m,n相交时,结论成立,故①不正确;②根据平行线的传递性,可得l∥n,故l⊥α时,一定有n⊥α,故②正确;③由垂直于同一平面的两直线平行得m∥n,再根据平行线的传递性,即可得l∥n,故③正确.④m⊂α,n⊥α,则n⊥m,∵l⊥n,∴可以选用正方体模型,可得l,m平行、相交、异面都有可能,如图所示,故④不正确故正确的命题是②③故选B.5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm答案:C解析:解:∵铜质的五棱柱的底面积为16cm2,高为4cm,∴铜质的五棱柱的体积V=16×4=64cm3,设熔化后铸成一个正方体的铜块的棱长为acm,则a3=64解得a=4cm故选C6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个答案:C解:∵线段A1C与线段PQ相交且互相平分,∴四边形A1QCP是平行四边形,因A l C的长为定值,为了使得四边形A1QCP面积最大,只须P到A l C的距离为最大即可,由正方体的特征可知,当点P位于B1、C1、D1时,平行四边形A1QCP面积相等,且最大.则使得四边形A1QCP面积最大的点P有3个.故选C.7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④答案:D解析:解:根据棱柱的放置和“看见的棱用实线、看不见的棱用虚线”,则①②③正确,④错误,故选D.二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.答案:2解:连接BE,则∵SB⊥底面ABCD,∠SEC=90°,∴BE⊥CE.故问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数.设AE=x,则DE=3-x,∵AB⊥AD,AB∥CD,AB=1,AD=3,CD=2,∴10=1+x2+4+(3-x)2,∴x2-3x+2=0,∴x=1或2,∴满足BE⊥CE的点E的个数为2,∴满足∠SEC=90°的点E的个数是2.故答案为:2.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.答案:B解析:解:由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对.故答案为:B.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.答案:①④解析:解:①若m⊥α,n⊂α,利用线面垂直的性质,可得m⊥n,正确;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;两条相交直线才行,不正确.③m∥α,n∥α,则m与n可能平行、相交、异面,不正确.④若α⊥β,α∩β=m,n⊂α,n⊥m,则由面面垂直的性质定理我们易得到n⊥β,正确.故答案为:①④.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.答案:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.答案:解:如图所示,正三棱台ABC-A1B1C1中,高OO1=3,底面边长为A1B1=2,AB=4,∴OA=×AB=,O1A1=×A1B1=,∴棱台的侧棱长为AA1==;又OE=×AB=,O1E1=×A1B1=,∴该棱台的斜高为EE1==.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.答案:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.。

高一数学必修二 立体几何点线面 专项练习(含答案)

高一数学必修二  立体几何点线面  专项练习(含答案)
(2)证明: 平面;
(3)求直线与平面所成角的正切值.
15. (本题13分)在几何体ABCDE中, ∠BAC= , DC⊥平面ABC, EB⊥平面ABC, F是BC的中点, AB=AC=BE=2, CD=1.
(1)求证: DC∥平面ABE;
(2)求证: AF⊥平面BCDE;
(3)求几何体ABCDE的体积.
16. 如图, 在正三棱柱ABC—A1B1C1中, 底面边长及侧棱长均为2, D是棱AB的中点,
(1)求证 ;
(2)求异面直线AC1与B1C所成角的余弦值.
17.如图,在正方体中,为底面的中心,是的中点,设是上的中点,求证:(1);
(2)平面 ∥平面 .
18. (14分)如图, 在直三棱柱中, , 点是的中点.
(Ⅰ)求证: ;
(Ⅱ)求证: 平面 ;
(Ⅲ)求异面直线 与 所成角的余弦值.
参考答案
Hale Waihona Puke 1.D2.D3.C
4.D
5.B
6.②④
7.平行或相交(直线在平面外)
8.1, 2, 3
9.
10. ②④⑤
11. (1)见解析(2)见解析
12. 见解析。
13. (Ⅰ)见解析;(Ⅱ)见解析。
14. (1)证明: 见解析;(2)证明: 见解析;(3)
二、填空题:
6.设是三个不重合的平面,是直线,给出下列四个命题:
①若
②若
③若
④若
其中正确的命题序号是
7. 已知两条相交直线, , ∥平面, 则与的位置关系是 .
8.如图, 空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点, 那么
①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面

高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。

高一数学立体几何初步试题答案及解析

高一数学立体几何初步试题答案及解析

高一数学立体几何初步试题答案及解析1. ABCD-A1B1C1D1是正方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论中错误的是A.A、M、O三点共线 B.M、O、A1、A四点共面C.A、O、C、M四点共面 D.B、B1、O、M四点共面【答案】D【解析】平面A1C∩平面AB1D1=AO,∵直线A1C交平面AB1D1于点M,∴M∈AO,即A,O,M三点共线;根据A,O,M三点共线,知A1A∩AO=A,∴M,O,A1,A四点共面;同理M,O,C1,C四点共面;OM,B1D是异面直线,故O,M,B1,D四点共面是错误的,故选D。

【考点】本题主要考查正方体的几何特征、空间点线面的位置。

点评:基础题.重在基础知识的记忆与理解。

2.两等角的一组对应边平行,则A.另一组对应边平行B.另一组对应边不平行C.另一组对应边也不可能垂直D.以上都不对【答案】D【解析】两个等角的一组对边平行,另外一组边可以具有各种位置关系,并且不能确定是哪一种关系,故选D.【考点】本题主要考查空间图形平行关系。

点评:易错题的基础题,需要认真分析题目所叙述的命题是否正确。

3.平面α∥平面β,AB、CD是夹在α和β间的两条线段,E、F分别为AB、CD的中点,则EF与α的关系是A.平行 B.相交 C.垂直 D.不能确定【答案】A【解析】若AB∥CD,易得EF与α、β均平行若AB与CD相交,则EF与α、β均平行若AB与CD异面,则设过AB和EF的平面交α,β分别于直线AG和BH,如下图所示:且使G,F,H在一直线上.因为平面α∥β,所以AG∥CH,连接CG和DH,则CGFDH在一个平面内,且CG∥DH,F为CD中点,所以三角形CFG和三角形DFH全等,即得FG=FH,因为AG∥CH,又E,F分别为AB,CD中点,且A,C,H,G在一个平面内,所以EF∥AG∥CH,CH在平面β内,故EF∥β.同理EF∥β故选A。

【考点】本题主要考查空间中直线与平面之间的位置关系。

高一数学立体几何计算题(理科)含解析

高一数学立体几何计算题(理科)含解析

理科立体几何计算题一.解答题(共30小题)1.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.2.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC ∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.3.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.4.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.7.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.8.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.9.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.10.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.11.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=,AA1=2,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.(1)证明:CD⊥AB1;(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.12.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.13.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.(1)求证:PA⊥平面ABCD;(2)求直线BF与平面AFD所成角的正弦值.14.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.15.如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.16.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.17.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.(1)求证AC⊥PB;(2)求PA与平面PBC所成角的正弦值.18.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.19.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.20.如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA ⊥ED,且AB=4,BC=CD=EA=ED=2.(1)求证:BD⊥平面ADE;(2)求直线BE和平面CDE所成角的正弦值.21.如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.(Ⅰ)请在图中作出平面α,使得DE⊂α,且BF∥α,并说明理由;(Ⅱ)求直线EF与平面BCE所成角的正弦值.22.如图,在四棱锥中S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD.(1)证明:平面SBE⊥平面SEC(2)若SE=1,求直线CE与平面SBC所成角的正弦值.23.如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.24.在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.25.如图所示,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C ⊥AC1.(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;(Ⅱ)若D是CC1中点,∠ADB是二面角A﹣CC1﹣B的平面角,求直线AC1与平面ABC所成角的余弦值.26.等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P﹣AE﹣C为120°,设点P在面ABE上的射影为H.(1)证明:点H为EB的中点;(2))若,求直线BE与平面ABP所成角的正弦值.27.圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧于点G,交弦BD于点E,F为线段BC的中点.(Ⅰ)证明:平面OGF∥平面CAD;(Ⅱ)若二面角C﹣AB﹣D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.28.如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.(Ⅰ)证明:平面BAP⊥平面DAP;(Ⅱ)点M为线段AB(含端点)上一点,设直线MP与平面DCP所成角为α,求sinα的取值范围.29.如图所示,四棱锥P﹣ABCD的底面是梯形,且AB∥CD,AB⊥平面PAD,E 是PB中点,CD=PD=AD=AB.(Ⅰ)求证:CE⊥平面PAB;(Ⅱ)若CE=,AB=4,求直线CE与平面PDC所成角的大小.30.如图,多面体ABCDE中,AB⊥面ACD,DE⊥面ACD;三角形ACD是正三角形,且AD=DE=2,AB=1(1)求直线AE和面CDE所成角的正切值;(2)求多面体ABCDE的体积;(3)判断直线CB和AE能否垂直,证明你的结论.理科立体几何计算题参考答案与试题解析一.解答题(共30小题)1.(2017•天津)如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.证明:(Ⅱ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.所以,直线AB与平面PBC所成角的正弦值为.2.(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,则AD=PC=2,∴PB=,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.3.(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.4.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.5.(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.【解答】(1)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO=AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(2)解:设点D,B到平面ACE的距离分别为h D,h E.则=.∵平面AEC把四面体ABCD分成体积相等的两部分,∴===1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E.=(﹣1,0,1),=,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取=.同理可得:平面ACE的法向量为=(0,1,).∴cos===﹣.∴二面角D﹣AE﹣C的余弦值为.6.(2017•北京)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD ⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面PAD的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=| |=.7.(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z 2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.8.(2017•新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.9.(2017•天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=或t=.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或.10.(2017•吴江区三模)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.【解答】解:(1)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD.∵PC⊥平面BDE,BD⊂平面BDE,∴PC⊥BD.又PA∩PC=P,∴BD⊥平面PAC,AC⊂平面PAC,∴BD⊥AC.又底面ABCD为矩形,∴ABCD为正方形.建立如图所示的空间直角坐标系.A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,1),D(0,2,0).=(0,2,0),=(﹣2,0,1),设平面BPC的法向量为=(x,y,z),∴,∴,取=(1,0,2.).∴平面BPC的一个法向量为=(1,0,2.).(2)平面PAC的法向量为:=(﹣2,2,0).设二面角B﹣PC﹣A=θ,由图可知:θ为锐角.则cos===﹣.∴cosθ=.∴sinθ=.∴tanθ==3.即二面角B﹣PC﹣A的正切值为3.11.(2017•虎林市模拟)在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=,AA1=2,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.(1)证明:CD⊥AB1;(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.【解答】证明:(1)由题意可知,在Rt△ABD中,tan∠ABD==,在Rt△ABB1中,tan∠AB1B==.又因为0<∠ABD,∠AB1B,所以∠ABD=∠AB1B,所以∠ABD+∠BAB1=∠AB1B+∠BAB1=,所以AB1⊥BD.又CO⊥侧面ABB1A1,且AB1⊂侧面ABB1A1,∴AB1⊥CO.又BD与CO交于点O,所以AB1⊥平面CBD.又因为BC⊂平面CBD,所以BC⊥AB1.(6分)解:(2)如图所示,以O为原点,分别以OD,OB1,OC所在的直线为x轴,y 轴,z轴,建立空间直角坐标系,则A(0,﹣,0),B(﹣,0,0),C(0,0,),B1(0,,0),D(,0,0).又因为=2,所以C1(,,).所以=(﹣,,0),=(0,,),=(,,).设平面ABC的法向量为=(x,y,z),则由,得令y=,则z=﹣,x=1,=(1,,﹣)是平面ABC的一个法向量.设直线C1D与平面ABC所成的角为α,则sin α==.故直线C1D与平面ABC所成角的正弦值为.(12分)12.(2017•广西一模)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.【解答】(Ⅰ)证明:取AB中点,连接OC,OA1,∵CA=CB,AB=A1A,∠BAA1=60°∴OC⊥AB,OA1⊥AB,∵OC∩OA1=O,∴AB⊥平面OCA1,∵CA1⊂平面OCA1,∴AB⊥A1C;(Ⅱ)解:由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),==(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,可取y=1,可得=(,1,﹣1),故cos<,>=﹣,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.13.(2017•徐水县模拟)如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.(1)求证:PA⊥平面ABCD;(2)求直线BF与平面AFD所成角的正弦值.【解答】解:(1)连接AE,∵AF⊥平面PED,ED⊂平面PED,∴AF⊥ED,在平行四边形ABCD中,BC=2AB=4,∠ABC=60°,∴AE=2,,∴AE2+ED2=AD2,∴AE⊥ED,又∵AF∩AE=A,AF⊂平面PAE,PA⊂平面PAE,∴ED⊥平面PAE,∵PA⊂平面PAE,∴ED⊥PA,又PA⊥AD,AD∩ED=D,AE⊂平面ABCD,AD⊂平面ABCD,∴PA⊥平面ABCD.(2)以E为坐标原点,以EA,ED为x轴,y轴建立如图所示的空间直角坐标系,则A(0,2,0),,,∵AF⊥平面PED,所以AF⊥PE,又F为PE中点,∴PA=AE=2,∴P(0,2,2),F(0,1,1),∴,,,设平面AFD的法向量为,由,得,,令x=1,得.设直线BF与平面AFD所成的角为θ,则:,即直线BF与平面AFD所成角的正弦值为.14.(2017•葫芦岛模拟)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.【解答】(Ⅰ)证明:∵在平行四边形ABCD中,∠BCD=135°,∴∠ABC=45°,∵AB=AC,∴AB⊥AC.∵E,F分别为BC,AD的中点,∴EF∥AB,∴EF⊥AC.∵侧面PAB⊥底面ABCD,且∠BAP=90°,∴PA⊥底面ABCD.又EF⊂底面ABCD,∴PA⊥EF.又∵PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,∴EF⊥平面PAC.(Ⅱ)解:∵PA⊥底面ABCD,AB⊥AC,∴AP,AB,AC两两垂直,以A为原点,分别以AB,AC,AP为x轴、y轴和z轴建立空间直角坐标系如图:则A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(﹣2,2,0),E(1,1,0),∴=(2,0,﹣2),=(﹣2,2,﹣2),,=(1,1,﹣2).设=λ(0≤λ≤1),则=(﹣2λ,2λ,﹣2λ),∴==(1+2λ,1﹣2λ,2λ﹣2),显然平面ABCD的一个法向量为=(0,0,1).设平面PBC的法向量为=(x,y,z),则,即令x=1,得=(1,1,1).∴cos<,>==,cos<>==.∵直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,∴||=||,即,解得,或(舍).∴.15.(2017•腾冲县校级一模)如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD ∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.【解答】解:(1)证明:∵四边形ABCD是直角梯形,AD=CD=2,BC=4,∴AC=4,AB===4,∴△ABC是等腰直角三角形,即AB⊥AC,∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB,∴AB⊥平面PAC,又PC⊂平面PAC,∴AB⊥PC.(2)假设存在符合条件的点M,过点M作MN⊥AD于N,则MN∥PA,∴MN⊥平面ABCD,∴MN⊥AC.过点M作MG⊥AC于G,连接NG,则AC⊥平面MNG,∴AC⊥NG,即∠MGN是二面角M﹣AC﹣D的平面角.若∠MGN=45°,则NG=MN,又AN=NG=MN,∴MN=1,即M是线段PD的中点.∴存在点M使得二面角M﹣AC﹣D的大小为45°.=S△ABC•MN==,在三棱锥M﹣ABC中,V M﹣ABC=,设点B到平面MAC的距离是h,则V B﹣MAC===2,∵MG=MN=,∴S△MAC∴=,解得h=2.在△ABN中,AB=4,AN=,∠BAN=135°,∴BN==,∴BM==3,∴BM与平面MAC所成角的正弦值为=.16.(2017•五模拟)如图,在多面体ABCDM中,△BCD是等边三角形,△CMD 是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.【解答】(Ⅰ)证明:取CD的中点O,连接OB,OM.∵△BCD是等边三角形,∴OB⊥CD.∵△CMD是等腰直角三角形,∠CMD=90°,∴OM⊥CD.∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM⊂平面CMD,∴OM⊥平面BCD.又∵AB⊥平面BCD,∴OM∥AB.∴O,M,A,B四点共面.∵OB∩OM=O,OB⊂平面OMAB,OM⊂平面OMAB,∴CD⊥平面OMAB.∵AM⊂平面OMAB,∴CD⊥AM.(Ⅱ)作MN⊥AB,垂足为N,则MN=OB.∵△BCD是等边三角形,BC=2,∴,CD=2.在Rt△ANM中,.∵△CMD是等腰直角三角形,∠CMD=90°,∴.∴AB=AN+NB=AN+OM=2.以点O为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O﹣xyz,则M(0,0,1),,D(﹣1,0,0),.∴,,.设平面BDM的法向量为=(x,y,z),由n•,n•,∴,令y=1,得=.设直线AM与平面BDM所成角为θ,则==.∴直线AM与平面BDM所成角的正弦值为.17.(2017•香坊区校级二模)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.(1)求证AC⊥PB;(2)求PA与平面PBC所成角的正弦值.【解答】(1)证明∵底面ABCD为菱形,∴AC⊥BD,∵PD⊥底面ABCD,∴AC⊥PD,∵BD∩PD=D,∴AC⊥面PDB,∵PB⊂面PDB∴AC⊥PB.(2)解:设PD=AD=1,设A到平面PBC的距离为h,==则由题意PA=PB=PC=,S△ABC在等腰△PBC中,可求S==△PBC=V P﹣ABC,=,h=∴V A﹣PBC∴sinθ===18.(2017•徐汇区校级模拟)如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.【解答】解:(1)B1C⊥C1A证明如下:在平面BA1内,过B1作B1D⊥AB于D,∵侧面BA1⊥平面ABC,∴B1D⊥平面ABC,∠B1BA是BB1与平面ABC所成的角,∴∠B1BA=π﹣=,连接BC1,∵BB1CC1是菱形,∴BC1⊥B1C,CD⊥平面A1B,B1D⊥AB,∴B1C⊥AB,∴B1C⊥平面ABC1,∴B1C⊥C1A.(2)解:由题意及图,答:四棱锥B﹣ACC1A1的体积为219.(2017•焦作二模)在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【解答】证明:(I)取AB的中点D,连结CD,DF,DE.∵AC=BC,D是AB的中点,∴CD⊥AB.∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.∴A1E=,EF==,DE==,DF==,∴EF2+DE2=DF2,∴DE⊥EF,又CE⊥EF,CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE,∴EF⊥平面CDE,又CD⊂平面CDE,∴CD⊥EF,又CD⊥AB,AB⊂平面ABB1A1,EF⊂平面ABB1A1,AB,EF为相交直线,∴CD⊥平面ABB1A1,又CD⊂ABC,∴平面ABB1A1⊥平面ABC.(II)∵平面ABB1A1⊥平面ABC,∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵CA⊥CB,AB=2,∴AC=BC=.以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).∴=(﹣,0,2),=(,0,),=(,,2).设平面CEF的法向量为=(x,y,z),则,∴,令z=4,得=(﹣,﹣9,4).∴=10,||=6,||=.∴sin<>==.∴直线AC1与平面CEF所成角的正弦值为.20.(2017•秦州区校级模拟)如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.(1)求证:BD⊥平面ADE;(2)求直线BE和平面CDE所成角的正弦值.【解答】解:(1)∵EA=ED=2,EA⊥ED,∴AD=2.∵BC=CD=2,BC⊥CD,∴BD=2又AB=4,∴AD2+BD2=AB2,∴AD⊥BD.又平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面ADE.(2)取AD的中点F,连接EF,则EF⊥平面ABCD,EF=.过D点作直线Oz∥EF,则Oz⊥平面ABCD.以D为坐标原点,以DA,DB,Dz为坐标轴建立空间直角坐标系D﹣xyz,∴D(0,0,0),C(﹣,,0),B(0,2,0),E(,0,),∴=(,﹣2,),=(,0,),=(﹣,,0).设平面CDE的一个法向量为=(x,y,z),则,∴,设x=1得=(1,1,﹣1).∴cos<>===﹣.∴直线BE和平面CDE所成角的正弦值为.21.(2017•泉州一模)如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.(Ⅰ)请在图中作出平面α,使得DE⊂α,且BF∥α,并说明理由;(Ⅱ)求直线EF与平面BCE所成角的正弦值.【解答】解:(Ⅰ)取BC的中点G,连接EG,DG,则平面EDG为所求.∵AD=2,BG=2,AD∥BC,∴四边形ADGB是平行四边形,∴AB∥DG,∵AB⊄平面EDG,DG⊂平面EDG,∴AB∥平面EDG.同理AF∥平面EDG,∵AB∩AF=A,∴平面ABF∥平面EDG,∵FB⊂平面ABF,∴BF∥平面EDG;(Ⅱ)以点A为坐标原点,AD为y轴,AF为z轴,过A垂直于AD的直线为x 轴,建立如图所示的坐标系,则F(0,0,4),E(0,2,1),B(,﹣1,0),C(,3,0),∴=(0,﹣2,3),=(0,4,0),=(﹣,3,1),设平面BCE的法向量为=(x,y,z),则,取=(,0,3),则直线EF与平面BCE所成角的正弦值==.22.(2017•乃东县校级三模)如图,在四棱锥中S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD.(1)证明:平面SBE⊥平面SEC(2)若SE=1,求直线CE与平面SBC所成角的正弦值.【解答】解:(1)证明:∵平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,SE⊂平面SAD,SE⊥AD,∴SE⊥平面ABCD,…(2分)∵BE⊂平面ABCD,∴SE⊥BE.∵CD=3AB=3,AE=ED=,∴∠AEB=30°,∠CED=60°.所以∠BEC=90°即BE⊥CE.…(4分)结合SE∩CE=E得BE⊥平面SEC,∵BE⊂平面SBE,∴平面SBE⊥平面SEC.…(6分)(2)由(1)知,直线ES,EB,EC两两垂直.如图,以EB为x轴,以EC为y轴,以ES为z轴,建立空间直角坐标系.则,∴.设平面SBC的法向量为,则解得一个法向量,…(9分)设直线CE与平面SBC所成角为θ,又,则.所以直线CE与平面SBC所成角的正弦值.…(12分)23.(2017•邯郸二模)如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.【解答】证明:(1)取DB中点G,连结EG、FG.∵F是AD的中点,∴FG∥AB.∵BD=2CE,∴BG=CE.∵∠DBC=∠BCE∴E、G到直线BC的距离相等,则BG∥CB,∵EG∩FG=G∴面EGF∥平面ABC,则EF∥平面ABC.解:(2)以点D为原点,建立如图所示的直角坐标系D﹣xyz,设EC=1,则DB=2,取BC中点C,则EG∥BC,∴BC=3,∵AD=DE,则A(0,0,),E(0,,0),B(2,0,0),C(,,0).,.设平面ACE的法向量,=x+y=0令y=1,则,|cos|=.∴BE与平面ACE所成角的正弦值为:24.(2017•湘潭三模)在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.【解答】(Ⅰ)证明:如图,取OD的中点R,连接PR,QR,则DE∥RQ,由题知,又,故AB:AP=4:1=DB:DR,因此AD∥PR,因为PR,RQ⊄平面ADE,且AD,DE⊂平面ADE,故PR∥平面ADE,RQ∥平面ADE,又PR∩RQ=R,故平面PQR∥平面ADE,从而PQ∥平面ADE.…6分(Ⅱ)解:由题EA=ED=5,,设点O到平面ADE的距离为d,则由等体积法可得,故,因此.…12分.25.(2017•城厢区校级模拟)如图所示,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C⊥AC1.(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;(Ⅱ)若D是CC1中点,∠ADB是二面角A﹣CC1﹣B的平面角,求直线AC1与平面ABC所成角的余弦值.【解答】解:(Ⅰ)证明:连接BC1,因为BB1C1C为菱形,所以B1C⊥BC1,又B1C⊥AC1,AC1∩BC1=C1,所以B1C⊥面ABC1.故B1C⊥AB.因为AB⊥BB1,且BB1∩BC1,所以AB⊥面BB1C1C.而AB⊂平面ABB1A1,所以平面AA1B1B⊥平面BB1C1C;(Ⅱ)因为∠ADB是二面角A﹣CC1﹣B的平面角,所以BD⊥CC1,又D是CC1中点,所以BD=BC1,所以△C1BC为等边三角形.如图所示,分别以BA,BB1,BD为x,y,z轴建立空间直角坐标系,不妨设AB=2,则A(2,0,0),,,).设是平面ABC的一个法向量,则,即,取z=1得.所以=,所以直线AC1与平面ABC所成的余弦值为.26.(2017•湖北模拟)等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P﹣AE﹣C为120°,设点P在面ABE上的射影为H.(1)证明:点H为EB的中点;(2))若,求直线BE与平面ABP所成角的正弦值.【解答】(1)证明:依题意,AE⊥BC,则AE⊥EB,AE⊥EP,EB∩EP=E.∴AE⊥面EPB.故∠CEP为二面角C﹣AE﹣P的平面角,则点P在面ABE上的射影H在EB上.由∠CEP=120°得∠PEB=60°.…(3分)∴EH=EP=.∴H为EB的中点.…(6分)(2)解:过H作HM⊥AB于M,连PM,过H作HN⊥PM于N,连BN,则有三垂线定理得AB⊥面PHM.即面PHM⊥面PAB,∴HN⊥面PAB.故HB在面PAB上的射影为NB.∴∠HBN为直线BE与面ABP所成的角.…(9分)依题意,BE=BC=2,BH=BE=1.在△HMB中,HM=,在△EPB中,PH=,∴在Rt△PHM中,HN=.∴sin∠HBN=.…(12分)27.(2017•山东二模)圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧于点G,交弦BD于点E,F为线段BC的中点.(Ⅰ)证明:平面OGF∥平面CAD;(Ⅱ)若二面角C﹣AB﹣D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.【解答】证明:(Ⅰ)∵OF为△ABC的一条中位线∴OF∥AC,又OF⊄平面ACD,AC⊂平面ACD,∴OF∥平面ACD.又∵OG为∠DOB的平分线,∴OG⊥BD,∵AB是⊙O的直径,∴AD⊥BD,∴OG∥AD,又OG⊄平面ACD,AD⊂平面ACD,∴OG∥平面ACD,又∵OG,OF为平面OGF内的两条相交直线,∴平面OGF∥平面CAD(Ⅱ)∵O为AB的中点,∴CO⊥AB,∵平面CAB⊥平面DAB,平面CAB∩平面DAB=AB,OC⊂平面ABC,∴CO⊥平面DAB,又Rt△DAB中,AB=2,∠DAB=60°,∴AD=1,又OG∥AD,OG=1,OA=1,∴四边形ADGO为菱形,∠AOG=120°,设DG中点为M,则∠AOM=90°,即OM⊥OB,∴直线OM,OB,OC两两垂直,以O为原点,以OM,OB,OC为坐标轴建立如图所示的空间直角坐标系O﹣xyz.则B(0,1,0),C(0,0,1),D(,,G(,,F(0,,).∴=(,,=(0,﹣1,1),=(,﹣,0).设平面BCD的法向量为=(x,y,z),则,∴,令y=1,=(,1,1).∴=1,||=1,=.∴=.∴直线FG与平面BCD所成角的正弦值为.28.(2017•上饶县模拟)如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.(Ⅰ)证明:平面BAP⊥平面DAP;(Ⅱ)点M为线段AB(含端点)上一点,设直线MP与平面DCP所成角为α,求sinα的取值范围.【解答】证明:(I)取PA的中点E,PB的中点O,连接DE,OE,OC.∵OE是△PAB的中位线,∴OE,∵CD∥平面PAB,CD⊂平面ABCD,平面ABCD∩平面PAB=AB,∴CD∥AB,又CD=,∴OE OE,∴四边形CDEO是平行四边形,∴DE∥OC.∵AB⊥平面PBC,OC⊂平面PBC,∴AB⊥OC,∵BC=PC,∴OC⊥PB,又PB⊂平面PAB,AB⊂平面PAB,AB∩PB=B,∴OC⊥平面PAB,又OC∥DE,∴DE⊥平面PAB,∵DE⊂平面PAD,∴平面PAD⊥平面PAB.(II)∵OE∥AB,AB⊥平面PBC,∴OE⊥平面PBC.以O为原点,以OC,OB,OE为坐标轴建立空间直角坐标系,如图所示:则P(0,﹣1,0),C(,0,0),D(,0,1),设M(0,1,a)(0≤a≤2),则=(0,2,a),=(0,0,1),=(,1,0).设平面PCD的法向量为=(x,y,z),则,∴,令x=1得=(1,﹣,0).∴cos<>==.∴sinα=.∴当a=0时,sinα取得最大值,当a=2时,sinα取得最小值.∴sinα的取值范围是[,].。

立体几何测试题

立体几何测试题

高一数学必修2立体几何测试题试卷满分:150分 考试时间:120分钟第Ⅰ卷一、选择题(每小题5分,共60分)1、下列说法正确的是 ( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点2.有一个几何体的三视图如下图所示, 这个几何体应是一个( )A 、棱台B 、棱锥C 、棱柱D 、都不对 3、在正方体1111ABC D A B C D -中,下列几种说法正确的是 A 、11A C AD ⊥ B 、11D C AB ⊥ C 、1AC 与D C 成45 角 D 、11A C 与1B C 成60 角 4、正三棱锥ABCS—的侧棱长和底面边长相等, 如果E 、F 分别为SC ,AB 的中点,那么异面直线EF 与SA 所成角为 ( ) A .090 B .060 C .045 5、下列命题中:正确的个数有 ( ) (1)、平行于同一直线的两个平面平行; (2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行; (4)、垂直于同一平面的两直线平行.A 、1B 、2C 、3D 、46、一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底边均为1的等腰梯形,则这个平面图形的面积是 ( )A. 2221+B. 22+C. 21+D.221+7、设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题:①若b a ⊥,α⊥a ,α⊄b ,则α//b ;②若α//a , βα⊥,则β⊥a ; ③若β⊥a ,βα⊥,则α//a 或α⊂a ;④若b a ⊥,α⊥a ,β⊥b ,则βα⊥ 其中A .0 B .1 C .2 D .3B 1C 1A 1D 1BACD8、给出下列关于互不相同的直线 和平面 的四个命题: (1),,,m A A l m ∉=⊂点αα 则l 与m 不共面;(2)l 、m 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; (3)若m l m l //,//,//,//则βαβα;(4)若ββαα//,//,,,m l A m l m l 点=⊂⊂ ,则βα//,其中为错误的命题是( )个. A.1个 B.2个 C.3个 D.4个9、下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面的一个图是PPRSSPRRSSPPPQRSSP P QRRSSA 、B 、C 、D 、10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45 D 、56 11、 已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是( )A.4B.3C.2D.512、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2V B 、3V C 、4V D 、5V二、填空题(每小题4分,共16分)13、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).14、正方体1111ABC D A B C D -中,平面11A B D 和平面1B C D 的位置关系为 15、已知P A 垂直平行四边形A B C D 所在平面,若PC BD ⊥,平行则四边形A B C D 一定是 .16、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)QPC'B'A'CBAH G FE DBACSDCBA高一数学必修2立体几何测试题第Ⅱ卷一、选择题:1---5___________, 6------10__________, 11---12________二、填空题:13、__________ 14、_____________ 15、__________ 16、___________ 三、简答题:17、已知E 、F 、G 、H 为空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且EH ∥FG 。

高一数学立体几何试题

高一数学立体几何试题1.设三棱柱的体积为,分别是侧棱上的点,且,则四棱锥的体积为()A.B.C.D.【答案】C【解析】假设重合,重合,则【考点】棱柱棱锥的体积2.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的三视图如图,则该圆锥的体积为()A.πB.2πC.πD.π【答案】A【解析】由该几何体的三视图得到该圆锥的底面半径是:,高是,所以体积是:.【考点】1.三视图;2.几何体的体积.3.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.【答案】(1)(2)(3)点为的四等分点【解析】(1)取中点,设面,连接则为二面角的平面角,设,则可利用表示出和,从而根据,即可求得,即可求出二面角的大小。

(2)连接为异面直线与所成的角,根据,判断出面,从而可推断,从而可知为直线与所成的角,根据勾股定理求得,从而求出,则即可求得。

(3)延长交于,取中点,连接,先证出平面和平面垂直,再通过已知条件证出平面,取中点,利用,推断出,可知,最后可推断出平面,即为四等分点。

试题解析:(1)取中点,连接,依条件可知,则为所求二面角P-AD-O的平面角.∵面,∴为侧棱与底面所成的角.∴,7(2)连接,∴∠OEA为异面直线PD与AE所成的角.为异面直线与所成的角∵,,∴⊥平面.又平面,∴⊥.(3)延长交于,取中点,连.,∴⊥平面.∴平面⊥平面.又,∴为正三角形..又平面平,∴MG⊥平面PBC.平面取中点,,∴平面.点为的四等分点.【考点】(1)直线与平面垂直的判定(2)二面角的求法4.下列说法不正确的是A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.【答案】D【解析】A中由平行四边形判定定理可知结论正确;B中两垂线平行,因此确定一个平面;C中由线面垂直的判定定理可知结论正确;D中过一条直线有无数平面与已知平面垂直【考点】线面平行垂直的判定与性质5.已知是直线,是平面,下列命题中:①若垂直于内两条直线,则;②若平行于,则内可有无数条直线与平行;③若m⊥n,n⊥l则m∥l;④若,则;正确的命题个数为()A.1B.2C.3D.4【答案】A【解析】①改为垂直于平面内的两条相交直线;②正确;③改为或相交或异面;④改为或异面.故选A.【考点】线与线,面与面,线与面位置关系6.长方体的表面积是,所有棱长的和是,则对角线的长是()A.B.C.D.【答案】D【解析】设长方体的长、宽、高分别为.则有.则长方体的对角线长为.故D正确.【考点】长方体的表面积,对角线.【思路点晴】本题主要考查的是长方体的表面积,属容易题.应先设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后根据勾股定理可得对角线的长度.7.用到球心距离为2的平面去截球,所得的截面面积为,则球的体积为()A.B.C.D.【答案】B【解析】用到球心距离为2的平面去截球,所得的截面面积为,所以小圆的半径为1,已知球心到该截面的距离为2,所以球的半径为,所以球的体积为:;故选B.【考点】球的体积与表面积8.设是两条不同的直线,是两个不同的平面,下列命题中正确的是A.若,,则B.若,,则C.若,,则D.若,,,则【答案】D【解析】A中,与可垂直、可异面、可平行;B中与可平行、可异面;C中若,仍然满足,故C错误;故D正确.【考点】1.直线与直线的平行与垂直;2.平面与平面平行与垂直的命题判断.9.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若,则或∥,故A不正确;若,则或∥,故B不正确;若,则,故C正确;若,则或或∥,故D不正确,所以C为正确答案.【考点】直线与平面的位置关系.10.边长为的正三角形,在斜二测画法下的平面直观图的面积为.【答案】【解析】,所以.【考点】直观图.11.下列说法正确的是()A.底面是正多边形,侧面都是正三角形的棱锥是正棱锥B.各个侧面都是正方形的棱柱一定是正棱柱C.对角面是全等的矩形的直棱柱是长方体D.两底面为相似多边形,且其余各面均为梯形的多面体必为棱台【答案】A【解析】由正棱锥的定义可知A正确;B不正确,例如各个侧面都是正方形的四棱柱的底面一定是菱形,但不一定是正方形,所以此时的四棱柱不一定是正四棱柱;C不正确,对角面是全等的矩形的直棱柱的底面可能是等腰梯形;D不正确,不能保证此多面体的各侧棱交于一点.【考点】几何体的概念问题.12.一个几何体的三视图如图所示,则这个几何体的体积为()A.B.C.D.【答案】A【解析】由已知中的三视图可知该几何体是一个组合体,由一个底面半径为,高为的半圆锥和一个底面边长为的正方形,高为的四棱锥组合而成,分别代入圆锥和棱锥的体积公式,可得这个几何体的体积,故选A.【考点】由三视图求面积、体积.13.(2009•浙江)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【答案】C【解析】本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.解:若l⊥α,α⊥β,则l⊂β或l∥β,故A错误;若l∥α,α∥β,则l⊂β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选C【考点】空间中直线与平面之间的位置关系.14.(2015秋•鞍山校级期末)正六棱柱ABCDEF﹣A1B1C1D1E1F1的底面边长为,侧棱长为1,则动点从A沿表面移动到点D1时的最短的路程是.【答案】【解析】根据题意,画出图形,结合图形得出从A点沿表面到D1的路程是多少,求出即可.解:将所给的正六棱柱按图1部分展开,则AD′1==,AD1==,∵AD′1<AD1,∴从A点沿正侧面和上底面到D1的路程最短,为.故答案为:.【考点】多面体和旋转体表面上的最短距离问题.15.(2014•埇桥区校级学业考试)已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为()A.(﹣3,0,0) B.(0,﹣3,0)C.(0,0,﹣3) D.(0,0,3)【答案】C【解析】点M(0,0,z),利用A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,建立方程,即可求出M点坐标解:设点M(0,0,z),则∵A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,∴∴z=﹣3∴M点坐标为(0,0,﹣3)故选C.【考点】两点间的距离公式.16.已知向量=(1,2),=(2,3﹣m),且∥,那么实数m的值是()A.﹣1B.1C.4D.7【答案】A【解析】根据向量的平行的条件和向量的坐标运算即可求出.解:向量=(1,2),=(2,3﹣m),且∥,∴1×(3﹣m)=2×2,∴m=﹣1,故选:A.【考点】平面向量共线(平行)的坐标表示.17.如图是一个几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法)(2)求这个几何体的表面积及体积.【答案】(1)见解析;(2)表面积;体积3.【解析】(1)由三视图可知该几何体为平放的三棱柱,则可画出其三棱柱;(2)由三视图可知棱柱的两底面为等腰三角形且底边长为2,高为1.一个侧面是长为3宽为2的矩形;另两个侧面都是长为3宽为的矩形,从而可得其表面积和体积.试题解析:(1)由三视图可知该几何体为平放的三棱柱,直观图为:(2)由三视图可知,该棱柱的高,底面等腰的底,的,高为1,.故所求全面积.几何体的体积.【考点】1三视图;2几何体的表面积,体积.18.(2011•南昌三模)如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥底面A1B1C1,主视图是边长为2的正方形,该三棱柱的左视图面积为()A.4B.C.D.【答案】B【解析】由三视图和题意可知三棱柱是正三棱柱,结合正视图,俯视图,不难得到侧视图,然后求出面积.解:由三视图和题意可知三棱柱是正三棱柱,底面边长为2,侧棱长2,结合正视图,俯视图,得到侧视图是矩形,长为2,宽为面积为:故选B.【考点】由三视图求面积、体积.19.(2015秋•沈阳校级月考)如图,四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB,E,F,G,H分别为PC、PD、BC、PA的中点.求证:(1)PA∥平面EFG;(2)DH⊥平面EFG.【答案】见解析【解析】(1)根据面面平行的性质推出线面平行;(2)由题意可证DH⊥PA,DH⊥AB,可证DH⊥平面PAB,从而证明DH⊥PB,由(1)EF∥AB,EG∥PB,从而证明DH⊥EG,DH⊥EF,即可证明DH⊥平面EFG.证明:(1)∵E、G分别是PC、BC的中点,∴EG是△PBC的中位线,∴EG∥PB,又∵PB⊂平面PAB,EG⊄平面PAB,∴EG∥平面PAB,∵E、F分别是PC、PD的中点,∴EF∥CD,又∵底面ABCD为正方形,∴CD∥AB,∴EF∥AB,又∵AB⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB,又EF∩EG=E,∴平面EFG∥平面PAB,∵PA⊂平面PAB,∴PA∥平面EFG.(2)∵PD⊥AD,PD=AD,H为的中点,∴DH⊥PA,∵BA⊥平面PDA,DH⊂平面PDA,∴DH⊥AB,∴DH⊥平面PAB,∴DH⊥PB,由(1)EF∥AB,EG∥PB,∴DH⊥EG,DH⊥EF,∴DH⊥平面EFG.【考点】直线与平面垂直的判定;直线与平面平行的判定.20.(2015春•咸宁期末)如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线以上四个命题中,正确的命题序号是()A.①②③B.②④C.③④D.②③④【答案】C【解析】根据恢复的正方体可以判断出答案.解:根据展开图,画出立体图形,BM与ED垂直,不平行,CN与BE是平行直线,CN与BM成60°,DM与BN是异面直线,故③④正确.故选:C【考点】空间中直线与直线之间的位置关系.21.(2015秋•河池期末)下列结论判断正确的是()A.任意三点确定一个平面B.任意四点确定一个平面C.三条平行直线最多确定一个平面D.正方体ABCD﹣A1B1C1D1中,AB与CC1异面【答案】D【解析】根据题意,容易得出选项A、B、C错误,画出图形,结合异面直线的定义即可判断D 正确.解:对于A,不在同一直线上的三点确定一个平面,∴命题A错误;对于B,不在同一直线上的四点确定一个平面,∴命题B错误;对于C,三条平行直线可以确定一个或三个平面,∴命题C错误;对于D,如图所示,正方体ABCD﹣A1B1C1D1中,AB与CC1是异面直线,命题D正确.故选:D.【考点】平面的基本性质及推论.22.设点M是等腰直角三角形ABC的斜边BA的中点,P是直线BA上任意一点,PE⊥AC于E,PF⊥BC于F,求证:(1)ME=MF;(2)ME⊥MF.【答案】见解析【解析】(1)以等腰直角三角形的直角顶点C为坐标原点O,以OA为单位长,以直线OA.OB分别为x轴.y轴建立平面直角坐标系,由此能证明ME=MF.(2)分别求出ME2+MF2=,,由此能证明ME⊥MF.证明:(1)如图,以等腰直角三角形的直角顶点C为坐标原点O,以OA为单位长,以直线OA.OB分别为x轴.y轴建立平面直角坐标系,则A(1,0),B(0,1),…(2分)设P(x0,y),则有x+y=1,∵PE⊥OA,PF⊥OB,∴E(x0,0),F(0,y),,,∵,∴ME=MF.…(7分)(2)∵ME2+MF2=()2+++(﹣y)2=,,∴ME2+MF2=EF2,∴ME⊥MF.…(12分)【考点】空间中直线与直线之间的位置关系.23.已知l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥α,m⊂α,则l⊥mB.若l⊥m,m⊂α,则l⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m【答案】A【解析】对四个命题分别进行判断,即可得出结论.解:对于A,若l⊥α,m⊂α,则根据直线与平面垂直的性质定理知:l⊥m,故A正确;对于B,若l⊥m,m⊂α,则根据直线与平面垂直的判定定理知:l⊥α不正确,故B不正确;对于C,∵l∥α,m⊂α,∴由直线与平面平行的性质定理知:l与m平行或异面,故C不正确;对于D,若l∥α,m∥α,则l与m平行,异面或相交,故D不正确.故选:A.【考点】平面与平面之间的位置关系;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.24.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD(1)求证:A′C∥平面BDE;(2)求证:平面A′AC⊥平面BDE.【答案】见解析【解析】(1)首先找到线面平行的充分条件,可以通过中位线找到线线平行,再进一步证明线面平行.(2)要证明平面A′AC⊥平面BDE.可以通过BD⊥平面A'AC来进行转化,进一步找到BD⊥平面A'AC的充分条件,从而得到结果.证明:(1)设BD交AC于M,连结ME.∵ABCD为正方形,所以M为AC中点,又∵E为A'A的中点∴ME为△A'AC的中位线∴ME∥A'C又∵ME⊂平面BDE,A'C⊄平面BDE∴A'C∥平面BDE.(2)∵ABCD为正方形∴BD⊥AC∵A'A⊥平面ABCD∴A'A⊥BD.又AC∩A'A=A AC⊂面A'AC AA'⊂面A'AC∴BD⊥平面A'AC∵BD⊂平面BDE∴平面A'AC⊥平面BDE.【考点】平面与平面垂直的判定;直线与平面平行的判定.25.如图,在正方体中,分别为棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求异面直线与所成角.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明线面平行可通过证明线线平行或面面平行得以实现,本题证明时利用中点产生的中位线加以证明;(Ⅱ)求异面直线所成角时首先将异面直线平移为相交直线,求其夹角即可,本题中通过平移可知就是异面直线与所成角,通过求解角所在的三角形三边得到角的大小试题解析:(1)连结BD,分别为AD,AB的中点,所以EF∥BD,由所以四边形是平行四边形,所以,平面平面平面(Ⅱ)连接,四边形是平行四边形又∥就是异面直线与所成角在正方体中即异面直线与所成角为【考点】1.线面平行的判定;2.异面直线所成角26.将正方体截取一个四棱锥后得到的几何体如图所示,则有关该几何体的三视图表述正确的是()A.正视图与俯视图形状完全相同B.侧视图与俯视图形状完全相同C.正视图与侧视图形状完全相同D.正视图、侧视图与俯视图形状完全相同【答案】C【解析】根据三视图的特点,画出几何体的三视图,可得答案.解:该几何体的三视图如下所示:主视图:侧视图:俯视图:则正视图与侧视图形状完全相同,故选:C【考点】简单空间图形的三视图.27.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P﹣QBM的体积.【答案】(1)见解析;(2)【解析】(1)由PA=PD,得到PQ⊥AD,又底面ABCD为菱形,∠BAD=60°,得BQ⊥AD,利用线面垂直的判定定理得到AD⊥平面PQB利用面面垂直的判定定理得到平面PQB⊥平面PAD;2)由平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,得PQ⊥平面ABCD,BC⊂平面ABCD,得PQ⊥BC,得BC⊥平面PQB,即得到高,利用椎体体积公式求出;解:(1)∵PA=PD,∴PQ⊥AD,又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,PQ∩BQ=Q,∴AD⊥平面PQB又AD⊂平面PAD,∴平面PQB⊥平面PAD;(2)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,∴PQ⊥平面ABCD,BC⊂平面ABCD,∴PQ⊥BC,又BC⊥BQ,QB∩QP=Q,∴BC⊥平面PQB,又PM=3MC,∴V﹣QBM=V M﹣PQB=P【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.28.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B 分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A.2:1 B.3:1 C.3:2 D.4:3【答案】A【解析】设AB的长度为a用a表示出A'B'的长度,即可得到两线段的比值.解:连接AB'和A'B,设AB=a,可得AB与平面α所成的角为,在Rt△BAB'中有AB'=,同理可得AB与平面β所成的角为,所以,因此在Rt△AA'B'中A'B'=,所以AB:A'B'=,故选A.【考点】平面与平面垂直的性质.29.对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β【答案】C【解析】在A中,α与β相交或相行;在B中,α与β不一定垂直;在C中,由由面面垂直的判定定理得α⊥β;在D中,由面面平行的判定定理得α∥β.解:在A中,m⊥n,m∥α,n∥β,则α与β相交或相行,故A错误;在B中,m⊥n,α∩β=m,n⊂α,则α与β不一定垂直,故B错误;在C中,m∥n,n⊥β,m⊂α,由由面面垂直的判定定理得α⊥β,故C正确;在D中,m∥n,m⊥α,n⊥β,则由面面平行的判定定理得α∥β,故D错误.故选:C.【考点】空间中直线与平面之间的位置关系.30.正方体ABCD﹣A1B1C1D1的棱长为,△AB1D1面积为,三棱锥A﹣A1B1D1的体积为.【答案】,【解析】正方体ABCD﹣A1B1C1D1的棱长为,△AB1D1是边长为=2的等边三角形,由此能求出△AB1D1面积和三棱锥A﹣A1B1D1的体积.解:∵正方体ABCD﹣A1B1C1D1的棱长为,∴△AB1D1是边长为=2的等边三角形,∴△AB1D1面积S==.== =.故答案为:,.【考点】棱柱、棱锥、棱台的体积.31.已知正四面体中,是的中点,则异面直线与所成角的余弦值为()A.B.C.D.【答案】B【解析】如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.【考点】异面直线所成的角.【名师】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.32.对于四面体ABCD,下列命题正确的是________.(写出所有正确命题的编号).①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.【答案】①④⑤【解析】本题考查空间几何体的线线关系,以及空间想象能力.如图所示,四面体ABCD中,AB与CD是异面直线,故①正确;当四面体ABCD中,对棱AB与CD不垂直时,由顶点A作四面体的高,其垂足不是△BCD三条高线的交点,故②不正确;若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足不一定重合,故③不正确;如图,过顶点A 作AO ⊥面BCD ,O 为垂足,连结OB 、OC 、OD ,则S △ABC >S △BOC ,S △ACD >S △COD ,S △ABD >S △BOD ,∴S △ABC +S △ACD +S △ABD >S △BOC +S △COD +S △BOD =S △BCD , 故④正确. 如图四面体ABCD 中取AB 、CD 、AD 、BC 的中点分别为E 、F 、M 、N ,连线EF 、MN ,则EF 、MN 分别为▱EMFN 的对角线,∴EF 、MN 相交于点O ,且O 为EF 、MN 的中点,取AC 、BD 的中点分别为R 、H ,则ERFH 为平行四边形,即点O 也是RH 的中点,故⑤正确.33. 一个正三棱柱的三视图如图所示,求这个正三棱柱的体积和表面积。

高一数学立体几何综合试题

高一数学立体几何综合试题1.如图所示,直观图四边形是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.B.C.D.【答案】A【解析】由题可得A¢D¢=A¢B¢=1,B¢C¢=1+,所以原平面图形中AD=1,AB=2,BC=1+,根据梯形的面积计算公式可得【考点】斜二测画法.2.定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.请对上面定理加以证明,并说出定理的名称及作用.【答案】证明过程详见解析.此定理是直线与平面平行的性质定理;定理的作用是由“线与面平行”判断或证明“线、线平行”.【解析】首先将定理翻译为数学语言,要证∥,只须证明与在同一平面内,且没有公共点,这由已知中的平行关系可得.试题解析:已知:∥.求证:∥.证明:如图:因为∥所以和没有公共点又因为在内,所以和也没有公共点,因为和都在平面内,且没有公共点,所以∥.此定理是直线与平面平行的性质定理.定理的作用是由“线与面平行”判断或证明“线、线平行”.【考点】1.直线与平面的概念;2.直线与直线平行的定义.3.如图,四边形中(图1),,中点为,将图1沿直线折起,使二面角为(图2)(1)过作直线平面,且平面=,求的长度。

(2)求直线与平面所成角的正弦值。

【答案】(1)(2)【解析】因为,中点为,连接AF,EF.∵∴AF⊥BD,∵,∴DB2+DC2=BC2,∴△BCD是以BC为斜边的直角三角形,BD⊥DC,∵平面,DB=2,∴EF为△BCD的中位线,∴EF∥CD,且EF=CD,∴EF⊥BD,EF=,∴∠AFE是二面角A-BD-C的平面角,∠AFE=60°.∴△ABD为等腰直角三角形,∴AF=BD=1,∴AE=,在直角三角形DFE中,.(2)以F为原点,FB所在直线为x轴,FE所在直线为y轴,平行于EA的直线为z轴,建立空间直角坐标系,则由(1)及已知条件可知B(1,0,0),E(0,,0),A(0,,),D(-1,0,0),C(-1,1,0),则=(1,-,-) ,=(0,-1,0),=(-1,-,-),。

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.B.C.D.【答案】A【解析】由三视图知,几何体是一个三棱锥,底面是直角边长为的直角三角形,面积是,三棱锥的一条侧棱与底面垂直,且长度是,这是三棱锥的高,三棱锥的体积是.故选A.【考点】本题考查由三视图求面积、体积.2.已知一空间几何体的三视图如图所示,它的表面积是()A.B.C.D.3【答案】C【解析】该几何体是三棱柱,如下图,,其表面积为。

故选C。

【考点】柱体的表面积公式点评:由几何体的三视图来求出该几何体的表面积或者体积是一个考点,这类题目侧重考察学生的想象能力。

3.已知某一几何体的正(主)视图与侧(左)视图如图,则在下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①③④⑤D.①②③④【答案】D【解析】俯视图为⑤的几何体的侧视图如下,这与题目不相符,而①②③④符合题意。

故选D。

【考点】三视图点评:本题考查简单空间图形的三视图,考查空间想象能力,是基础题.4.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若是的中点,求证:∥平面;(3)求证:平面⊥平面.【答案】(1)4 (2)主要证明∥ (3)主要证明平面【解析】解:(1)由题意可知,四棱锥中,平面平面,,所以,平面,又,,则四棱锥的体积为.(2)连接,则∥,∥,又,所以四边形为平行四边形,∴∥,∵平面,平面,所以,∥平面.(3)∵,是的中点,∴⊥,又在直三棱柱中可知,平面平面,∴平面,由(2)知,∥,∴平面,又平面,所以,平面平面.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,平面与平面垂直的判定,其中(1)的关键是由面面垂直的性质定理可得AB⊥平面ACDE,(2)的关键是分析出四边形ANME为平行四边形,即AN∥EM,(3)的关键是熟练掌握空间线线垂直,线面垂直与面面垂直之间的相互转化.5.如图是长方体被一平面所截得到的几何体,四边形为截面,长方形为底面,则四边形的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【答案】B【解析】因为,长方体中相对的平面互相平行,所以,被平面截后,EF,GH平行且相等,GF,EH 平行且相等,故四边形的形状为平行四边形,选B。

高一数学立体几何练习题及部分答案大全

立体几何试题一.选择题(每题4分,共40分)1.已知AB 0300300150空间,下列命题正确的个数为( )(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( )A 平行B 相交C 在平面内D 平行或在平面内4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( )A 平行B 垂直相交C 异面D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( )A 0个B 1个C 无数个D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥⊂ B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=⊂ D ,//,//m n m n αβ⊥10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个二.填空题(每题4分,共16分)11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有_____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________三、 解答题15(10分)如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学立体几何练习题
一、选择题(下列各题中只有一个选项正确,每题4分,共40分)
1、下列说法正确是[ D ]。

A.圆台是直角梯形绕其一边旋转而成
B.圆锥是直角三角形绕其一边旋转而成
C.圆柱的母线和它的底面不垂直。

D.圆台可以看作是平行于底面的平面截一个圆锥而得到的。

2、下列说法错误的是[ B ]。

A、用斜二测画法画出的直观图是在平行投影下画得的空间图形
B、几何体直观图中的长、宽、高与几何体的长、宽高的比例相同。

C、水平放置的矩形的直观图一定是平行四边形。

D、水平放置的圆的直观图一定是椭圆。

3、底面放置在同一平面的一个圆柱和一个圆锥,底面积相同且体积相等, 用通过圆柱中截面的平面截圆锥和圆柱所得两个截面的面积之比是[ A ] 。

A. 25∶36
B. 9∶16
C. 4∶9
D. 5∶6
4、下列命题中,真命题的是 [ B ] 。

A.两两相交的三条直线共面
B.对角线交于一点的四边形一定是平面图形
C.不共面的四点中可以有三点共线
D.边长相等的四边形一定是菱形
5、下列条件能得到直线l1,l2互相平行的是 [ D ] 。

A.l1,l2都平行于同一个平面
B.l1,l2与同一个平面所成的角相等
C.l1平行于l2所在的平面
D.l1,l2都垂直于同一个平面
6、下列四个命题中正确的是 [ B ] 。

①两个平面没有公共点,则这两个平面平行
②一个平面内有三个点到另一个平面的距离(距离不为零)相等,则这两个平面平行
③一个平面内任一点到另一个平面的距离(距离不为零)都相等,则这两个平面平行
④一个平面内有无数个点到另一个平面的距离(距离不为零)相等,则这两个平面平行.
A.①② B.①③ C.①②③ D.①②③④
7、如果直线a平行于平面β,那么 [ D ] 。

A.平面β内不存在与a垂直的直线
B.平面β内有且只有一条直线与a垂直
C.平面β内有且只有一条直线与a平行
D.平面β内有无数多条直线与a不平行
8、已知直线l⊥平面α,直线m
β,有如下四个命题:①α∥β
l⊥m,②α⊥β
l∥m,③l∥m
α⊥β,l⊥m
α∥β,其中正确命题是 [ C ]
A.③④ B.①② C.①③ D.②④
9、平面α内有三条相交于一点的直线, 另有一条直线与它们所成的角都相等, 则此直线与平面α的关系是 [ B ]。

A.平行
B.垂直
C.斜交
D.以上答案都不对
10、已知a、b是异面直线,下面结论中不正确的是[ C ]。

A.存在着无数个平面与a、b都平行
B.存在着一个平面与a、b等距离
C.存在着一个平面与a、b都垂直
D.存在着无数条直线与a、b都垂直
二、填空题(每小题4分,共20分)
1、如图,四面体ABCD中,CD=4,AB=2,E、F分别为AC、BD的中点,EF=
,则AB与CD所成角的大小是_________.2、平面α∥平面β,直线a与平面α所成的角和直线b与平面β所成的
角相等,则直线a与直线b的位置关系是_________.
3、如图所示,∠BAD=
的等腰Rt△ABD与正三角形CBD所在面互相垂直,E是BC中点,则AE与平面BCD所成角的大小为________.
4、把半径为R的球削成长方体,这样得到的长方体体积最大值是
_________.
5、一个正四棱锥底面一边的长为1,侧棱长也都是1, 求它的表面积是__________,体积是_________。

三、解答题(每小题8分,共40分)
1、如图,
的交线并说明理由.
2、 求证:如果一条直线和两个相交平面平行,那么这条直线和这两个
平面的交线平行.
3、已知a、b为异面直线,平面α过a与b平行,平面β过b与a平行.
求证α∥β.
4、如图,平面AOB,平面BOC,平面AOC两两垂直,且OA=OB=OC,求平面ABC与平面BOC的夹角的余弦.
5、解答题
如图,已知空间四边形ABCD中,AB⊥CD,EF为AB、CD的公垂线.
①求证平面ABF⊥平面BCD.②在△ABF中作AO⊥BF,求直线AO与BC所成的角。

高一数学立体几何练习题答案
一、选择题(下列各题中只有一个选项正确,每题4分,共40分)
1—5 DBABD 6—10 BDCBC
二、填空题(每小题4分,共20分)
1、
2、平行、相交或异面都有可能
3、
4、
5、
三、解答题(每小题8分,共40分)
1.作图提示:作直线AB交直线a于点E。

2、如图,已知:a∥α,α∥β,α∩β=b
证明:设A∈α,且A
b,过a及A作平面γ交平面α于c.
∵a∥α ∴a∥c
同理,过a及B作平面δ交平面β于d,则a∥d ∴c∥d 又d
β,c
β ∴c∥β
又c
α,α∩β=b ∴c∥b 又a∥c ∴a∥b
3.
4.提示;取BC中点E,连结AE,OE。

5、 连结AD、AF.。

相关文档
最新文档